Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
from PIL import Image | |
from transformers import BitsAndBytesConfig, PaliGemmaForConditionalGeneration, PaliGemmaProcessor | |
import spaces | |
import torch | |
import os | |
access_token = os.getenv('HF_token') | |
model_id = "selamw/BirdWatcher" | |
bnb_config = BitsAndBytesConfig(load_in_8bit=True) | |
def convert_to_markdown(input_text): | |
"""Converts bird information text to Markdown format, | |
making specific keywords bold and adding headings. | |
Args: | |
input_text (str): The input text containing bird information. | |
Returns: | |
str: The formatted Markdown text. | |
""" | |
bold_words = ['Look:', 'Cool Fact!:', 'Habitat:', 'Food:', 'Birdie Behaviors:'] | |
# Split into title and content based on the first ":", handling extra whitespace | |
if ":" in input_text: | |
title, content = map(str.strip, input_text.split(":", 1)) | |
else: | |
title = input_text | |
content = "" | |
# Bold the keywords | |
for word in bold_words: | |
content = content.replace(word, f'\n\n**{word}') | |
# Construct the Markdown output with headings | |
formatted_output = f"**{title}**{content}" | |
return formatted_output.strip() | |
def infer_fin_pali(image, question): | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model = PaliGemmaForConditionalGeneration.from_pretrained(model_id, quantization_config=bnb_config, token=access_token) | |
processor = PaliGemmaProcessor.from_pretrained(model_id, token=access_token) | |
inputs = processor(images=image, text=question, return_tensors="pt").to(device) | |
predictions = model.generate(**inputs, max_new_tokens=512) | |
decoded_output = processor.decode(predictions[0], skip_special_tokens=True)[len(question):].lstrip("\n") | |
# Ensure proper Markdown formatting | |
formatted_output = convert_to_markdown(decoded_output) | |
return formatted_output | |
css = """ | |
#mkd { | |
height: 500px; | |
overflow: auto; | |
border: 1px solid #ccc; | |
} | |
h1 { | |
text-align: center; | |
} | |
h3 { | |
text-align: center; | |
} | |
h2 { | |
text-align: center; | |
} | |
span.gray-text { | |
color: gray; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
gr.HTML("<h1>𦩠BirdWatcher π¦</h1>") | |
gr.HTML("<h3>[Powered by Fine-tuned PaliGemma]</h3>") | |
gr.HTML("<h3>Upload an image of a bird, and the model will generate a detailed description of its species.</h3>") | |
gr.HTML("<p style='text-align: center;'>(There are over 11,000 bird species in the world, and this model was fine-tuned with over 500)</p>") | |
with gr.Tab(label="Bird Identification"): | |
with gr.Row(): | |
input_img = gr.Image(label="Input Bird Image") | |
with gr.Column(): | |
with gr.Row(): | |
question = gr.Text(label="Default Prompt", value="Describe this bird species", elem_id="default-prompt", interactive=True) | |
with gr.Row(): | |
submit_btn = gr.Button(value="Run") | |
with gr.Row(): | |
output = gr.Markdown(label="Response") # Use Markdown component to display output | |
submit_btn.click(infer_fin_pali, [input_img, question], [output]) | |
gr.Examples( | |
[["01.jpg", "Describe this bird species"], | |
["02.jpg", "Describe this bird species"], | |
["03.jpg", "Describe this bird species"], | |
["04.jpg", "Describe this bird species"], | |
["05.jpg", "Describe this bird species"], | |
["06.jpg", "Describe this bird species"]], | |
inputs=[input_img, question], | |
outputs=[output], | |
fn=infer_fin_pali, | |
label='Examples π' | |
) | |
demo.launch(debug=True, share=True) |