|
import copy |
|
import math |
|
import torch |
|
from torch import nn |
|
from torch.nn import functional as F |
|
|
|
from module import commons |
|
from module import modules |
|
from module import attentions_onnx as attentions |
|
|
|
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d |
|
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm |
|
from module.commons import init_weights, get_padding |
|
from module.mrte_model import MRTE |
|
from module.quantize import ResidualVectorQuantizer |
|
from text import symbols |
|
from torch.cuda.amp import autocast |
|
|
|
|
|
class StochasticDurationPredictor(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels, |
|
filter_channels, |
|
kernel_size, |
|
p_dropout, |
|
n_flows=4, |
|
gin_channels=0, |
|
): |
|
super().__init__() |
|
filter_channels = in_channels |
|
self.in_channels = in_channels |
|
self.filter_channels = filter_channels |
|
self.kernel_size = kernel_size |
|
self.p_dropout = p_dropout |
|
self.n_flows = n_flows |
|
self.gin_channels = gin_channels |
|
|
|
self.log_flow = modules.Log() |
|
self.flows = nn.ModuleList() |
|
self.flows.append(modules.ElementwiseAffine(2)) |
|
for i in range(n_flows): |
|
self.flows.append( |
|
modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3) |
|
) |
|
self.flows.append(modules.Flip()) |
|
|
|
self.post_pre = nn.Conv1d(1, filter_channels, 1) |
|
self.post_proj = nn.Conv1d(filter_channels, filter_channels, 1) |
|
self.post_convs = modules.DDSConv( |
|
filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout |
|
) |
|
self.post_flows = nn.ModuleList() |
|
self.post_flows.append(modules.ElementwiseAffine(2)) |
|
for i in range(4): |
|
self.post_flows.append( |
|
modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3) |
|
) |
|
self.post_flows.append(modules.Flip()) |
|
|
|
self.pre = nn.Conv1d(in_channels, filter_channels, 1) |
|
self.proj = nn.Conv1d(filter_channels, filter_channels, 1) |
|
self.convs = modules.DDSConv( |
|
filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout |
|
) |
|
if gin_channels != 0: |
|
self.cond = nn.Conv1d(gin_channels, filter_channels, 1) |
|
|
|
def forward(self, x, x_mask, w=None, g=None, reverse=False, noise_scale=1.0): |
|
x = torch.detach(x) |
|
x = self.pre(x) |
|
if g is not None: |
|
g = torch.detach(g) |
|
x = x + self.cond(g) |
|
x = self.convs(x, x_mask) |
|
x = self.proj(x) * x_mask |
|
|
|
if not reverse: |
|
flows = self.flows |
|
assert w is not None |
|
|
|
logdet_tot_q = 0 |
|
h_w = self.post_pre(w) |
|
h_w = self.post_convs(h_w, x_mask) |
|
h_w = self.post_proj(h_w) * x_mask |
|
e_q = ( |
|
torch.randn(w.size(0), 2, w.size(2)).to(device=x.device, dtype=x.dtype) |
|
* x_mask |
|
) |
|
z_q = e_q |
|
for flow in self.post_flows: |
|
z_q, logdet_q = flow(z_q, x_mask, g=(x + h_w)) |
|
logdet_tot_q += logdet_q |
|
z_u, z1 = torch.split(z_q, [1, 1], 1) |
|
u = torch.sigmoid(z_u) * x_mask |
|
z0 = (w - u) * x_mask |
|
logdet_tot_q += torch.sum( |
|
(F.logsigmoid(z_u) + F.logsigmoid(-z_u)) * x_mask, [1, 2] |
|
) |
|
logq = ( |
|
torch.sum(-0.5 * (math.log(2 * math.pi) + (e_q**2)) * x_mask, [1, 2]) |
|
- logdet_tot_q |
|
) |
|
|
|
logdet_tot = 0 |
|
z0, logdet = self.log_flow(z0, x_mask) |
|
logdet_tot += logdet |
|
z = torch.cat([z0, z1], 1) |
|
for flow in flows: |
|
z, logdet = flow(z, x_mask, g=x, reverse=reverse) |
|
logdet_tot = logdet_tot + logdet |
|
nll = ( |
|
torch.sum(0.5 * (math.log(2 * math.pi) + (z**2)) * x_mask, [1, 2]) |
|
- logdet_tot |
|
) |
|
return nll + logq |
|
else: |
|
flows = list(reversed(self.flows)) |
|
flows = flows[:-2] + [flows[-1]] |
|
z = ( |
|
torch.randn(x.size(0), 2, x.size(2)).to(device=x.device, dtype=x.dtype) |
|
* noise_scale |
|
) |
|
for flow in flows: |
|
z = flow(z, x_mask, g=x, reverse=reverse) |
|
z0, z1 = torch.split(z, [1, 1], 1) |
|
logw = z0 |
|
return logw |
|
|
|
|
|
class DurationPredictor(nn.Module): |
|
def __init__( |
|
self, in_channels, filter_channels, kernel_size, p_dropout, gin_channels=0 |
|
): |
|
super().__init__() |
|
|
|
self.in_channels = in_channels |
|
self.filter_channels = filter_channels |
|
self.kernel_size = kernel_size |
|
self.p_dropout = p_dropout |
|
self.gin_channels = gin_channels |
|
|
|
self.drop = nn.Dropout(p_dropout) |
|
self.conv_1 = nn.Conv1d( |
|
in_channels, filter_channels, kernel_size, padding=kernel_size // 2 |
|
) |
|
self.norm_1 = modules.LayerNorm(filter_channels) |
|
self.conv_2 = nn.Conv1d( |
|
filter_channels, filter_channels, kernel_size, padding=kernel_size // 2 |
|
) |
|
self.norm_2 = modules.LayerNorm(filter_channels) |
|
self.proj = nn.Conv1d(filter_channels, 1, 1) |
|
|
|
if gin_channels != 0: |
|
self.cond = nn.Conv1d(gin_channels, in_channels, 1) |
|
|
|
def forward(self, x, x_mask, g=None): |
|
x = torch.detach(x) |
|
if g is not None: |
|
g = torch.detach(g) |
|
x = x + self.cond(g) |
|
x = self.conv_1(x * x_mask) |
|
x = torch.relu(x) |
|
x = self.norm_1(x) |
|
x = self.drop(x) |
|
x = self.conv_2(x * x_mask) |
|
x = torch.relu(x) |
|
x = self.norm_2(x) |
|
x = self.drop(x) |
|
x = self.proj(x * x_mask) |
|
return x * x_mask |
|
|
|
|
|
class TextEncoder(nn.Module): |
|
def __init__( |
|
self, |
|
out_channels, |
|
hidden_channels, |
|
filter_channels, |
|
n_heads, |
|
n_layers, |
|
kernel_size, |
|
p_dropout, |
|
latent_channels=192, |
|
): |
|
super().__init__() |
|
self.out_channels = out_channels |
|
self.hidden_channels = hidden_channels |
|
self.filter_channels = filter_channels |
|
self.n_heads = n_heads |
|
self.n_layers = n_layers |
|
self.kernel_size = kernel_size |
|
self.p_dropout = p_dropout |
|
self.latent_channels = latent_channels |
|
|
|
self.ssl_proj = nn.Conv1d(768, hidden_channels, 1) |
|
|
|
self.encoder_ssl = attentions.Encoder( |
|
hidden_channels, |
|
filter_channels, |
|
n_heads, |
|
n_layers // 2, |
|
kernel_size, |
|
p_dropout, |
|
) |
|
|
|
self.encoder_text = attentions.Encoder( |
|
hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout |
|
) |
|
self.text_embedding = nn.Embedding(len(symbols), hidden_channels) |
|
|
|
self.mrte = MRTE() |
|
|
|
self.encoder2 = attentions.Encoder( |
|
hidden_channels, |
|
filter_channels, |
|
n_heads, |
|
n_layers // 2, |
|
kernel_size, |
|
p_dropout, |
|
) |
|
|
|
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1) |
|
|
|
def forward(self, y, text, ge): |
|
y_mask = torch.ones_like(y[:1,:1,:]) |
|
|
|
y = self.ssl_proj(y * y_mask) * y_mask |
|
y = self.encoder_ssl(y * y_mask, y_mask) |
|
|
|
text_mask = torch.ones_like(text).to(y.dtype).unsqueeze(0) |
|
|
|
text = self.text_embedding(text).transpose(1, 2) |
|
text = self.encoder_text(text * text_mask, text_mask) |
|
y = self.mrte(y, y_mask, text, text_mask, ge) |
|
|
|
y = self.encoder2(y * y_mask, y_mask) |
|
|
|
stats = self.proj(y) * y_mask |
|
m, logs = torch.split(stats, self.out_channels, dim=1) |
|
return y, m, logs, y_mask |
|
|
|
def extract_latent(self, x): |
|
x = self.ssl_proj(x) |
|
quantized, codes, commit_loss, quantized_list = self.quantizer(x) |
|
return codes.transpose(0, 1) |
|
|
|
def decode_latent(self, codes, y_mask, refer, refer_mask, ge): |
|
quantized = self.quantizer.decode(codes) |
|
|
|
y = self.vq_proj(quantized) * y_mask |
|
y = self.encoder_ssl(y * y_mask, y_mask) |
|
|
|
y = self.mrte(y, y_mask, refer, refer_mask, ge) |
|
|
|
y = self.encoder2(y * y_mask, y_mask) |
|
|
|
stats = self.proj(y) * y_mask |
|
m, logs = torch.split(stats, self.out_channels, dim=1) |
|
return y, m, logs, y_mask, quantized |
|
|
|
|
|
class ResidualCouplingBlock(nn.Module): |
|
def __init__( |
|
self, |
|
channels, |
|
hidden_channels, |
|
kernel_size, |
|
dilation_rate, |
|
n_layers, |
|
n_flows=4, |
|
gin_channels=0, |
|
): |
|
super().__init__() |
|
self.channels = channels |
|
self.hidden_channels = hidden_channels |
|
self.kernel_size = kernel_size |
|
self.dilation_rate = dilation_rate |
|
self.n_layers = n_layers |
|
self.n_flows = n_flows |
|
self.gin_channels = gin_channels |
|
|
|
self.flows = nn.ModuleList() |
|
for i in range(n_flows): |
|
self.flows.append( |
|
modules.ResidualCouplingLayer( |
|
channels, |
|
hidden_channels, |
|
kernel_size, |
|
dilation_rate, |
|
n_layers, |
|
gin_channels=gin_channels, |
|
mean_only=True, |
|
) |
|
) |
|
self.flows.append(modules.Flip()) |
|
|
|
def forward(self, x, x_mask, g=None, reverse=False): |
|
if not reverse: |
|
for flow in self.flows: |
|
x, _ = flow(x, x_mask, g=g, reverse=reverse) |
|
else: |
|
for flow in reversed(self.flows): |
|
x = flow(x, x_mask, g=g, reverse=reverse) |
|
return x |
|
|
|
|
|
class PosteriorEncoder(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels, |
|
out_channels, |
|
hidden_channels, |
|
kernel_size, |
|
dilation_rate, |
|
n_layers, |
|
gin_channels=0, |
|
): |
|
super().__init__() |
|
self.in_channels = in_channels |
|
self.out_channels = out_channels |
|
self.hidden_channels = hidden_channels |
|
self.kernel_size = kernel_size |
|
self.dilation_rate = dilation_rate |
|
self.n_layers = n_layers |
|
self.gin_channels = gin_channels |
|
|
|
self.pre = nn.Conv1d(in_channels, hidden_channels, 1) |
|
self.enc = modules.WN( |
|
hidden_channels, |
|
kernel_size, |
|
dilation_rate, |
|
n_layers, |
|
gin_channels=gin_channels, |
|
) |
|
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1) |
|
|
|
def forward(self, x, x_lengths, g=None): |
|
if g != None: |
|
g = g.detach() |
|
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to( |
|
x.dtype |
|
) |
|
x = self.pre(x) * x_mask |
|
x = self.enc(x, x_mask, g=g) |
|
stats = self.proj(x) * x_mask |
|
m, logs = torch.split(stats, self.out_channels, dim=1) |
|
z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask |
|
return z, m, logs, x_mask |
|
|
|
|
|
class WNEncoder(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels, |
|
out_channels, |
|
hidden_channels, |
|
kernel_size, |
|
dilation_rate, |
|
n_layers, |
|
gin_channels=0, |
|
): |
|
super().__init__() |
|
self.in_channels = in_channels |
|
self.out_channels = out_channels |
|
self.hidden_channels = hidden_channels |
|
self.kernel_size = kernel_size |
|
self.dilation_rate = dilation_rate |
|
self.n_layers = n_layers |
|
self.gin_channels = gin_channels |
|
|
|
self.pre = nn.Conv1d(in_channels, hidden_channels, 1) |
|
self.enc = modules.WN( |
|
hidden_channels, |
|
kernel_size, |
|
dilation_rate, |
|
n_layers, |
|
gin_channels=gin_channels, |
|
) |
|
self.proj = nn.Conv1d(hidden_channels, out_channels, 1) |
|
self.norm = modules.LayerNorm(out_channels) |
|
|
|
def forward(self, x, x_lengths, g=None): |
|
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to( |
|
x.dtype |
|
) |
|
x = self.pre(x) * x_mask |
|
x = self.enc(x, x_mask, g=g) |
|
out = self.proj(x) * x_mask |
|
out = self.norm(out) |
|
return out |
|
|
|
|
|
class Generator(torch.nn.Module): |
|
def __init__( |
|
self, |
|
initial_channel, |
|
resblock, |
|
resblock_kernel_sizes, |
|
resblock_dilation_sizes, |
|
upsample_rates, |
|
upsample_initial_channel, |
|
upsample_kernel_sizes, |
|
gin_channels=0, |
|
): |
|
super(Generator, self).__init__() |
|
self.num_kernels = len(resblock_kernel_sizes) |
|
self.num_upsamples = len(upsample_rates) |
|
self.conv_pre = Conv1d( |
|
initial_channel, upsample_initial_channel, 7, 1, padding=3 |
|
) |
|
resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2 |
|
|
|
self.ups = nn.ModuleList() |
|
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)): |
|
self.ups.append( |
|
weight_norm( |
|
ConvTranspose1d( |
|
upsample_initial_channel // (2**i), |
|
upsample_initial_channel // (2 ** (i + 1)), |
|
k, |
|
u, |
|
padding=(k - u) // 2, |
|
) |
|
) |
|
) |
|
|
|
self.resblocks = nn.ModuleList() |
|
for i in range(len(self.ups)): |
|
ch = upsample_initial_channel // (2 ** (i + 1)) |
|
for j, (k, d) in enumerate( |
|
zip(resblock_kernel_sizes, resblock_dilation_sizes) |
|
): |
|
self.resblocks.append(resblock(ch, k, d)) |
|
|
|
self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False) |
|
self.ups.apply(init_weights) |
|
|
|
if gin_channels != 0: |
|
self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1) |
|
|
|
def forward(self, x, g=None): |
|
x = self.conv_pre(x) |
|
if g is not None: |
|
x = x + self.cond(g) |
|
|
|
for i in range(self.num_upsamples): |
|
x = F.leaky_relu(x, modules.LRELU_SLOPE) |
|
x = self.ups[i](x) |
|
xs = None |
|
for j in range(self.num_kernels): |
|
if xs is None: |
|
xs = self.resblocks[i * self.num_kernels + j](x) |
|
else: |
|
xs += self.resblocks[i * self.num_kernels + j](x) |
|
x = xs / self.num_kernels |
|
x = F.leaky_relu(x) |
|
x = self.conv_post(x) |
|
x = torch.tanh(x) |
|
|
|
return x |
|
|
|
def remove_weight_norm(self): |
|
print("Removing weight norm...") |
|
for l in self.ups: |
|
remove_weight_norm(l) |
|
for l in self.resblocks: |
|
l.remove_weight_norm() |
|
|
|
|
|
class DiscriminatorP(torch.nn.Module): |
|
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False): |
|
super(DiscriminatorP, self).__init__() |
|
self.period = period |
|
self.use_spectral_norm = use_spectral_norm |
|
norm_f = weight_norm if use_spectral_norm == False else spectral_norm |
|
self.convs = nn.ModuleList( |
|
[ |
|
norm_f( |
|
Conv2d( |
|
1, |
|
32, |
|
(kernel_size, 1), |
|
(stride, 1), |
|
padding=(get_padding(kernel_size, 1), 0), |
|
) |
|
), |
|
norm_f( |
|
Conv2d( |
|
32, |
|
128, |
|
(kernel_size, 1), |
|
(stride, 1), |
|
padding=(get_padding(kernel_size, 1), 0), |
|
) |
|
), |
|
norm_f( |
|
Conv2d( |
|
128, |
|
512, |
|
(kernel_size, 1), |
|
(stride, 1), |
|
padding=(get_padding(kernel_size, 1), 0), |
|
) |
|
), |
|
norm_f( |
|
Conv2d( |
|
512, |
|
1024, |
|
(kernel_size, 1), |
|
(stride, 1), |
|
padding=(get_padding(kernel_size, 1), 0), |
|
) |
|
), |
|
norm_f( |
|
Conv2d( |
|
1024, |
|
1024, |
|
(kernel_size, 1), |
|
1, |
|
padding=(get_padding(kernel_size, 1), 0), |
|
) |
|
), |
|
] |
|
) |
|
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0))) |
|
|
|
def forward(self, x): |
|
fmap = [] |
|
|
|
|
|
b, c, t = x.shape |
|
if t % self.period != 0: |
|
n_pad = self.period - (t % self.period) |
|
x = F.pad(x, (0, n_pad), "reflect") |
|
t = t + n_pad |
|
x = x.view(b, c, t // self.period, self.period) |
|
|
|
for l in self.convs: |
|
x = l(x) |
|
x = F.leaky_relu(x, modules.LRELU_SLOPE) |
|
fmap.append(x) |
|
x = self.conv_post(x) |
|
fmap.append(x) |
|
x = torch.flatten(x, 1, -1) |
|
|
|
return x, fmap |
|
|
|
|
|
class DiscriminatorS(torch.nn.Module): |
|
def __init__(self, use_spectral_norm=False): |
|
super(DiscriminatorS, self).__init__() |
|
norm_f = weight_norm if use_spectral_norm == False else spectral_norm |
|
self.convs = nn.ModuleList( |
|
[ |
|
norm_f(Conv1d(1, 16, 15, 1, padding=7)), |
|
norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)), |
|
norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)), |
|
norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)), |
|
norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)), |
|
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)), |
|
] |
|
) |
|
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1)) |
|
|
|
def forward(self, x): |
|
fmap = [] |
|
|
|
for l in self.convs: |
|
x = l(x) |
|
x = F.leaky_relu(x, modules.LRELU_SLOPE) |
|
fmap.append(x) |
|
x = self.conv_post(x) |
|
fmap.append(x) |
|
x = torch.flatten(x, 1, -1) |
|
|
|
return x, fmap |
|
|
|
|
|
class MultiPeriodDiscriminator(torch.nn.Module): |
|
def __init__(self, use_spectral_norm=False): |
|
super(MultiPeriodDiscriminator, self).__init__() |
|
periods = [2, 3, 5, 7, 11] |
|
|
|
discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)] |
|
discs = discs + [ |
|
DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods |
|
] |
|
self.discriminators = nn.ModuleList(discs) |
|
|
|
def forward(self, y, y_hat): |
|
y_d_rs = [] |
|
y_d_gs = [] |
|
fmap_rs = [] |
|
fmap_gs = [] |
|
for i, d in enumerate(self.discriminators): |
|
y_d_r, fmap_r = d(y) |
|
y_d_g, fmap_g = d(y_hat) |
|
y_d_rs.append(y_d_r) |
|
y_d_gs.append(y_d_g) |
|
fmap_rs.append(fmap_r) |
|
fmap_gs.append(fmap_g) |
|
|
|
return y_d_rs, y_d_gs, fmap_rs, fmap_gs |
|
|
|
|
|
class ReferenceEncoder(nn.Module): |
|
""" |
|
inputs --- [N, Ty/r, n_mels*r] mels |
|
outputs --- [N, ref_enc_gru_size] |
|
""" |
|
|
|
def __init__(self, spec_channels, gin_channels=0): |
|
super().__init__() |
|
self.spec_channels = spec_channels |
|
ref_enc_filters = [32, 32, 64, 64, 128, 128] |
|
K = len(ref_enc_filters) |
|
filters = [1] + ref_enc_filters |
|
convs = [ |
|
weight_norm( |
|
nn.Conv2d( |
|
in_channels=filters[i], |
|
out_channels=filters[i + 1], |
|
kernel_size=(3, 3), |
|
stride=(2, 2), |
|
padding=(1, 1), |
|
) |
|
) |
|
for i in range(K) |
|
] |
|
self.convs = nn.ModuleList(convs) |
|
|
|
|
|
out_channels = self.calculate_channels(spec_channels, 3, 2, 1, K) |
|
self.gru = nn.GRU( |
|
input_size=ref_enc_filters[-1] * out_channels, |
|
hidden_size=256 // 2, |
|
batch_first=True, |
|
) |
|
self.proj = nn.Linear(128, gin_channels) |
|
|
|
def forward(self, inputs): |
|
N = inputs.size(0) |
|
out = inputs.view(N, 1, -1, self.spec_channels) |
|
for conv in self.convs: |
|
out = conv(out) |
|
|
|
out = F.relu(out) |
|
|
|
out = out.transpose(1, 2) |
|
T = out.size(1) |
|
N = out.size(0) |
|
out = out.contiguous().view(N, T, -1) |
|
|
|
self.gru.flatten_parameters() |
|
memory, out = self.gru(out) |
|
|
|
return self.proj(out.squeeze(0)).unsqueeze(-1) |
|
|
|
def calculate_channels(self, L, kernel_size, stride, pad, n_convs): |
|
for i in range(n_convs): |
|
L = (L - kernel_size + 2 * pad) // stride + 1 |
|
return L |
|
|
|
|
|
class Quantizer_module(torch.nn.Module): |
|
def __init__(self, n_e, e_dim): |
|
super(Quantizer_module, self).__init__() |
|
self.embedding = nn.Embedding(n_e, e_dim) |
|
self.embedding.weight.data.uniform_(-1.0 / n_e, 1.0 / n_e) |
|
|
|
def forward(self, x): |
|
d = ( |
|
torch.sum(x**2, 1, keepdim=True) |
|
+ torch.sum(self.embedding.weight**2, 1) |
|
- 2 * torch.matmul(x, self.embedding.weight.T) |
|
) |
|
min_indicies = torch.argmin(d, 1) |
|
z_q = self.embedding(min_indicies) |
|
return z_q, min_indicies |
|
|
|
|
|
class Quantizer(torch.nn.Module): |
|
def __init__(self, embed_dim=512, n_code_groups=4, n_codes=160): |
|
super(Quantizer, self).__init__() |
|
assert embed_dim % n_code_groups == 0 |
|
self.quantizer_modules = nn.ModuleList( |
|
[ |
|
Quantizer_module(n_codes, embed_dim // n_code_groups) |
|
for _ in range(n_code_groups) |
|
] |
|
) |
|
self.n_code_groups = n_code_groups |
|
self.embed_dim = embed_dim |
|
|
|
def forward(self, xin): |
|
|
|
B, C, T = xin.shape |
|
xin = xin.transpose(1, 2) |
|
x = xin.reshape(-1, self.embed_dim) |
|
x = torch.split(x, self.embed_dim // self.n_code_groups, dim=-1) |
|
min_indicies = [] |
|
z_q = [] |
|
for _x, m in zip(x, self.quantizer_modules): |
|
_z_q, _min_indicies = m(_x) |
|
z_q.append(_z_q) |
|
min_indicies.append(_min_indicies) |
|
z_q = torch.cat(z_q, -1).reshape(xin.shape) |
|
loss = 0.25 * torch.mean((z_q.detach() - xin) ** 2) + torch.mean( |
|
(z_q - xin.detach()) ** 2 |
|
) |
|
z_q = xin + (z_q - xin).detach() |
|
z_q = z_q.transpose(1, 2) |
|
codes = torch.stack(min_indicies, -1).reshape(B, T, self.n_code_groups) |
|
return z_q, loss, codes.transpose(1, 2) |
|
|
|
def embed(self, x): |
|
|
|
x = x.transpose(1, 2) |
|
x = torch.split(x, 1, 2) |
|
ret = [] |
|
for q, embed in zip(x, self.quantizer_modules): |
|
q = embed.embedding(q.squeeze(-1)) |
|
ret.append(q) |
|
ret = torch.cat(ret, -1) |
|
return ret.transpose(1, 2) |
|
|
|
|
|
class CodePredictor(nn.Module): |
|
def __init__( |
|
self, |
|
hidden_channels, |
|
filter_channels, |
|
n_heads, |
|
n_layers, |
|
kernel_size, |
|
p_dropout, |
|
n_q=8, |
|
dims=1024, |
|
ssl_dim=768, |
|
): |
|
super().__init__() |
|
self.hidden_channels = hidden_channels |
|
self.filter_channels = filter_channels |
|
self.n_heads = n_heads |
|
self.n_layers = n_layers |
|
self.kernel_size = kernel_size |
|
self.p_dropout = p_dropout |
|
|
|
self.vq_proj = nn.Conv1d(ssl_dim, hidden_channels, 1) |
|
self.ref_enc = modules.MelStyleEncoder( |
|
ssl_dim, style_vector_dim=hidden_channels |
|
) |
|
|
|
self.encoder = attentions.Encoder( |
|
hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout |
|
) |
|
|
|
self.out_proj = nn.Conv1d(hidden_channels, (n_q - 1) * dims, 1) |
|
self.n_q = n_q |
|
self.dims = dims |
|
|
|
def forward(self, x, x_mask, refer, codes, infer=False): |
|
x = x.detach() |
|
x = self.vq_proj(x * x_mask) * x_mask |
|
g = self.ref_enc(refer, x_mask) |
|
x = x + g |
|
x = self.encoder(x * x_mask, x_mask) |
|
x = self.out_proj(x * x_mask) * x_mask |
|
logits = x.reshape(x.shape[0], self.n_q - 1, self.dims, x.shape[-1]).transpose( |
|
2, 3 |
|
) |
|
target = codes[1:].transpose(0, 1) |
|
if not infer: |
|
logits = logits.reshape(-1, self.dims) |
|
target = target.reshape(-1) |
|
loss = torch.nn.functional.cross_entropy(logits, target) |
|
return loss |
|
else: |
|
_, top10_preds = torch.topk(logits, 10, dim=-1) |
|
correct_top10 = torch.any(top10_preds == target.unsqueeze(-1), dim=-1) |
|
top3_acc = 100 * torch.mean(correct_top10.float()).detach().cpu().item() |
|
|
|
print("Top-10 Accuracy:", top3_acc, "%") |
|
|
|
pred_codes = torch.argmax(logits, dim=-1) |
|
acc = 100 * torch.mean((pred_codes == target).float()).detach().cpu().item() |
|
print("Top-1 Accuracy:", acc, "%") |
|
|
|
return pred_codes.transpose(0, 1) |
|
|
|
|
|
class SynthesizerTrn(nn.Module): |
|
""" |
|
Synthesizer for Training |
|
""" |
|
|
|
def __init__( |
|
self, |
|
spec_channels, |
|
segment_size, |
|
inter_channels, |
|
hidden_channels, |
|
filter_channels, |
|
n_heads, |
|
n_layers, |
|
kernel_size, |
|
p_dropout, |
|
resblock, |
|
resblock_kernel_sizes, |
|
resblock_dilation_sizes, |
|
upsample_rates, |
|
upsample_initial_channel, |
|
upsample_kernel_sizes, |
|
n_speakers=0, |
|
gin_channels=0, |
|
use_sdp=True, |
|
semantic_frame_rate=None, |
|
freeze_quantizer=None, |
|
**kwargs |
|
): |
|
super().__init__() |
|
self.spec_channels = spec_channels |
|
self.inter_channels = inter_channels |
|
self.hidden_channels = hidden_channels |
|
self.filter_channels = filter_channels |
|
self.n_heads = n_heads |
|
self.n_layers = n_layers |
|
self.kernel_size = kernel_size |
|
self.p_dropout = p_dropout |
|
self.resblock = resblock |
|
self.resblock_kernel_sizes = resblock_kernel_sizes |
|
self.resblock_dilation_sizes = resblock_dilation_sizes |
|
self.upsample_rates = upsample_rates |
|
self.upsample_initial_channel = upsample_initial_channel |
|
self.upsample_kernel_sizes = upsample_kernel_sizes |
|
self.segment_size = segment_size |
|
self.n_speakers = n_speakers |
|
self.gin_channels = gin_channels |
|
|
|
self.use_sdp = use_sdp |
|
self.enc_p = TextEncoder( |
|
inter_channels, |
|
hidden_channels, |
|
filter_channels, |
|
n_heads, |
|
n_layers, |
|
kernel_size, |
|
p_dropout, |
|
) |
|
self.dec = Generator( |
|
inter_channels, |
|
resblock, |
|
resblock_kernel_sizes, |
|
resblock_dilation_sizes, |
|
upsample_rates, |
|
upsample_initial_channel, |
|
upsample_kernel_sizes, |
|
gin_channels=gin_channels, |
|
) |
|
self.enc_q = PosteriorEncoder( |
|
spec_channels, |
|
inter_channels, |
|
hidden_channels, |
|
5, |
|
1, |
|
16, |
|
gin_channels=gin_channels, |
|
) |
|
self.flow = ResidualCouplingBlock( |
|
inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels |
|
) |
|
|
|
self.ref_enc = modules.MelStyleEncoder( |
|
spec_channels, style_vector_dim=gin_channels |
|
) |
|
|
|
ssl_dim = 768 |
|
self.ssl_dim = ssl_dim |
|
assert semantic_frame_rate in ["25hz", "50hz"] |
|
self.semantic_frame_rate = semantic_frame_rate |
|
if semantic_frame_rate == "25hz": |
|
self.ssl_proj = nn.Conv1d(ssl_dim, ssl_dim, 2, stride=2) |
|
else: |
|
self.ssl_proj = nn.Conv1d(ssl_dim, ssl_dim, 1, stride=1) |
|
|
|
self.quantizer = ResidualVectorQuantizer(dimension=ssl_dim, n_q=1, bins=1024) |
|
if freeze_quantizer: |
|
self.ssl_proj.requires_grad_(False) |
|
self.quantizer.requires_grad_(False) |
|
|
|
|
|
|
|
|
|
def forward(self, codes, text, refer): |
|
refer_mask = torch.ones_like(refer[:1,:1,:]) |
|
ge = self.ref_enc(refer * refer_mask, refer_mask) |
|
|
|
quantized = self.quantizer.decode(codes) |
|
if self.semantic_frame_rate == "25hz": |
|
dquantized = torch.cat([quantized, quantized]).permute(1, 2, 0) |
|
quantized = dquantized.contiguous().view(1, self.ssl_dim, -1) |
|
|
|
x, m_p, logs_p, y_mask = self.enc_p( |
|
quantized, text, ge |
|
) |
|
|
|
z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) |
|
|
|
z = self.flow(z_p, y_mask, g=ge, reverse=True) |
|
|
|
o = self.dec((z * y_mask)[:, :, :], g=ge) |
|
return o |
|
|
|
def extract_latent(self, x): |
|
ssl = self.ssl_proj(x) |
|
quantized, codes, commit_loss, quantized_list = self.quantizer(ssl) |
|
return codes.transpose(0, 1) |