Spaces:
Runtime error
Runtime error
Migrate from yapf to black
Browse files- .pre-commit-config.yaml +26 -12
- .vscode/settings.json +11 -8
- app.py +10 -8
- app_image_to_3d.py +36 -28
- app_text_to_3d.py +49 -38
- model.py +25 -34
- settings.py +1 -1
.pre-commit-config.yaml
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
repos:
|
2 |
- repo: https://github.com/pre-commit/pre-commit-hooks
|
3 |
-
rev: v4.
|
4 |
hooks:
|
5 |
- id: check-executables-have-shebangs
|
6 |
- id: check-json
|
@@ -8,29 +8,43 @@ repos:
|
|
8 |
- id: check-shebang-scripts-are-executable
|
9 |
- id: check-toml
|
10 |
- id: check-yaml
|
11 |
-
- id: double-quote-string-fixer
|
12 |
- id: end-of-file-fixer
|
13 |
- id: mixed-line-ending
|
14 |
-
args: [
|
15 |
- id: requirements-txt-fixer
|
16 |
- id: trailing-whitespace
|
17 |
- repo: https://github.com/myint/docformatter
|
18 |
-
rev: v1.
|
19 |
hooks:
|
20 |
- id: docformatter
|
21 |
-
args: [
|
22 |
- repo: https://github.com/pycqa/isort
|
23 |
rev: 5.12.0
|
24 |
hooks:
|
25 |
- id: isort
|
|
|
26 |
- repo: https://github.com/pre-commit/mirrors-mypy
|
27 |
-
rev:
|
28 |
hooks:
|
29 |
- id: mypy
|
30 |
-
args: [
|
31 |
-
additional_dependencies: [
|
32 |
-
- repo: https://github.com/
|
33 |
-
rev:
|
34 |
hooks:
|
35 |
-
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
repos:
|
2 |
- repo: https://github.com/pre-commit/pre-commit-hooks
|
3 |
+
rev: v4.4.0
|
4 |
hooks:
|
5 |
- id: check-executables-have-shebangs
|
6 |
- id: check-json
|
|
|
8 |
- id: check-shebang-scripts-are-executable
|
9 |
- id: check-toml
|
10 |
- id: check-yaml
|
|
|
11 |
- id: end-of-file-fixer
|
12 |
- id: mixed-line-ending
|
13 |
+
args: ["--fix=lf"]
|
14 |
- id: requirements-txt-fixer
|
15 |
- id: trailing-whitespace
|
16 |
- repo: https://github.com/myint/docformatter
|
17 |
+
rev: v1.7.5
|
18 |
hooks:
|
19 |
- id: docformatter
|
20 |
+
args: ["--in-place"]
|
21 |
- repo: https://github.com/pycqa/isort
|
22 |
rev: 5.12.0
|
23 |
hooks:
|
24 |
- id: isort
|
25 |
+
args: ["--profile", "black"]
|
26 |
- repo: https://github.com/pre-commit/mirrors-mypy
|
27 |
+
rev: v1.5.1
|
28 |
hooks:
|
29 |
- id: mypy
|
30 |
+
args: ["--ignore-missing-imports"]
|
31 |
+
additional_dependencies: ["types-python-slugify", "types-requests", "types-PyYAML"]
|
32 |
+
- repo: https://github.com/psf/black
|
33 |
+
rev: 23.7.0
|
34 |
hooks:
|
35 |
+
- id: black
|
36 |
+
language_version: python3.10
|
37 |
+
args: ["--line-length", "119"]
|
38 |
+
- repo: https://github.com/kynan/nbstripout
|
39 |
+
rev: 0.6.1
|
40 |
+
hooks:
|
41 |
+
- id: nbstripout
|
42 |
+
args: ["--extra-keys", "metadata.interpreter metadata.kernelspec cell.metadata.pycharm"]
|
43 |
+
- repo: https://github.com/nbQA-dev/nbQA
|
44 |
+
rev: 1.7.0
|
45 |
+
hooks:
|
46 |
+
- id: nbqa-black
|
47 |
+
- id: nbqa-pyupgrade
|
48 |
+
args: ["--py37-plus"]
|
49 |
+
- id: nbqa-isort
|
50 |
+
args: ["--float-to-top"]
|
.vscode/settings.json
CHANGED
@@ -1,18 +1,21 @@
|
|
1 |
{
|
2 |
-
"python.linting.enabled": true,
|
3 |
-
"python.linting.flake8Enabled": true,
|
4 |
-
"python.linting.pylintEnabled": false,
|
5 |
-
"python.linting.lintOnSave": true,
|
6 |
-
"python.formatting.provider": "yapf",
|
7 |
-
"python.formatting.yapfArgs": [
|
8 |
-
"--style={based_on_style: pep8, indent_width: 4, blank_line_before_nested_class_or_def: false, spaces_before_comment: 2, split_before_logical_operator: true}"
|
9 |
-
],
|
10 |
"[python]": {
|
|
|
11 |
"editor.formatOnType": true,
|
12 |
"editor.codeActionsOnSave": {
|
13 |
"source.organizeImports": true
|
14 |
}
|
15 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
"editor.formatOnSave": true,
|
17 |
"files.insertFinalNewline": true
|
18 |
}
|
|
|
1 |
{
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
"[python]": {
|
3 |
+
"editor.defaultFormatter": "ms-python.black-formatter",
|
4 |
"editor.formatOnType": true,
|
5 |
"editor.codeActionsOnSave": {
|
6 |
"source.organizeImports": true
|
7 |
}
|
8 |
},
|
9 |
+
"black-formatter.args": [
|
10 |
+
"--line-length=119"
|
11 |
+
],
|
12 |
+
"isort.args": ["--profile", "black"],
|
13 |
+
"flake8.args": [
|
14 |
+
"--max-line-length=119"
|
15 |
+
],
|
16 |
+
"ruff.args": [
|
17 |
+
"--line-length=119"
|
18 |
+
],
|
19 |
"editor.formatOnSave": true,
|
20 |
"files.insertFinalNewline": true
|
21 |
}
|
app.py
CHANGED
@@ -9,21 +9,23 @@ from app_image_to_3d import create_demo as create_demo_image_to_3d
|
|
9 |
from app_text_to_3d import create_demo as create_demo_text_to_3d
|
10 |
from model import Model
|
11 |
|
12 |
-
DESCRIPTION =
|
13 |
|
14 |
if not torch.cuda.is_available():
|
15 |
-
DESCRIPTION +=
|
16 |
|
17 |
model = Model()
|
18 |
|
19 |
-
with gr.Blocks(css=
|
20 |
gr.Markdown(DESCRIPTION)
|
21 |
-
gr.DuplicateButton(
|
22 |
-
|
23 |
-
|
|
|
|
|
24 |
with gr.Tabs():
|
25 |
-
with gr.Tab(label=
|
26 |
create_demo_text_to_3d(model)
|
27 |
-
with gr.Tab(label=
|
28 |
create_demo_image_to_3d(model)
|
29 |
demo.queue(max_size=10).launch()
|
|
|
9 |
from app_text_to_3d import create_demo as create_demo_text_to_3d
|
10 |
from model import Model
|
11 |
|
12 |
+
DESCRIPTION = "# [Shap-E](https://github.com/openai/shap-e)"
|
13 |
|
14 |
if not torch.cuda.is_available():
|
15 |
+
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
|
16 |
|
17 |
model = Model()
|
18 |
|
19 |
+
with gr.Blocks(css="style.css") as demo:
|
20 |
gr.Markdown(DESCRIPTION)
|
21 |
+
gr.DuplicateButton(
|
22 |
+
value="Duplicate Space for private use",
|
23 |
+
elem_id="duplicate-button",
|
24 |
+
visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
|
25 |
+
)
|
26 |
with gr.Tabs():
|
27 |
+
with gr.Tab(label="Text to 3D"):
|
28 |
create_demo_text_to_3d(model)
|
29 |
+
with gr.Tab(label="Image to 3D"):
|
30 |
create_demo_image_to_3d(model)
|
31 |
demo.queue(max_size=10).launch()
|
app_image_to_3d.py
CHANGED
@@ -12,46 +12,53 @@ from utils import randomize_seed_fn
|
|
12 |
|
13 |
|
14 |
def create_demo(model: Model) -> gr.Blocks:
|
15 |
-
if not pathlib.Path(
|
16 |
subprocess.run(
|
17 |
shlex.split(
|
18 |
-
|
19 |
-
)
|
20 |
-
|
|
|
21 |
|
22 |
def process_example_fn(image_path: str) -> str:
|
23 |
return model.run_image(image_path)
|
24 |
|
25 |
with gr.Blocks() as demo:
|
26 |
with gr.Box():
|
27 |
-
image = gr.Image(label=
|
28 |
-
run_button = gr.Button(
|
29 |
-
result = gr.Model3D(label=
|
30 |
-
with gr.Accordion(
|
31 |
-
seed = gr.Slider(
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
|
|
|
|
|
|
43 |
num_inference_steps = gr.Slider(
|
44 |
-
label=
|
45 |
minimum=1,
|
46 |
maximum=100,
|
47 |
step=1,
|
48 |
-
value=64
|
|
|
49 |
|
50 |
-
gr.Examples(
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
|
|
|
|
55 |
|
56 |
inputs = [
|
57 |
image,
|
@@ -65,10 +72,11 @@ def create_demo(model: Model) -> gr.Blocks:
|
|
65 |
inputs=[seed, randomize_seed],
|
66 |
outputs=seed,
|
67 |
queue=False,
|
|
|
68 |
).then(
|
69 |
fn=model.run_image,
|
70 |
inputs=inputs,
|
71 |
outputs=result,
|
72 |
-
api_name=
|
73 |
)
|
74 |
return demo
|
|
|
12 |
|
13 |
|
14 |
def create_demo(model: Model) -> gr.Blocks:
|
15 |
+
if not pathlib.Path("corgi.png").exists():
|
16 |
subprocess.run(
|
17 |
shlex.split(
|
18 |
+
"wget https://raw.githubusercontent.com/openai/shap-e/d99cedaea18e0989e340163dbaeb4b109fa9e8ec/shap_e/examples/example_data/corgi.png -O corgi.png"
|
19 |
+
)
|
20 |
+
)
|
21 |
+
examples = ["corgi.png"]
|
22 |
|
23 |
def process_example_fn(image_path: str) -> str:
|
24 |
return model.run_image(image_path)
|
25 |
|
26 |
with gr.Blocks() as demo:
|
27 |
with gr.Box():
|
28 |
+
image = gr.Image(label="Input image", show_label=False, type="pil")
|
29 |
+
run_button = gr.Button("Run")
|
30 |
+
result = gr.Model3D(label="Result", show_label=False)
|
31 |
+
with gr.Accordion("Advanced options", open=False):
|
32 |
+
seed = gr.Slider(
|
33 |
+
label="Seed",
|
34 |
+
minimum=0,
|
35 |
+
maximum=MAX_SEED,
|
36 |
+
step=1,
|
37 |
+
value=0,
|
38 |
+
)
|
39 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
40 |
+
guidance_scale = gr.Slider(
|
41 |
+
label="Guidance scale",
|
42 |
+
minimum=1,
|
43 |
+
maximum=20,
|
44 |
+
step=0.1,
|
45 |
+
value=3.0,
|
46 |
+
)
|
47 |
num_inference_steps = gr.Slider(
|
48 |
+
label="Number of inference steps",
|
49 |
minimum=1,
|
50 |
maximum=100,
|
51 |
step=1,
|
52 |
+
value=64,
|
53 |
+
)
|
54 |
|
55 |
+
gr.Examples(
|
56 |
+
examples=examples,
|
57 |
+
inputs=image,
|
58 |
+
outputs=result,
|
59 |
+
fn=process_example_fn,
|
60 |
+
cache_examples=CACHE_EXAMPLES,
|
61 |
+
)
|
62 |
|
63 |
inputs = [
|
64 |
image,
|
|
|
72 |
inputs=[seed, randomize_seed],
|
73 |
outputs=seed,
|
74 |
queue=False,
|
75 |
+
api_name=False,
|
76 |
).then(
|
77 |
fn=model.run_image,
|
78 |
inputs=inputs,
|
79 |
outputs=result,
|
80 |
+
api_name="image-to-3d",
|
81 |
)
|
82 |
return demo
|
app_text_to_3d.py
CHANGED
@@ -9,15 +9,15 @@ from utils import randomize_seed_fn
|
|
9 |
|
10 |
def create_demo(model: Model) -> gr.Blocks:
|
11 |
examples = [
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
]
|
22 |
|
23 |
def process_example_fn(prompt: str) -> str:
|
@@ -25,39 +25,47 @@ def create_demo(model: Model) -> gr.Blocks:
|
|
25 |
|
26 |
with gr.Blocks() as demo:
|
27 |
with gr.Box():
|
28 |
-
with gr.Row(elem_id=
|
29 |
-
prompt = gr.Text(
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
49 |
num_inference_steps = gr.Slider(
|
50 |
-
label=
|
51 |
minimum=1,
|
52 |
maximum=100,
|
53 |
step=1,
|
54 |
-
value=64
|
|
|
55 |
|
56 |
-
gr.Examples(
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
|
|
|
|
61 |
|
62 |
inputs = [
|
63 |
prompt,
|
@@ -70,20 +78,23 @@ def create_demo(model: Model) -> gr.Blocks:
|
|
70 |
inputs=[seed, randomize_seed],
|
71 |
outputs=seed,
|
72 |
queue=False,
|
|
|
73 |
).then(
|
74 |
fn=model.run_text,
|
75 |
inputs=inputs,
|
76 |
outputs=result,
|
|
|
77 |
)
|
78 |
run_button.click(
|
79 |
fn=randomize_seed_fn,
|
80 |
inputs=[seed, randomize_seed],
|
81 |
outputs=seed,
|
82 |
queue=False,
|
|
|
83 |
).then(
|
84 |
fn=model.run_text,
|
85 |
inputs=inputs,
|
86 |
outputs=result,
|
87 |
-
api_name=
|
88 |
)
|
89 |
return demo
|
|
|
9 |
|
10 |
def create_demo(model: Model) -> gr.Blocks:
|
11 |
examples = [
|
12 |
+
"A chair that looks like an avocado",
|
13 |
+
"An airplane that looks like a banana",
|
14 |
+
"A spaceship",
|
15 |
+
"A birthday cupcake",
|
16 |
+
"A chair that looks like a tree",
|
17 |
+
"A green boot",
|
18 |
+
"A penguin",
|
19 |
+
"Ube ice cream cone",
|
20 |
+
"A bowl of vegetables",
|
21 |
]
|
22 |
|
23 |
def process_example_fn(prompt: str) -> str:
|
|
|
25 |
|
26 |
with gr.Blocks() as demo:
|
27 |
with gr.Box():
|
28 |
+
with gr.Row(elem_id="prompt-container"):
|
29 |
+
prompt = gr.Text(
|
30 |
+
label="Prompt",
|
31 |
+
show_label=False,
|
32 |
+
max_lines=1,
|
33 |
+
placeholder="Enter your prompt",
|
34 |
+
container=False,
|
35 |
+
)
|
36 |
+
run_button = gr.Button("Run", scale=0)
|
37 |
+
result = gr.Model3D(label="Result", show_label=False)
|
38 |
+
with gr.Accordion("Advanced options", open=False):
|
39 |
+
seed = gr.Slider(
|
40 |
+
label="Seed",
|
41 |
+
minimum=0,
|
42 |
+
maximum=MAX_SEED,
|
43 |
+
step=1,
|
44 |
+
value=0,
|
45 |
+
)
|
46 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
47 |
+
guidance_scale = gr.Slider(
|
48 |
+
label="Guidance scale",
|
49 |
+
minimum=1,
|
50 |
+
maximum=20,
|
51 |
+
step=0.1,
|
52 |
+
value=15.0,
|
53 |
+
)
|
54 |
num_inference_steps = gr.Slider(
|
55 |
+
label="Number of inference steps",
|
56 |
minimum=1,
|
57 |
maximum=100,
|
58 |
step=1,
|
59 |
+
value=64,
|
60 |
+
)
|
61 |
|
62 |
+
gr.Examples(
|
63 |
+
examples=examples,
|
64 |
+
inputs=prompt,
|
65 |
+
outputs=result,
|
66 |
+
fn=process_example_fn,
|
67 |
+
cache_examples=CACHE_EXAMPLES,
|
68 |
+
)
|
69 |
|
70 |
inputs = [
|
71 |
prompt,
|
|
|
78 |
inputs=[seed, randomize_seed],
|
79 |
outputs=seed,
|
80 |
queue=False,
|
81 |
+
api_name=False,
|
82 |
).then(
|
83 |
fn=model.run_text,
|
84 |
inputs=inputs,
|
85 |
outputs=result,
|
86 |
+
api_name=False,
|
87 |
)
|
88 |
run_button.click(
|
89 |
fn=randomize_seed_fn,
|
90 |
inputs=[seed, randomize_seed],
|
91 |
outputs=seed,
|
92 |
queue=False,
|
93 |
+
api_name=False,
|
94 |
).then(
|
95 |
fn=model.run_text,
|
96 |
inputs=inputs,
|
97 |
outputs=result,
|
98 |
+
api_name="text-to-3d",
|
99 |
)
|
100 |
return demo
|
model.py
CHANGED
@@ -10,14 +10,11 @@ from diffusers.utils import export_to_ply
|
|
10 |
|
11 |
class Model:
|
12 |
def __init__(self):
|
13 |
-
self.device = torch.device(
|
14 |
-
|
15 |
-
self.pipe = ShapEPipeline.from_pretrained('openai/shap-e',
|
16 |
-
torch_dtype=torch.float16)
|
17 |
self.pipe.to(self.device)
|
18 |
|
19 |
-
self.pipe_img = ShapEImg2ImgPipeline.from_pretrained(
|
20 |
-
'openai/shap-e-img2img', torch_dtype=torch.float16)
|
21 |
self.pipe_img.to(self.device)
|
22 |
|
23 |
def to_glb(self, ply_path: str) -> str:
|
@@ -26,40 +23,34 @@ class Model:
|
|
26 |
mesh = mesh.apply_transform(rot)
|
27 |
rot = trimesh.transformations.rotation_matrix(np.pi, [0, 1, 0])
|
28 |
mesh = mesh.apply_transform(rot)
|
29 |
-
mesh_path = tempfile.NamedTemporaryFile(suffix=
|
30 |
-
mesh.export(mesh_path.name, file_type=
|
31 |
return mesh_path.name
|
32 |
|
33 |
-
def run_text(self,
|
34 |
-
prompt: str,
|
35 |
-
seed: int = 0,
|
36 |
-
guidance_scale: float = 15.0,
|
37 |
-
num_steps: int = 64) -> str:
|
38 |
generator = torch.Generator(device=self.device).manual_seed(seed)
|
39 |
-
images = self.pipe(
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
export_to_ply(images[0], ply_path.name)
|
48 |
return self.to_glb(ply_path.name)
|
49 |
|
50 |
-
def run_image(
|
51 |
-
|
52 |
-
|
53 |
-
guidance_scale: float = 3.0,
|
54 |
-
num_steps: int = 64) -> str:
|
55 |
generator = torch.Generator(device=self.device).manual_seed(seed)
|
56 |
-
images = self.pipe_img(
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
export_to_ply(images[0], ply_path.name)
|
65 |
return self.to_glb(ply_path.name)
|
|
|
10 |
|
11 |
class Model:
|
12 |
def __init__(self):
|
13 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
14 |
+
self.pipe = ShapEPipeline.from_pretrained("openai/shap-e", torch_dtype=torch.float16)
|
|
|
|
|
15 |
self.pipe.to(self.device)
|
16 |
|
17 |
+
self.pipe_img = ShapEImg2ImgPipeline.from_pretrained("openai/shap-e-img2img", torch_dtype=torch.float16)
|
|
|
18 |
self.pipe_img.to(self.device)
|
19 |
|
20 |
def to_glb(self, ply_path: str) -> str:
|
|
|
23 |
mesh = mesh.apply_transform(rot)
|
24 |
rot = trimesh.transformations.rotation_matrix(np.pi, [0, 1, 0])
|
25 |
mesh = mesh.apply_transform(rot)
|
26 |
+
mesh_path = tempfile.NamedTemporaryFile(suffix=".glb", delete=False)
|
27 |
+
mesh.export(mesh_path.name, file_type="glb")
|
28 |
return mesh_path.name
|
29 |
|
30 |
+
def run_text(self, prompt: str, seed: int = 0, guidance_scale: float = 15.0, num_steps: int = 64) -> str:
|
|
|
|
|
|
|
|
|
31 |
generator = torch.Generator(device=self.device).manual_seed(seed)
|
32 |
+
images = self.pipe(
|
33 |
+
prompt,
|
34 |
+
generator=generator,
|
35 |
+
guidance_scale=guidance_scale,
|
36 |
+
num_inference_steps=num_steps,
|
37 |
+
output_type="mesh",
|
38 |
+
).images
|
39 |
+
ply_path = tempfile.NamedTemporaryFile(suffix=".ply", delete=False, mode="w+b")
|
40 |
export_to_ply(images[0], ply_path.name)
|
41 |
return self.to_glb(ply_path.name)
|
42 |
|
43 |
+
def run_image(
|
44 |
+
self, image: PIL.Image.Image, seed: int = 0, guidance_scale: float = 3.0, num_steps: int = 64
|
45 |
+
) -> str:
|
|
|
|
|
46 |
generator = torch.Generator(device=self.device).manual_seed(seed)
|
47 |
+
images = self.pipe_img(
|
48 |
+
image,
|
49 |
+
generator=generator,
|
50 |
+
guidance_scale=guidance_scale,
|
51 |
+
num_inference_steps=num_steps,
|
52 |
+
output_type="mesh",
|
53 |
+
).images
|
54 |
+
ply_path = tempfile.NamedTemporaryFile(suffix=".ply", delete=False, mode="w+b")
|
55 |
export_to_ply(images[0], ply_path.name)
|
56 |
return self.to_glb(ply_path.name)
|
settings.py
CHANGED
@@ -2,6 +2,6 @@ import os
|
|
2 |
|
3 |
import numpy as np
|
4 |
|
5 |
-
CACHE_EXAMPLES = os.getenv(
|
6 |
|
7 |
MAX_SEED = np.iinfo(np.int32).max
|
|
|
2 |
|
3 |
import numpy as np
|
4 |
|
5 |
+
CACHE_EXAMPLES = os.getenv("CACHE_EXAMPLES") == "1"
|
6 |
|
7 |
MAX_SEED = np.iinfo(np.int32).max
|