|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from dataclasses import dataclass |
|
from typing import Any, Dict, Optional |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
from diffusers.configuration_utils import ConfigMixin, register_to_config |
|
|
|
|
|
from diffusers.models.modeling_utils import ModelMixin |
|
|
|
from diffusers.utils import BaseOutput, is_xformers_available |
|
from einops import rearrange |
|
from torch import nn |
|
from diffusers.models.embeddings import PixArtAlphaTextProjection |
|
|
|
from allegro.models.transformers.block import to_2tuple, BasicTransformerBlock, AdaLayerNormSingle |
|
from allegro.models.transformers.embedding import PatchEmbed2D |
|
|
|
from diffusers.utils import logging |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
@dataclass |
|
class Transformer3DModelOutput(BaseOutput): |
|
""" |
|
The output of [`Transformer2DModel`]. |
|
|
|
Args: |
|
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` or `(batch size, num_vector_embeds - 1, num_latent_pixels)` if [`Transformer2DModel`] is discrete): |
|
The hidden states output conditioned on the `encoder_hidden_states` input. If discrete, returns probability |
|
distributions for the unnoised latent pixels. |
|
""" |
|
|
|
sample: torch.FloatTensor |
|
|
|
|
|
class AllegroTransformer3DModel(ModelMixin, ConfigMixin): |
|
_supports_gradient_checkpointing = True |
|
|
|
""" |
|
A 2D Transformer model for image-like data. |
|
|
|
Parameters: |
|
num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention. |
|
attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head. |
|
in_channels (`int`, *optional*): |
|
The number of channels in the input and output (specify if the input is **continuous**). |
|
num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use. |
|
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. |
|
cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use. |
|
sample_size (`int`, *optional*): The width of the latent images (specify if the input is **discrete**). |
|
This is fixed during training since it is used to learn a number of position embeddings. |
|
num_vector_embeds (`int`, *optional*): |
|
The number of classes of the vector embeddings of the latent pixels (specify if the input is **discrete**). |
|
Includes the class for the masked latent pixel. |
|
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to use in feed-forward. |
|
num_embeds_ada_norm ( `int`, *optional*): |
|
The number of diffusion steps used during training. Pass if at least one of the norm_layers is |
|
`AdaLayerNorm`. This is fixed during training since it is used to learn a number of embeddings that are |
|
added to the hidden states. |
|
|
|
During inference, you can denoise for up to but not more steps than `num_embeds_ada_norm`. |
|
attention_bias (`bool`, *optional*): |
|
Configure if the `TransformerBlocks` attention should contain a bias parameter. |
|
""" |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
num_attention_heads: int = 16, |
|
attention_head_dim: int = 88, |
|
in_channels: Optional[int] = None, |
|
out_channels: Optional[int] = None, |
|
num_layers: int = 1, |
|
dropout: float = 0.0, |
|
cross_attention_dim: Optional[int] = None, |
|
attention_bias: bool = False, |
|
sample_size: Optional[int] = None, |
|
sample_size_t: Optional[int] = None, |
|
patch_size: Optional[int] = None, |
|
patch_size_t: Optional[int] = None, |
|
activation_fn: str = "geglu", |
|
num_embeds_ada_norm: Optional[int] = None, |
|
use_linear_projection: bool = False, |
|
only_cross_attention: bool = False, |
|
double_self_attention: bool = False, |
|
upcast_attention: bool = False, |
|
norm_type: str = "ada_norm", |
|
norm_elementwise_affine: bool = True, |
|
norm_eps: float = 1e-5, |
|
caption_channels: int = None, |
|
interpolation_scale_h: float = None, |
|
interpolation_scale_w: float = None, |
|
interpolation_scale_t: float = None, |
|
use_additional_conditions: Optional[bool] = None, |
|
sa_attention_mode: str = "flash", |
|
ca_attention_mode: str = 'xformers', |
|
downsampler: str = None, |
|
use_rope: bool = False, |
|
model_max_length: int = 300, |
|
): |
|
super().__init__() |
|
self.use_linear_projection = use_linear_projection |
|
self.interpolation_scale_t = interpolation_scale_t |
|
self.interpolation_scale_h = interpolation_scale_h |
|
self.interpolation_scale_w = interpolation_scale_w |
|
self.downsampler = downsampler |
|
self.caption_channels = caption_channels |
|
self.num_attention_heads = num_attention_heads |
|
self.attention_head_dim = attention_head_dim |
|
inner_dim = num_attention_heads * attention_head_dim |
|
self.inner_dim = inner_dim |
|
self.in_channels = in_channels |
|
self.out_channels = in_channels if out_channels is None else out_channels |
|
self.use_rope = use_rope |
|
self.model_max_length = model_max_length |
|
self.num_layers = num_layers |
|
self.config.hidden_size = inner_dim |
|
|
|
|
|
|
|
|
|
assert in_channels is not None and patch_size is not None |
|
|
|
|
|
|
|
|
|
assert self.config.sample_size_t is not None, "AllegroTransformer3DModel over patched input must provide sample_size_t" |
|
assert self.config.sample_size is not None, "AllegroTransformer3DModel over patched input must provide sample_size" |
|
|
|
|
|
self.num_frames = self.config.sample_size_t |
|
self.config.sample_size = to_2tuple(self.config.sample_size) |
|
self.height = self.config.sample_size[0] |
|
self.width = self.config.sample_size[1] |
|
self.patch_size_t = self.config.patch_size_t |
|
self.patch_size = self.config.patch_size |
|
interpolation_scale_t = ((self.config.sample_size_t - 1) // 16 + 1) if self.config.sample_size_t % 2 == 1 else self.config.sample_size_t / 16 |
|
interpolation_scale_t = ( |
|
self.config.interpolation_scale_t if self.config.interpolation_scale_t is not None else interpolation_scale_t |
|
) |
|
interpolation_scale = ( |
|
self.config.interpolation_scale_h if self.config.interpolation_scale_h is not None else self.config.sample_size[0] / 30, |
|
self.config.interpolation_scale_w if self.config.interpolation_scale_w is not None else self.config.sample_size[1] / 40, |
|
) |
|
self.pos_embed = PatchEmbed2D( |
|
num_frames=self.config.sample_size_t, |
|
height=self.config.sample_size[0], |
|
width=self.config.sample_size[1], |
|
patch_size_t=self.config.patch_size_t, |
|
patch_size=self.config.patch_size, |
|
in_channels=self.in_channels, |
|
embed_dim=self.inner_dim, |
|
interpolation_scale=interpolation_scale, |
|
interpolation_scale_t=interpolation_scale_t, |
|
use_abs_pos=not self.config.use_rope, |
|
) |
|
interpolation_scale_thw = (interpolation_scale_t, *interpolation_scale) |
|
|
|
|
|
self.transformer_blocks = nn.ModuleList( |
|
[ |
|
BasicTransformerBlock( |
|
inner_dim, |
|
num_attention_heads, |
|
attention_head_dim, |
|
dropout=dropout, |
|
cross_attention_dim=cross_attention_dim, |
|
activation_fn=activation_fn, |
|
num_embeds_ada_norm=num_embeds_ada_norm, |
|
attention_bias=attention_bias, |
|
only_cross_attention=only_cross_attention, |
|
double_self_attention=double_self_attention, |
|
upcast_attention=upcast_attention, |
|
norm_type=norm_type, |
|
norm_elementwise_affine=norm_elementwise_affine, |
|
norm_eps=norm_eps, |
|
sa_attention_mode=sa_attention_mode, |
|
ca_attention_mode=ca_attention_mode, |
|
use_rope=use_rope, |
|
interpolation_scale_thw=interpolation_scale_thw, |
|
block_idx=d, |
|
) |
|
for d in range(num_layers) |
|
] |
|
) |
|
|
|
|
|
|
|
if norm_type != "ada_norm_single": |
|
self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6) |
|
self.proj_out_1 = nn.Linear(inner_dim, 2 * inner_dim) |
|
self.proj_out_2 = nn.Linear(inner_dim, patch_size * patch_size * self.out_channels) |
|
elif norm_type == "ada_norm_single": |
|
self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6) |
|
self.scale_shift_table = nn.Parameter(torch.randn(2, inner_dim) / inner_dim**0.5) |
|
self.proj_out = nn.Linear(inner_dim, patch_size * patch_size * self.out_channels) |
|
|
|
|
|
self.adaln_single = None |
|
self.use_additional_conditions = False |
|
if norm_type == "ada_norm_single": |
|
|
|
|
|
|
|
self.adaln_single = AdaLayerNormSingle(inner_dim, use_additional_conditions=self.use_additional_conditions) |
|
|
|
self.caption_projection = None |
|
if caption_channels is not None: |
|
self.caption_projection = PixArtAlphaTextProjection( |
|
in_features=caption_channels, hidden_size=inner_dim |
|
) |
|
|
|
self.gradient_checkpointing = False |
|
|
|
def _set_gradient_checkpointing(self, module, value=False): |
|
self.gradient_checkpointing = value |
|
|
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
timestep: Optional[torch.LongTensor] = None, |
|
encoder_hidden_states: Optional[torch.Tensor] = None, |
|
added_cond_kwargs: Dict[str, torch.Tensor] = None, |
|
class_labels: Optional[torch.LongTensor] = None, |
|
cross_attention_kwargs: Dict[str, Any] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
encoder_attention_mask: Optional[torch.Tensor] = None, |
|
return_dict: bool = True, |
|
): |
|
""" |
|
The [`Transformer2DModel`] forward method. |
|
|
|
Args: |
|
hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, frame, channel, height, width)` if continuous): |
|
Input `hidden_states`. |
|
encoder_hidden_states ( `torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*): |
|
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to |
|
self-attention. |
|
timestep ( `torch.LongTensor`, *optional*): |
|
Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`. |
|
class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*): |
|
Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in |
|
`AdaLayerZeroNorm`. |
|
added_cond_kwargs ( `Dict[str, Any]`, *optional*): |
|
A kwargs dictionary that if specified is passed along to the `AdaLayerNormSingle` |
|
cross_attention_kwargs ( `Dict[str, Any]`, *optional*): |
|
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under |
|
`self.processor` in |
|
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). |
|
attention_mask ( `torch.Tensor`, *optional*): |
|
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask |
|
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large |
|
negative values to the attention scores corresponding to "discard" tokens. |
|
encoder_attention_mask ( `torch.Tensor`, *optional*): |
|
Cross-attention mask applied to `encoder_hidden_states`. Two formats supported: |
|
|
|
* Mask `(batch, sequence_length)` True = keep, False = discard. |
|
* Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard. |
|
|
|
If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format |
|
above. This bias will be added to the cross-attention scores. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain |
|
tuple. |
|
|
|
Returns: |
|
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a |
|
`tuple` where the first element is the sample tensor. |
|
""" |
|
batch_size, c, frame, h, w = hidden_states.shape |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if attention_mask is not None and attention_mask.ndim == 4: |
|
|
|
|
|
|
|
|
|
|
|
|
|
attention_mask = attention_mask.to(self.dtype) |
|
attention_mask_vid = attention_mask[:, :frame] |
|
|
|
if attention_mask_vid.numel() > 0: |
|
attention_mask_vid = attention_mask_vid.unsqueeze(1) |
|
attention_mask_vid = F.max_pool3d(attention_mask_vid, kernel_size=(self.patch_size_t, self.patch_size, self.patch_size), |
|
stride=(self.patch_size_t, self.patch_size, self.patch_size)) |
|
attention_mask_vid = rearrange(attention_mask_vid, 'b 1 t h w -> (b 1) 1 (t h w)') |
|
|
|
attention_mask_vid = (1 - attention_mask_vid.bool().to(self.dtype)) * -10000.0 if attention_mask_vid.numel() > 0 else None |
|
|
|
|
|
if encoder_attention_mask is not None and encoder_attention_mask.ndim == 3: |
|
|
|
|
|
encoder_attention_mask = (1 - encoder_attention_mask.to(self.dtype)) * -10000.0 |
|
encoder_attention_mask_vid = rearrange(encoder_attention_mask, 'b 1 l -> (b 1) 1 l') if encoder_attention_mask.numel() > 0 else None |
|
|
|
|
|
frame = frame // self.patch_size_t |
|
|
|
height, width = hidden_states.shape[-2] // self.patch_size, hidden_states.shape[-1] // self.patch_size |
|
|
|
added_cond_kwargs = {"resolution": None, "aspect_ratio": None} if added_cond_kwargs is None else added_cond_kwargs |
|
hidden_states, encoder_hidden_states_vid, \ |
|
timestep_vid, embedded_timestep_vid = self._operate_on_patched_inputs( |
|
hidden_states, encoder_hidden_states, timestep, added_cond_kwargs, batch_size, |
|
) |
|
|
|
|
|
for _, block in enumerate(self.transformer_blocks): |
|
hidden_states = block( |
|
hidden_states, |
|
attention_mask_vid, |
|
encoder_hidden_states_vid, |
|
encoder_attention_mask_vid, |
|
timestep_vid, |
|
cross_attention_kwargs, |
|
class_labels, |
|
frame=frame, |
|
height=height, |
|
width=width, |
|
) |
|
|
|
|
|
output = None |
|
if hidden_states is not None: |
|
output = self._get_output_for_patched_inputs( |
|
hidden_states=hidden_states, |
|
timestep=timestep_vid, |
|
class_labels=class_labels, |
|
embedded_timestep=embedded_timestep_vid, |
|
num_frames=frame, |
|
height=height, |
|
width=width, |
|
) |
|
|
|
if not return_dict: |
|
return (output,) |
|
|
|
return Transformer3DModelOutput(sample=output) |
|
|
|
def _operate_on_patched_inputs(self, hidden_states, encoder_hidden_states, timestep, added_cond_kwargs, batch_size): |
|
|
|
hidden_states_vid = self.pos_embed(hidden_states.to(self.dtype)) |
|
timestep_vid = None |
|
embedded_timestep_vid = None |
|
encoder_hidden_states_vid = None |
|
|
|
if self.adaln_single is not None: |
|
if self.use_additional_conditions and added_cond_kwargs is None: |
|
raise ValueError( |
|
"`added_cond_kwargs` cannot be None when using additional conditions for `adaln_single`." |
|
) |
|
timestep, embedded_timestep = self.adaln_single( |
|
timestep, added_cond_kwargs, batch_size=batch_size, hidden_dtype=self.dtype |
|
) |
|
|
|
timestep_vid = timestep |
|
embedded_timestep_vid = embedded_timestep |
|
|
|
if self.caption_projection is not None: |
|
encoder_hidden_states = self.caption_projection(encoder_hidden_states) |
|
encoder_hidden_states_vid = rearrange(encoder_hidden_states[:, :1], 'b 1 l d -> (b 1) l d') |
|
|
|
return hidden_states_vid, encoder_hidden_states_vid, timestep_vid, embedded_timestep_vid |
|
|
|
def _get_output_for_patched_inputs( |
|
self, hidden_states, timestep, class_labels, embedded_timestep, num_frames, height=None, width=None |
|
): |
|
|
|
if self.config.norm_type != "ada_norm_single": |
|
conditioning = self.transformer_blocks[0].norm1.emb( |
|
timestep, class_labels, hidden_dtype=self.dtype |
|
) |
|
shift, scale = self.proj_out_1(F.silu(conditioning)).chunk(2, dim=1) |
|
hidden_states = self.norm_out(hidden_states) * (1 + scale[:, None]) + shift[:, None] |
|
hidden_states = self.proj_out_2(hidden_states) |
|
elif self.config.norm_type == "ada_norm_single": |
|
shift, scale = (self.scale_shift_table[None] + embedded_timestep[:, None]).chunk(2, dim=1) |
|
hidden_states = self.norm_out(hidden_states) |
|
|
|
hidden_states = hidden_states * (1 + scale) + shift |
|
hidden_states = self.proj_out(hidden_states) |
|
hidden_states = hidden_states.squeeze(1) |
|
|
|
|
|
if self.adaln_single is None: |
|
height = width = int(hidden_states.shape[1] ** 0.5) |
|
hidden_states = hidden_states.reshape( |
|
shape=(-1, num_frames, height, width, self.patch_size_t, self.patch_size, self.patch_size, self.out_channels) |
|
) |
|
hidden_states = torch.einsum("nthwopqc->nctohpwq", hidden_states) |
|
output = hidden_states.reshape( |
|
shape=(-1, self.out_channels, num_frames * self.patch_size_t, height * self.patch_size, width * self.patch_size) |
|
) |
|
return output |
|
|