Spaces:
Runtime error
Runtime error
Add files
Browse files- .gitignore +164 -0
- .pre-commit-config.yaml +36 -0
- .style.yapf +5 -0
- LICENSE +21 -0
- LICENSE.Shap-E +21 -0
- README.md +3 -1
- app.py +28 -0
- app_image_to_3d.py +84 -0
- app_text_to_3d.py +100 -0
- model.py +162 -0
- requirements.txt +6 -0
- settings.py +7 -0
- style.css +21 -0
- utils.py +9 -0
.gitignore
ADDED
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio_cached_examples/
|
2 |
+
shap_e_model_cache/
|
3 |
+
corgi.png
|
4 |
+
|
5 |
+
# Byte-compiled / optimized / DLL files
|
6 |
+
__pycache__/
|
7 |
+
*.py[cod]
|
8 |
+
*$py.class
|
9 |
+
|
10 |
+
# C extensions
|
11 |
+
*.so
|
12 |
+
|
13 |
+
# Distribution / packaging
|
14 |
+
.Python
|
15 |
+
build/
|
16 |
+
develop-eggs/
|
17 |
+
dist/
|
18 |
+
downloads/
|
19 |
+
eggs/
|
20 |
+
.eggs/
|
21 |
+
lib/
|
22 |
+
lib64/
|
23 |
+
parts/
|
24 |
+
sdist/
|
25 |
+
var/
|
26 |
+
wheels/
|
27 |
+
share/python-wheels/
|
28 |
+
*.egg-info/
|
29 |
+
.installed.cfg
|
30 |
+
*.egg
|
31 |
+
MANIFEST
|
32 |
+
|
33 |
+
# PyInstaller
|
34 |
+
# Usually these files are written by a python script from a template
|
35 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
36 |
+
*.manifest
|
37 |
+
*.spec
|
38 |
+
|
39 |
+
# Installer logs
|
40 |
+
pip-log.txt
|
41 |
+
pip-delete-this-directory.txt
|
42 |
+
|
43 |
+
# Unit test / coverage reports
|
44 |
+
htmlcov/
|
45 |
+
.tox/
|
46 |
+
.nox/
|
47 |
+
.coverage
|
48 |
+
.coverage.*
|
49 |
+
.cache
|
50 |
+
nosetests.xml
|
51 |
+
coverage.xml
|
52 |
+
*.cover
|
53 |
+
*.py,cover
|
54 |
+
.hypothesis/
|
55 |
+
.pytest_cache/
|
56 |
+
cover/
|
57 |
+
|
58 |
+
# Translations
|
59 |
+
*.mo
|
60 |
+
*.pot
|
61 |
+
|
62 |
+
# Django stuff:
|
63 |
+
*.log
|
64 |
+
local_settings.py
|
65 |
+
db.sqlite3
|
66 |
+
db.sqlite3-journal
|
67 |
+
|
68 |
+
# Flask stuff:
|
69 |
+
instance/
|
70 |
+
.webassets-cache
|
71 |
+
|
72 |
+
# Scrapy stuff:
|
73 |
+
.scrapy
|
74 |
+
|
75 |
+
# Sphinx documentation
|
76 |
+
docs/_build/
|
77 |
+
|
78 |
+
# PyBuilder
|
79 |
+
.pybuilder/
|
80 |
+
target/
|
81 |
+
|
82 |
+
# Jupyter Notebook
|
83 |
+
.ipynb_checkpoints
|
84 |
+
|
85 |
+
# IPython
|
86 |
+
profile_default/
|
87 |
+
ipython_config.py
|
88 |
+
|
89 |
+
# pyenv
|
90 |
+
# For a library or package, you might want to ignore these files since the code is
|
91 |
+
# intended to run in multiple environments; otherwise, check them in:
|
92 |
+
# .python-version
|
93 |
+
|
94 |
+
# pipenv
|
95 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
96 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
97 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
98 |
+
# install all needed dependencies.
|
99 |
+
#Pipfile.lock
|
100 |
+
|
101 |
+
# poetry
|
102 |
+
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
103 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
104 |
+
# commonly ignored for libraries.
|
105 |
+
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
106 |
+
#poetry.lock
|
107 |
+
|
108 |
+
# pdm
|
109 |
+
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
110 |
+
#pdm.lock
|
111 |
+
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
112 |
+
# in version control.
|
113 |
+
# https://pdm.fming.dev/#use-with-ide
|
114 |
+
.pdm.toml
|
115 |
+
|
116 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
117 |
+
__pypackages__/
|
118 |
+
|
119 |
+
# Celery stuff
|
120 |
+
celerybeat-schedule
|
121 |
+
celerybeat.pid
|
122 |
+
|
123 |
+
# SageMath parsed files
|
124 |
+
*.sage.py
|
125 |
+
|
126 |
+
# Environments
|
127 |
+
.env
|
128 |
+
.venv
|
129 |
+
env/
|
130 |
+
venv/
|
131 |
+
ENV/
|
132 |
+
env.bak/
|
133 |
+
venv.bak/
|
134 |
+
|
135 |
+
# Spyder project settings
|
136 |
+
.spyderproject
|
137 |
+
.spyproject
|
138 |
+
|
139 |
+
# Rope project settings
|
140 |
+
.ropeproject
|
141 |
+
|
142 |
+
# mkdocs documentation
|
143 |
+
/site
|
144 |
+
|
145 |
+
# mypy
|
146 |
+
.mypy_cache/
|
147 |
+
.dmypy.json
|
148 |
+
dmypy.json
|
149 |
+
|
150 |
+
# Pyre type checker
|
151 |
+
.pyre/
|
152 |
+
|
153 |
+
# pytype static type analyzer
|
154 |
+
.pytype/
|
155 |
+
|
156 |
+
# Cython debug symbols
|
157 |
+
cython_debug/
|
158 |
+
|
159 |
+
# PyCharm
|
160 |
+
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
161 |
+
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
162 |
+
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
163 |
+
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
164 |
+
#.idea/
|
.pre-commit-config.yaml
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
repos:
|
2 |
+
- repo: https://github.com/pre-commit/pre-commit-hooks
|
3 |
+
rev: v4.2.0
|
4 |
+
hooks:
|
5 |
+
- id: check-executables-have-shebangs
|
6 |
+
- id: check-json
|
7 |
+
- id: check-merge-conflict
|
8 |
+
- id: check-shebang-scripts-are-executable
|
9 |
+
- id: check-toml
|
10 |
+
- id: check-yaml
|
11 |
+
- id: double-quote-string-fixer
|
12 |
+
- id: end-of-file-fixer
|
13 |
+
- id: mixed-line-ending
|
14 |
+
args: ['--fix=lf']
|
15 |
+
- id: requirements-txt-fixer
|
16 |
+
- id: trailing-whitespace
|
17 |
+
- repo: https://github.com/myint/docformatter
|
18 |
+
rev: v1.4
|
19 |
+
hooks:
|
20 |
+
- id: docformatter
|
21 |
+
args: ['--in-place']
|
22 |
+
- repo: https://github.com/pycqa/isort
|
23 |
+
rev: 5.12.0
|
24 |
+
hooks:
|
25 |
+
- id: isort
|
26 |
+
- repo: https://github.com/pre-commit/mirrors-mypy
|
27 |
+
rev: v0.991
|
28 |
+
hooks:
|
29 |
+
- id: mypy
|
30 |
+
args: ['--ignore-missing-imports']
|
31 |
+
additional_dependencies: ['types-python-slugify']
|
32 |
+
- repo: https://github.com/google/yapf
|
33 |
+
rev: v0.32.0
|
34 |
+
hooks:
|
35 |
+
- id: yapf
|
36 |
+
args: ['--parallel', '--in-place']
|
.style.yapf
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[style]
|
2 |
+
based_on_style = pep8
|
3 |
+
blank_line_before_nested_class_or_def = false
|
4 |
+
spaces_before_comment = 2
|
5 |
+
split_before_logical_operator = true
|
LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2023 hysts
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
LICENSE.Shap-E
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2023 OpenAI
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
README.md
CHANGED
@@ -1,12 +1,14 @@
|
|
1 |
---
|
2 |
-
title: Shap
|
3 |
emoji: 📉
|
4 |
colorFrom: yellow
|
5 |
colorTo: blue
|
6 |
sdk: gradio
|
7 |
sdk_version: 3.28.2
|
|
|
8 |
app_file: app.py
|
9 |
pinned: false
|
|
|
10 |
---
|
11 |
|
12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: Shap-E
|
3 |
emoji: 📉
|
4 |
colorFrom: yellow
|
5 |
colorTo: blue
|
6 |
sdk: gradio
|
7 |
sdk_version: 3.28.2
|
8 |
+
python_version: 3.10.11
|
9 |
app_file: app.py
|
10 |
pinned: false
|
11 |
+
license: mit
|
12 |
---
|
13 |
|
14 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
import os
|
4 |
+
|
5 |
+
import gradio as gr
|
6 |
+
import torch
|
7 |
+
|
8 |
+
from app_image_to_3d import create_demo as create_demo_image_to_3d
|
9 |
+
from app_text_to_3d import create_demo as create_demo_text_to_3d
|
10 |
+
from model import Model
|
11 |
+
|
12 |
+
DESCRIPTION = '# [Shap-E](https://github.com/openai/shap-e)'
|
13 |
+
|
14 |
+
if (SPACE_ID := os.getenv('SPACE_ID')) is not None:
|
15 |
+
DESCRIPTION += f'\n<p>For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings. <a href="https://huggingface.co/spaces/{SPACE_ID}?duplicate=true"><img style="display: inline; margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space" /></a></p>'
|
16 |
+
if not torch.cuda.is_available():
|
17 |
+
DESCRIPTION += '\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>'
|
18 |
+
|
19 |
+
model = Model()
|
20 |
+
|
21 |
+
with gr.Blocks(css='style.css') as demo:
|
22 |
+
gr.Markdown(DESCRIPTION)
|
23 |
+
with gr.Tabs():
|
24 |
+
with gr.Tab(label='Text to 3D'):
|
25 |
+
create_demo_text_to_3d(model)
|
26 |
+
with gr.Tab(label='Image to 3D'):
|
27 |
+
create_demo_image_to_3d(model)
|
28 |
+
demo.queue(api_open=False, max_size=5).launch()
|
app_image_to_3d.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
import shlex
|
4 |
+
import subprocess
|
5 |
+
|
6 |
+
import gradio as gr
|
7 |
+
|
8 |
+
from model import Model
|
9 |
+
from settings import CACHE_EXAMPLES, MAX_SEED
|
10 |
+
from utils import randomize_seed_fn
|
11 |
+
|
12 |
+
|
13 |
+
def create_demo(model: Model) -> gr.Blocks:
|
14 |
+
subprocess.run(
|
15 |
+
shlex.split(
|
16 |
+
'wget https://raw.githubusercontent.com/openai/shap-e/d99cedaea18e0989e340163dbaeb4b109fa9e8ec/shap_e/examples/example_data/corgi.png -O corgi.png'
|
17 |
+
))
|
18 |
+
examples = ['corgi.png']
|
19 |
+
|
20 |
+
def process_example_fn(image_path: str) -> str:
|
21 |
+
return model.run_image(image_path, output_image_size=128)
|
22 |
+
|
23 |
+
with gr.Blocks() as demo:
|
24 |
+
with gr.Box():
|
25 |
+
image = gr.Image(label='Input image',
|
26 |
+
show_label=False,
|
27 |
+
type='filepath')
|
28 |
+
run_button = gr.Button('Run')
|
29 |
+
result = gr.Video(label='Result', elem_id='result-2')
|
30 |
+
with gr.Accordion('Advanced options', open=False):
|
31 |
+
seed = gr.Slider(label='Seed',
|
32 |
+
minimum=0,
|
33 |
+
maximum=MAX_SEED,
|
34 |
+
step=1,
|
35 |
+
value=0)
|
36 |
+
randomize_seed = gr.Checkbox(label='Randomize seed',
|
37 |
+
value=True)
|
38 |
+
guidance_scale = gr.Slider(label='Guidance scale',
|
39 |
+
minimum=1,
|
40 |
+
maximum=20,
|
41 |
+
step=0.1,
|
42 |
+
value=3.0)
|
43 |
+
num_inference_steps = gr.Slider(
|
44 |
+
label='Number of inference steps',
|
45 |
+
minimum=1,
|
46 |
+
maximum=100,
|
47 |
+
step=1,
|
48 |
+
value=64)
|
49 |
+
image_size = gr.Slider(label='Image size',
|
50 |
+
minimum=64,
|
51 |
+
maximum=256,
|
52 |
+
step=64,
|
53 |
+
value=128)
|
54 |
+
render_mode = gr.Dropdown(label='Render mode',
|
55 |
+
choices=['nerf', 'stf'],
|
56 |
+
value='nerf',
|
57 |
+
visible=False)
|
58 |
+
|
59 |
+
gr.Examples(examples=examples,
|
60 |
+
inputs=image,
|
61 |
+
outputs=result,
|
62 |
+
fn=process_example_fn,
|
63 |
+
cache_examples=CACHE_EXAMPLES)
|
64 |
+
|
65 |
+
inputs = [
|
66 |
+
image,
|
67 |
+
seed,
|
68 |
+
guidance_scale,
|
69 |
+
num_inference_steps,
|
70 |
+
image_size,
|
71 |
+
render_mode,
|
72 |
+
]
|
73 |
+
|
74 |
+
run_button.click(
|
75 |
+
fn=randomize_seed_fn,
|
76 |
+
inputs=[seed, randomize_seed],
|
77 |
+
outputs=seed,
|
78 |
+
queue=False,
|
79 |
+
).then(
|
80 |
+
fn=model.run_image,
|
81 |
+
inputs=inputs,
|
82 |
+
outputs=result,
|
83 |
+
)
|
84 |
+
return demo
|
app_text_to_3d.py
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
import gradio as gr
|
4 |
+
|
5 |
+
from model import Model
|
6 |
+
from settings import CACHE_EXAMPLES, MAX_SEED
|
7 |
+
from utils import randomize_seed_fn
|
8 |
+
|
9 |
+
|
10 |
+
def create_demo(model: Model) -> gr.Blocks:
|
11 |
+
examples = [
|
12 |
+
'A chair that looks like an avocado',
|
13 |
+
'An airplane that looks like a banana',
|
14 |
+
'A spaceship',
|
15 |
+
'A birthday cupcake',
|
16 |
+
'A chair that looks like a tree',
|
17 |
+
'A green boot',
|
18 |
+
'A penguin',
|
19 |
+
'Ube ice cream cone',
|
20 |
+
'A bowl of vegetables',
|
21 |
+
]
|
22 |
+
|
23 |
+
def process_example_fn(prompt: str) -> str:
|
24 |
+
return model.run_text(prompt, output_image_size=128)
|
25 |
+
|
26 |
+
with gr.Blocks() as demo:
|
27 |
+
with gr.Box():
|
28 |
+
with gr.Row(elem_id='prompt-container'):
|
29 |
+
prompt = gr.Text(
|
30 |
+
label='Prompt',
|
31 |
+
show_label=False,
|
32 |
+
max_lines=1,
|
33 |
+
placeholder='Enter your prompt').style(container=False)
|
34 |
+
run_button = gr.Button('Run').style(full_width=False)
|
35 |
+
result = gr.Video(label='Result', elem_id='result-1')
|
36 |
+
with gr.Accordion('Advanced options', open=False):
|
37 |
+
seed = gr.Slider(label='Seed',
|
38 |
+
minimum=0,
|
39 |
+
maximum=MAX_SEED,
|
40 |
+
step=1,
|
41 |
+
value=0)
|
42 |
+
randomize_seed = gr.Checkbox(label='Randomize seed',
|
43 |
+
value=True)
|
44 |
+
guidance_scale = gr.Slider(label='Guidance scale',
|
45 |
+
minimum=1,
|
46 |
+
maximum=20,
|
47 |
+
step=0.1,
|
48 |
+
value=15.0)
|
49 |
+
num_inference_steps = gr.Slider(
|
50 |
+
label='Number of inference steps',
|
51 |
+
minimum=1,
|
52 |
+
maximum=100,
|
53 |
+
step=1,
|
54 |
+
value=64)
|
55 |
+
image_size = gr.Slider(label='Image size',
|
56 |
+
minimum=64,
|
57 |
+
maximum=256,
|
58 |
+
step=64,
|
59 |
+
value=128)
|
60 |
+
render_mode = gr.Dropdown(label='Render mode',
|
61 |
+
choices=['nerf', 'stf'],
|
62 |
+
value='nerf',
|
63 |
+
visible=False)
|
64 |
+
|
65 |
+
gr.Examples(examples=examples,
|
66 |
+
inputs=prompt,
|
67 |
+
outputs=result,
|
68 |
+
fn=process_example_fn,
|
69 |
+
cache_examples=CACHE_EXAMPLES)
|
70 |
+
|
71 |
+
inputs = [
|
72 |
+
prompt,
|
73 |
+
seed,
|
74 |
+
guidance_scale,
|
75 |
+
num_inference_steps,
|
76 |
+
image_size,
|
77 |
+
render_mode,
|
78 |
+
]
|
79 |
+
prompt.submit(
|
80 |
+
fn=randomize_seed_fn,
|
81 |
+
inputs=[seed, randomize_seed],
|
82 |
+
outputs=seed,
|
83 |
+
queue=False,
|
84 |
+
).then(
|
85 |
+
fn=model.run_text,
|
86 |
+
inputs=inputs,
|
87 |
+
outputs=result,
|
88 |
+
)
|
89 |
+
|
90 |
+
run_button.click(
|
91 |
+
fn=randomize_seed_fn,
|
92 |
+
inputs=[seed, randomize_seed],
|
93 |
+
outputs=seed,
|
94 |
+
queue=False,
|
95 |
+
).then(
|
96 |
+
fn=model.run_text,
|
97 |
+
inputs=inputs,
|
98 |
+
outputs=result,
|
99 |
+
)
|
100 |
+
return demo
|
model.py
ADDED
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import tempfile
|
2 |
+
|
3 |
+
import imageio
|
4 |
+
import numpy as np
|
5 |
+
import PIL.Image
|
6 |
+
import torch
|
7 |
+
from shap_e.diffusion.gaussian_diffusion import diffusion_from_config
|
8 |
+
from shap_e.diffusion.sample import sample_latents
|
9 |
+
from shap_e.models.download import load_config, load_model
|
10 |
+
from shap_e.models.nn.camera import (DifferentiableCameraBatch,
|
11 |
+
DifferentiableProjectiveCamera)
|
12 |
+
from shap_e.models.transmitter.base import Transmitter, VectorDecoder
|
13 |
+
from shap_e.util.collections import AttrDict
|
14 |
+
from shap_e.util.image_util import load_image
|
15 |
+
|
16 |
+
|
17 |
+
# Copied from https://github.com/openai/shap-e/blob/d99cedaea18e0989e340163dbaeb4b109fa9e8ec/shap_e/util/notebooks.py#L15-L42
|
18 |
+
def create_pan_cameras(size: int,
|
19 |
+
device: torch.device) -> DifferentiableCameraBatch:
|
20 |
+
origins = []
|
21 |
+
xs = []
|
22 |
+
ys = []
|
23 |
+
zs = []
|
24 |
+
for theta in np.linspace(0, 2 * np.pi, num=20):
|
25 |
+
z = np.array([np.sin(theta), np.cos(theta), -0.5])
|
26 |
+
z /= np.sqrt(np.sum(z**2))
|
27 |
+
origin = -z * 4
|
28 |
+
x = np.array([np.cos(theta), -np.sin(theta), 0.0])
|
29 |
+
y = np.cross(z, x)
|
30 |
+
origins.append(origin)
|
31 |
+
xs.append(x)
|
32 |
+
ys.append(y)
|
33 |
+
zs.append(z)
|
34 |
+
return DifferentiableCameraBatch(
|
35 |
+
shape=(1, len(xs)),
|
36 |
+
flat_camera=DifferentiableProjectiveCamera(
|
37 |
+
origin=torch.from_numpy(np.stack(origins,
|
38 |
+
axis=0)).float().to(device),
|
39 |
+
x=torch.from_numpy(np.stack(xs, axis=0)).float().to(device),
|
40 |
+
y=torch.from_numpy(np.stack(ys, axis=0)).float().to(device),
|
41 |
+
z=torch.from_numpy(np.stack(zs, axis=0)).float().to(device),
|
42 |
+
width=size,
|
43 |
+
height=size,
|
44 |
+
x_fov=0.7,
|
45 |
+
y_fov=0.7,
|
46 |
+
),
|
47 |
+
)
|
48 |
+
|
49 |
+
|
50 |
+
# Copied from https://github.com/openai/shap-e/blob/d99cedaea18e0989e340163dbaeb4b109fa9e8ec/shap_e/util/notebooks.py#L45-L60
|
51 |
+
@torch.no_grad()
|
52 |
+
def decode_latent_images(
|
53 |
+
xm: Transmitter | VectorDecoder,
|
54 |
+
latent: torch.Tensor,
|
55 |
+
cameras: DifferentiableCameraBatch,
|
56 |
+
rendering_mode: str = 'stf',
|
57 |
+
):
|
58 |
+
decoded = xm.renderer.render_views(
|
59 |
+
AttrDict(cameras=cameras),
|
60 |
+
params=(xm.encoder if isinstance(xm, Transmitter) else
|
61 |
+
xm).bottleneck_to_params(latent[None]),
|
62 |
+
options=AttrDict(rendering_mode=rendering_mode,
|
63 |
+
render_with_direction=False),
|
64 |
+
)
|
65 |
+
arr = decoded.channels.clamp(0, 255).to(torch.uint8)[0].cpu().numpy()
|
66 |
+
return [PIL.Image.fromarray(x) for x in arr]
|
67 |
+
|
68 |
+
|
69 |
+
class Model:
|
70 |
+
def __init__(self):
|
71 |
+
self.device = torch.device(
|
72 |
+
'cuda' if torch.cuda.is_available() else 'cpu')
|
73 |
+
self.xm = load_model('transmitter', device=self.device)
|
74 |
+
self.diffusion = diffusion_from_config(load_config('diffusion'))
|
75 |
+
self.model_name = ''
|
76 |
+
self.model = None
|
77 |
+
|
78 |
+
def load_model(self, model_name: str) -> None:
|
79 |
+
assert model_name in ['text300M', 'image300M']
|
80 |
+
if model_name == self.model_name:
|
81 |
+
return
|
82 |
+
self.model = load_model(model_name, device=self.device)
|
83 |
+
self.model_name = model_name
|
84 |
+
|
85 |
+
@staticmethod
|
86 |
+
def to_video(frames: list[PIL.Image.Image], fps: int = 5) -> str:
|
87 |
+
out_file = tempfile.NamedTemporaryFile(suffix='.mp4', delete=False)
|
88 |
+
writer = imageio.get_writer(out_file.name, format='FFMPEG', fps=fps)
|
89 |
+
for frame in frames:
|
90 |
+
writer.append_data(np.asarray(frame))
|
91 |
+
writer.close()
|
92 |
+
return out_file.name
|
93 |
+
|
94 |
+
def run_text(self,
|
95 |
+
prompt: str,
|
96 |
+
seed: int = 0,
|
97 |
+
guidance_scale: float = 15.0,
|
98 |
+
num_steps: int = 64,
|
99 |
+
output_image_size: int = 64,
|
100 |
+
render_mode: str = 'nerf') -> str:
|
101 |
+
self.load_model('text300M')
|
102 |
+
|
103 |
+
torch.manual_seed(seed)
|
104 |
+
|
105 |
+
latents = sample_latents(
|
106 |
+
batch_size=1,
|
107 |
+
model=self.model,
|
108 |
+
diffusion=self.diffusion,
|
109 |
+
guidance_scale=guidance_scale,
|
110 |
+
model_kwargs=dict(texts=[prompt]),
|
111 |
+
progress=True,
|
112 |
+
clip_denoised=True,
|
113 |
+
use_fp16=True,
|
114 |
+
use_karras=True,
|
115 |
+
karras_steps=num_steps,
|
116 |
+
sigma_min=1e-3,
|
117 |
+
sigma_max=160,
|
118 |
+
s_churn=0,
|
119 |
+
)
|
120 |
+
|
121 |
+
cameras = create_pan_cameras(output_image_size, self.device)
|
122 |
+
frames = decode_latent_images(self.xm,
|
123 |
+
latents[0],
|
124 |
+
cameras,
|
125 |
+
rendering_mode=render_mode)
|
126 |
+
return self.to_video(frames)
|
127 |
+
|
128 |
+
def run_image(self,
|
129 |
+
image_path: str,
|
130 |
+
seed: int = 0,
|
131 |
+
guidance_scale: float = 3.0,
|
132 |
+
num_steps: int = 64,
|
133 |
+
output_image_size: int = 64,
|
134 |
+
render_mode: str = 'nerf') -> str:
|
135 |
+
self.load_model('image300M')
|
136 |
+
|
137 |
+
torch.manual_seed(seed)
|
138 |
+
|
139 |
+
image = load_image(image_path)
|
140 |
+
|
141 |
+
latents = sample_latents(
|
142 |
+
batch_size=1,
|
143 |
+
model=self.model,
|
144 |
+
diffusion=self.diffusion,
|
145 |
+
guidance_scale=guidance_scale,
|
146 |
+
model_kwargs=dict(images=[image]),
|
147 |
+
progress=True,
|
148 |
+
clip_denoised=True,
|
149 |
+
use_fp16=True,
|
150 |
+
use_karras=True,
|
151 |
+
karras_steps=num_steps,
|
152 |
+
sigma_min=1e-3,
|
153 |
+
sigma_max=160,
|
154 |
+
s_churn=0,
|
155 |
+
)
|
156 |
+
|
157 |
+
cameras = create_pan_cameras(output_image_size, self.device)
|
158 |
+
frames = decode_latent_images(self.xm,
|
159 |
+
latents[0],
|
160 |
+
cameras,
|
161 |
+
rendering_mode=render_mode)
|
162 |
+
return self.to_video(frames)
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
blobfile==2.0.2
|
2 |
+
git+https://github.com/openai/shap-e@d99ceda
|
3 |
+
gradio==3.28.2
|
4 |
+
imageio[ffmpeg]==2.28.1
|
5 |
+
torch==2.0.0
|
6 |
+
torchvision==0.15.1
|
settings.py
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
CACHE_EXAMPLES = os.getenv('CACHE_EXAMPLES') == '1'
|
6 |
+
|
7 |
+
MAX_SEED = np.iinfo(np.int32).max
|
style.css
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
h1 {
|
2 |
+
text-align: center;
|
3 |
+
}
|
4 |
+
|
5 |
+
#component-0 {
|
6 |
+
max-width: 730px;
|
7 |
+
margin: auto;
|
8 |
+
padding-top: 1.5rem;
|
9 |
+
}
|
10 |
+
|
11 |
+
#result-1 video {
|
12 |
+
object-fit: scale-down;
|
13 |
+
}
|
14 |
+
|
15 |
+
#result-2 video {
|
16 |
+
object-fit: scale-down;
|
17 |
+
}
|
18 |
+
|
19 |
+
#prompt-container {
|
20 |
+
gap: 0;
|
21 |
+
}
|
utils.py
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import random
|
2 |
+
|
3 |
+
from settings import MAX_SEED
|
4 |
+
|
5 |
+
|
6 |
+
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
7 |
+
if randomize_seed:
|
8 |
+
seed = random.randint(0, MAX_SEED)
|
9 |
+
return seed
|