karim.ai / allegro /models /transformers /transformer_3d_allegro.py
fffiloni's picture
Upload 15 files
cdcfdd8 verified
# Adapted from Open-Sora-Plan
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
# References:
# Open-Sora-Plan: https://github.com/PKU-YuanGroup/Open-Sora-Plan
# --------------------------------------------------------
from dataclasses import dataclass
from typing import Any, Dict, Optional
import torch
import torch.nn.functional as F
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.models.modeling_utils import ModelMixin
from diffusers.utils import BaseOutput, is_xformers_available
from einops import rearrange
from torch import nn
from diffusers.models.embeddings import PixArtAlphaTextProjection
from allegro.models.transformers.block import to_2tuple, BasicTransformerBlock, AdaLayerNormSingle
from allegro.models.transformers.embedding import PatchEmbed2D
from diffusers.utils import logging
logger = logging.get_logger(__name__)
@dataclass
class Transformer3DModelOutput(BaseOutput):
"""
The output of [`Transformer2DModel`].
Args:
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` or `(batch size, num_vector_embeds - 1, num_latent_pixels)` if [`Transformer2DModel`] is discrete):
The hidden states output conditioned on the `encoder_hidden_states` input. If discrete, returns probability
distributions for the unnoised latent pixels.
"""
sample: torch.FloatTensor
class AllegroTransformer3DModel(ModelMixin, ConfigMixin):
_supports_gradient_checkpointing = True
"""
A 2D Transformer model for image-like data.
Parameters:
num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention.
attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head.
in_channels (`int`, *optional*):
The number of channels in the input and output (specify if the input is **continuous**).
num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
sample_size (`int`, *optional*): The width of the latent images (specify if the input is **discrete**).
This is fixed during training since it is used to learn a number of position embeddings.
num_vector_embeds (`int`, *optional*):
The number of classes of the vector embeddings of the latent pixels (specify if the input is **discrete**).
Includes the class for the masked latent pixel.
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to use in feed-forward.
num_embeds_ada_norm ( `int`, *optional*):
The number of diffusion steps used during training. Pass if at least one of the norm_layers is
`AdaLayerNorm`. This is fixed during training since it is used to learn a number of embeddings that are
added to the hidden states.
During inference, you can denoise for up to but not more steps than `num_embeds_ada_norm`.
attention_bias (`bool`, *optional*):
Configure if the `TransformerBlocks` attention should contain a bias parameter.
"""
@register_to_config
def __init__(
self,
num_attention_heads: int = 16,
attention_head_dim: int = 88,
in_channels: Optional[int] = None,
out_channels: Optional[int] = None,
num_layers: int = 1,
dropout: float = 0.0,
cross_attention_dim: Optional[int] = None,
attention_bias: bool = False,
sample_size: Optional[int] = None,
sample_size_t: Optional[int] = None,
patch_size: Optional[int] = None,
patch_size_t: Optional[int] = None,
activation_fn: str = "geglu",
num_embeds_ada_norm: Optional[int] = None,
use_linear_projection: bool = False,
only_cross_attention: bool = False,
double_self_attention: bool = False,
upcast_attention: bool = False,
norm_type: str = "ada_norm",
norm_elementwise_affine: bool = True,
norm_eps: float = 1e-5,
caption_channels: int = None,
interpolation_scale_h: float = None,
interpolation_scale_w: float = None,
interpolation_scale_t: float = None,
use_additional_conditions: Optional[bool] = None,
sa_attention_mode: str = "flash",
ca_attention_mode: str = 'xformers',
downsampler: str = None,
use_rope: bool = False,
model_max_length: int = 300,
):
super().__init__()
self.use_linear_projection = use_linear_projection
self.interpolation_scale_t = interpolation_scale_t
self.interpolation_scale_h = interpolation_scale_h
self.interpolation_scale_w = interpolation_scale_w
self.downsampler = downsampler
self.caption_channels = caption_channels
self.num_attention_heads = num_attention_heads
self.attention_head_dim = attention_head_dim
inner_dim = num_attention_heads * attention_head_dim
self.inner_dim = inner_dim
self.in_channels = in_channels
self.out_channels = in_channels if out_channels is None else out_channels
self.use_rope = use_rope
self.model_max_length = model_max_length
self.num_layers = num_layers
self.config.hidden_size = inner_dim
# 1. Transformer3DModel can process both standard continuous images of shape `(batch_size, num_channels, width, height)` as well as quantized image embeddings of shape `(batch_size, num_image_vectors)`
# Define whether input is continuous or discrete depending on configuration
assert in_channels is not None and patch_size is not None
# 2. Initialize the right blocks.
# Initialize the output blocks and other projection blocks when necessary.
assert self.config.sample_size_t is not None, "AllegroTransformer3DModel over patched input must provide sample_size_t"
assert self.config.sample_size is not None, "AllegroTransformer3DModel over patched input must provide sample_size"
#assert not (self.config.sample_size_t == 1 and self.config.patch_size_t == 2), "Image do not need patchfy in t-dim"
self.num_frames = self.config.sample_size_t
self.config.sample_size = to_2tuple(self.config.sample_size)
self.height = self.config.sample_size[0]
self.width = self.config.sample_size[1]
self.patch_size_t = self.config.patch_size_t
self.patch_size = self.config.patch_size
interpolation_scale_t = ((self.config.sample_size_t - 1) // 16 + 1) if self.config.sample_size_t % 2 == 1 else self.config.sample_size_t / 16
interpolation_scale_t = (
self.config.interpolation_scale_t if self.config.interpolation_scale_t is not None else interpolation_scale_t
)
interpolation_scale = (
self.config.interpolation_scale_h if self.config.interpolation_scale_h is not None else self.config.sample_size[0] / 30,
self.config.interpolation_scale_w if self.config.interpolation_scale_w is not None else self.config.sample_size[1] / 40,
)
self.pos_embed = PatchEmbed2D(
num_frames=self.config.sample_size_t,
height=self.config.sample_size[0],
width=self.config.sample_size[1],
patch_size_t=self.config.patch_size_t,
patch_size=self.config.patch_size,
in_channels=self.in_channels,
embed_dim=self.inner_dim,
interpolation_scale=interpolation_scale,
interpolation_scale_t=interpolation_scale_t,
use_abs_pos=not self.config.use_rope,
)
interpolation_scale_thw = (interpolation_scale_t, *interpolation_scale)
# 3. Define transformers blocks, spatial attention
self.transformer_blocks = nn.ModuleList(
[
BasicTransformerBlock(
inner_dim,
num_attention_heads,
attention_head_dim,
dropout=dropout,
cross_attention_dim=cross_attention_dim,
activation_fn=activation_fn,
num_embeds_ada_norm=num_embeds_ada_norm,
attention_bias=attention_bias,
only_cross_attention=only_cross_attention,
double_self_attention=double_self_attention,
upcast_attention=upcast_attention,
norm_type=norm_type,
norm_elementwise_affine=norm_elementwise_affine,
norm_eps=norm_eps,
sa_attention_mode=sa_attention_mode,
ca_attention_mode=ca_attention_mode,
use_rope=use_rope,
interpolation_scale_thw=interpolation_scale_thw,
block_idx=d,
)
for d in range(num_layers)
]
)
# 4. Define output layers
if norm_type != "ada_norm_single":
self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6)
self.proj_out_1 = nn.Linear(inner_dim, 2 * inner_dim)
self.proj_out_2 = nn.Linear(inner_dim, patch_size * patch_size * self.out_channels)
elif norm_type == "ada_norm_single":
self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6)
self.scale_shift_table = nn.Parameter(torch.randn(2, inner_dim) / inner_dim**0.5)
self.proj_out = nn.Linear(inner_dim, patch_size * patch_size * self.out_channels)
# 5. PixArt-Alpha blocks.
self.adaln_single = None
self.use_additional_conditions = False
if norm_type == "ada_norm_single":
# self.use_additional_conditions = self.config.sample_size[0] == 128 # False, 128 -> 1024
# TODO(Sayak, PVP) clean this, for now we use sample size to determine whether to use
# additional conditions until we find better name
self.adaln_single = AdaLayerNormSingle(inner_dim, use_additional_conditions=self.use_additional_conditions)
self.caption_projection = None
if caption_channels is not None:
self.caption_projection = PixArtAlphaTextProjection(
in_features=caption_channels, hidden_size=inner_dim
)
self.gradient_checkpointing = False
def _set_gradient_checkpointing(self, module, value=False):
self.gradient_checkpointing = value
def forward(
self,
hidden_states: torch.Tensor,
timestep: Optional[torch.LongTensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
added_cond_kwargs: Dict[str, torch.Tensor] = None,
class_labels: Optional[torch.LongTensor] = None,
cross_attention_kwargs: Dict[str, Any] = None,
attention_mask: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
return_dict: bool = True,
):
"""
The [`Transformer2DModel`] forward method.
Args:
hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, frame, channel, height, width)` if continuous):
Input `hidden_states`.
encoder_hidden_states ( `torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
self-attention.
timestep ( `torch.LongTensor`, *optional*):
Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`.
class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*):
Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in
`AdaLayerZeroNorm`.
added_cond_kwargs ( `Dict[str, Any]`, *optional*):
A kwargs dictionary that if specified is passed along to the `AdaLayerNormSingle`
cross_attention_kwargs ( `Dict[str, Any]`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
`self.processor` in
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
attention_mask ( `torch.Tensor`, *optional*):
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
negative values to the attention scores corresponding to "discard" tokens.
encoder_attention_mask ( `torch.Tensor`, *optional*):
Cross-attention mask applied to `encoder_hidden_states`. Two formats supported:
* Mask `(batch, sequence_length)` True = keep, False = discard.
* Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard.
If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format
above. This bias will be added to the cross-attention scores.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
tuple.
Returns:
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
`tuple` where the first element is the sample tensor.
"""
batch_size, c, frame, h, w = hidden_states.shape
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
# we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
# we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
# expects mask of shape:
# [batch, key_tokens]
# adds singleton query_tokens dimension:
# [batch, 1, key_tokens]
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn) attention_mask_vid, attention_mask_img = None, None
if attention_mask is not None and attention_mask.ndim == 4:
# assume that mask is expressed as:
# (1 = keep, 0 = discard)
# convert mask into a bias that can be added to attention scores:
# (keep = +0, discard = -10000.0)
# b, frame+use_image_num, h, w -> a video with images
# b, 1, h, w -> only images
attention_mask = attention_mask.to(self.dtype)
attention_mask_vid = attention_mask[:, :frame] # b, frame, h, w
if attention_mask_vid.numel() > 0:
attention_mask_vid = attention_mask_vid.unsqueeze(1) # b 1 t h w
attention_mask_vid = F.max_pool3d(attention_mask_vid, kernel_size=(self.patch_size_t, self.patch_size, self.patch_size),
stride=(self.patch_size_t, self.patch_size, self.patch_size))
attention_mask_vid = rearrange(attention_mask_vid, 'b 1 t h w -> (b 1) 1 (t h w)')
attention_mask_vid = (1 - attention_mask_vid.bool().to(self.dtype)) * -10000.0 if attention_mask_vid.numel() > 0 else None
# convert encoder_attention_mask to a bias the same way we do for attention_mask
if encoder_attention_mask is not None and encoder_attention_mask.ndim == 3:
# b, 1+use_image_num, l -> a video with images
# b, 1, l -> only images
encoder_attention_mask = (1 - encoder_attention_mask.to(self.dtype)) * -10000.0
encoder_attention_mask_vid = rearrange(encoder_attention_mask, 'b 1 l -> (b 1) 1 l') if encoder_attention_mask.numel() > 0 else None
# 1. Input
frame = frame // self.patch_size_t # patchfy
# print('frame', frame)
height, width = hidden_states.shape[-2] // self.patch_size, hidden_states.shape[-1] // self.patch_size
added_cond_kwargs = {"resolution": None, "aspect_ratio": None} if added_cond_kwargs is None else added_cond_kwargs
hidden_states, encoder_hidden_states_vid, \
timestep_vid, embedded_timestep_vid = self._operate_on_patched_inputs(
hidden_states, encoder_hidden_states, timestep, added_cond_kwargs, batch_size,
)
for _, block in enumerate(self.transformer_blocks):
hidden_states = block(
hidden_states,
attention_mask_vid,
encoder_hidden_states_vid,
encoder_attention_mask_vid,
timestep_vid,
cross_attention_kwargs,
class_labels,
frame=frame,
height=height,
width=width,
)
# 3. Output
output = None
if hidden_states is not None:
output = self._get_output_for_patched_inputs(
hidden_states=hidden_states,
timestep=timestep_vid,
class_labels=class_labels,
embedded_timestep=embedded_timestep_vid,
num_frames=frame,
height=height,
width=width,
) # b c t h w
if not return_dict:
return (output,)
return Transformer3DModelOutput(sample=output)
def _operate_on_patched_inputs(self, hidden_states, encoder_hidden_states, timestep, added_cond_kwargs, batch_size):
# batch_size = hidden_states.shape[0]
hidden_states_vid = self.pos_embed(hidden_states.to(self.dtype))
timestep_vid = None
embedded_timestep_vid = None
encoder_hidden_states_vid = None
if self.adaln_single is not None:
if self.use_additional_conditions and added_cond_kwargs is None:
raise ValueError(
"`added_cond_kwargs` cannot be None when using additional conditions for `adaln_single`."
)
timestep, embedded_timestep = self.adaln_single(
timestep, added_cond_kwargs, batch_size=batch_size, hidden_dtype=self.dtype
) # b 6d, b d
timestep_vid = timestep
embedded_timestep_vid = embedded_timestep
if self.caption_projection is not None:
encoder_hidden_states = self.caption_projection(encoder_hidden_states) # b, 1+use_image_num, l, d or b, 1, l, d
encoder_hidden_states_vid = rearrange(encoder_hidden_states[:, :1], 'b 1 l d -> (b 1) l d')
return hidden_states_vid, encoder_hidden_states_vid, timestep_vid, embedded_timestep_vid
def _get_output_for_patched_inputs(
self, hidden_states, timestep, class_labels, embedded_timestep, num_frames, height=None, width=None
):
# import ipdb;ipdb.set_trace()
if self.config.norm_type != "ada_norm_single":
conditioning = self.transformer_blocks[0].norm1.emb(
timestep, class_labels, hidden_dtype=self.dtype
)
shift, scale = self.proj_out_1(F.silu(conditioning)).chunk(2, dim=1)
hidden_states = self.norm_out(hidden_states) * (1 + scale[:, None]) + shift[:, None]
hidden_states = self.proj_out_2(hidden_states)
elif self.config.norm_type == "ada_norm_single":
shift, scale = (self.scale_shift_table[None] + embedded_timestep[:, None]).chunk(2, dim=1)
hidden_states = self.norm_out(hidden_states)
# Modulation
hidden_states = hidden_states * (1 + scale) + shift
hidden_states = self.proj_out(hidden_states)
hidden_states = hidden_states.squeeze(1)
# unpatchify
if self.adaln_single is None:
height = width = int(hidden_states.shape[1] ** 0.5)
hidden_states = hidden_states.reshape(
shape=(-1, num_frames, height, width, self.patch_size_t, self.patch_size, self.patch_size, self.out_channels)
)
hidden_states = torch.einsum("nthwopqc->nctohpwq", hidden_states)
output = hidden_states.reshape(
shape=(-1, self.out_channels, num_frames * self.patch_size_t, height * self.patch_size, width * self.patch_size)
)
return output