#!/usr/bin/env python import gradio as gr from model import Model from settings import CACHE_EXAMPLES, MAX_SEED from utils import randomize_seed_fn def create_demo(model: Model) -> gr.Blocks: examples = [ "A chair that looks like an avocado", "An airplane that looks like a banana", "A spaceship", "A birthday cupcake", "A chair that looks like a tree", "A green boot", "A penguin", "Ube ice cream cone", "A bowl of vegetables", ] def process_example_fn(prompt: str) -> str: return model.run_text(prompt) with gr.Blocks() as demo: with gr.Box(): with gr.Row(elem_id="prompt-container"): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0) result = gr.Model3D(label="Result", show_label=False) with gr.Accordion("Advanced options", open=False): seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) guidance_scale = gr.Slider( label="Guidance scale", minimum=1, maximum=20, step=0.1, value=15.0, ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=100, step=1, value=64, ) gr.Examples( examples=examples, inputs=prompt, outputs=result, fn=process_example_fn, cache_examples=CACHE_EXAMPLES, ) inputs = [ prompt, seed, guidance_scale, num_inference_steps, ] prompt.submit( fn=randomize_seed_fn, inputs=[seed, randomize_seed], outputs=seed, queue=False, api_name=False, ).then( fn=model.run_text, inputs=inputs, outputs=result, api_name=False, ) run_button.click( fn=randomize_seed_fn, inputs=[seed, randomize_seed], outputs=seed, queue=False, api_name=False, ).then( fn=model.run_text, inputs=inputs, outputs=result, api_name="text-to-3d", ) return demo