|
import math |
|
|
|
import torch |
|
from torch.nn import functional as F |
|
|
|
|
|
def feature_loss(fmap_r, fmap_g): |
|
loss = 0 |
|
for dr, dg in zip(fmap_r, fmap_g): |
|
for rl, gl in zip(dr, dg): |
|
rl = rl.float().detach() |
|
gl = gl.float() |
|
loss += torch.mean(torch.abs(rl - gl)) |
|
|
|
return loss * 2 |
|
|
|
|
|
def discriminator_loss(disc_real_outputs, disc_generated_outputs): |
|
loss = 0 |
|
r_losses = [] |
|
g_losses = [] |
|
for dr, dg in zip(disc_real_outputs, disc_generated_outputs): |
|
dr = dr.float() |
|
dg = dg.float() |
|
r_loss = torch.mean((1 - dr) ** 2) |
|
g_loss = torch.mean(dg**2) |
|
loss += r_loss + g_loss |
|
r_losses.append(r_loss.item()) |
|
g_losses.append(g_loss.item()) |
|
|
|
return loss, r_losses, g_losses |
|
|
|
|
|
def generator_loss(disc_outputs): |
|
loss = 0 |
|
gen_losses = [] |
|
for dg in disc_outputs: |
|
dg = dg.float() |
|
l = torch.mean((1 - dg) ** 2) |
|
gen_losses.append(l) |
|
loss += l |
|
|
|
return loss, gen_losses |
|
|
|
|
|
def kl_loss(z_p, logs_q, m_p, logs_p, z_mask): |
|
""" |
|
z_p, logs_q: [b, h, t_t] |
|
m_p, logs_p: [b, h, t_t] |
|
""" |
|
z_p = z_p.float() |
|
logs_q = logs_q.float() |
|
m_p = m_p.float() |
|
logs_p = logs_p.float() |
|
z_mask = z_mask.float() |
|
|
|
kl = logs_p - logs_q - 0.5 |
|
kl += 0.5 * ((z_p - m_p) ** 2) * torch.exp(-2.0 * logs_p) |
|
kl = torch.sum(kl * z_mask) |
|
l = kl / torch.sum(z_mask) |
|
return l |
|
|
|
|
|
def mle_loss(z, m, logs, logdet, mask): |
|
l = torch.sum(logs) + 0.5 * torch.sum( |
|
torch.exp(-2 * logs) * ((z - m) ** 2) |
|
) |
|
l = l - torch.sum(logdet) |
|
l = l / torch.sum( |
|
torch.ones_like(z) * mask |
|
) |
|
l = l + 0.5 * math.log(2 * math.pi) |
|
return l |
|
|