|
|
|
|
|
import itertools |
|
import math |
|
import random |
|
from random import shuffle |
|
from typing import Iterator |
|
from typing import Optional |
|
from typing import TypeVar |
|
|
|
import torch |
|
import torch.distributed as dist |
|
from torch.utils.data import Dataset |
|
from torch.utils.data import Sampler |
|
|
|
__all__ = [ |
|
"DistributedBucketSampler", |
|
] |
|
|
|
T_co = TypeVar("T_co", covariant=True) |
|
|
|
|
|
class DistributedBucketSampler(Sampler[T_co]): |
|
r""" |
|
sort the dataset wrt. input length |
|
divide samples into buckets |
|
sort within buckets |
|
divide buckets into batches |
|
sort batches |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dataset: Dataset, |
|
num_replicas: Optional[int] = None, |
|
rank: Optional[int] = None, |
|
shuffle: bool = True, |
|
seed: int = 0, |
|
drop_last: bool = False, |
|
batch_size: int = 32, |
|
) -> None: |
|
if num_replicas is None: |
|
if not dist.is_available(): |
|
raise RuntimeError("Requires distributed package to be available") |
|
num_replicas = dist.get_world_size() if torch.cuda.is_available() else 1 |
|
if rank is None: |
|
if not dist.is_available(): |
|
raise RuntimeError("Requires distributed package to be available") |
|
rank = dist.get_rank() if torch.cuda.is_available() else 0 |
|
if torch.cuda.is_available(): |
|
torch.cuda.set_device(rank) |
|
if rank >= num_replicas or rank < 0: |
|
raise ValueError( |
|
"Invalid rank {}, rank should be in the interval" |
|
" [0, {}]".format(rank, num_replicas - 1) |
|
) |
|
self.dataset = dataset |
|
self.num_replicas = num_replicas |
|
self.rank = rank |
|
self.epoch = 0 |
|
self.drop_last = drop_last |
|
|
|
|
|
if ( |
|
self.drop_last and len(self.dataset) % self.num_replicas != 0 |
|
): |
|
|
|
|
|
|
|
self.num_samples = math.ceil( |
|
(len(self.dataset) - self.num_replicas) |
|
/ self.num_replicas |
|
) |
|
else: |
|
self.num_samples = math.ceil( |
|
len(self.dataset) / self.num_replicas |
|
) |
|
self.total_size = self.num_samples * self.num_replicas |
|
self.shuffle = shuffle |
|
self.seed = seed |
|
self.batch_size = batch_size |
|
self.id_with_length = self._get_sample_lengths() |
|
self.id_buckets = self.make_buckets(bucket_width=2.0) |
|
|
|
def _get_sample_lengths(self): |
|
id_with_lengths = [] |
|
for i in range(len(self.dataset)): |
|
id_with_lengths.append((i, self.dataset.get_sample_length(i))) |
|
id_with_lengths.sort(key=lambda x: x[1]) |
|
return id_with_lengths |
|
|
|
def make_buckets(self, bucket_width: float = 2.0): |
|
buckets = [] |
|
cur = [] |
|
max_sec = bucket_width |
|
for id, sec in self.id_with_length: |
|
if sec < max_sec: |
|
cur.append(id) |
|
else: |
|
buckets.append(cur) |
|
cur = [id] |
|
max_sec += bucket_width |
|
if len(cur) > 0: |
|
buckets.append(cur) |
|
return buckets |
|
|
|
def __iter__(self) -> Iterator[T_co]: |
|
if self.shuffle: |
|
|
|
g = torch.Generator() |
|
g.manual_seed(self.seed + self.epoch) |
|
random.seed(self.epoch + self.seed) |
|
shuffled_bucket = [] |
|
for buc in self.id_buckets: |
|
buc_copy = buc.copy() |
|
shuffle(buc_copy) |
|
shuffled_bucket.append(buc_copy) |
|
grouped_batch_size = self.batch_size * self.num_replicas |
|
shuffled_bucket = list(itertools.chain(*shuffled_bucket)) |
|
n_batch = int(math.ceil(len(shuffled_bucket) / grouped_batch_size)) |
|
batches = [ |
|
shuffled_bucket[b * grouped_batch_size : (b + 1) * grouped_batch_size] |
|
for b in range(n_batch) |
|
] |
|
shuffle(batches) |
|
indices = list(itertools.chain(*batches)) |
|
else: |
|
|
|
indices = list(range(len(self.dataset))) |
|
|
|
if not self.drop_last: |
|
|
|
padding_size = self.total_size - len(indices) |
|
if padding_size <= len(indices): |
|
indices += indices[:padding_size] |
|
else: |
|
indices += (indices * math.ceil(padding_size / len(indices)))[ |
|
:padding_size |
|
] |
|
else: |
|
|
|
indices = indices[: self.total_size] |
|
assert len(indices) == self.total_size |
|
|
|
|
|
indices = indices[self.rank : self.total_size : self.num_replicas] |
|
assert len(indices) == self.num_samples |
|
|
|
return iter(indices) |
|
|
|
def __len__(self) -> int: |
|
return self.num_samples |
|
|
|
def set_epoch(self, epoch: int) -> None: |
|
r""" |
|
Sets the epoch for this sampler. When :attr:`shuffle=True`, this ensures all replicas |
|
use a different random ordering for each epoch. Otherwise, the next iteration of this |
|
sampler will yield the same ordering. |
|
|
|
Args: |
|
epoch (int): Epoch number. |
|
""" |
|
self.epoch = epoch |
|
|