Spaces:
Sleeping
Sleeping
import dash | |
from dash import Dash, html, dcc, callback, Output, Input | |
import plotly.express as px | |
from app import app | |
import pandas as pd | |
import datetime | |
import requests | |
from io import StringIO | |
from datetime import date | |
# from jupyter_dash import JupyterDash | |
# from dash.dependencies import Input, Output | |
import dash_bootstrap_components as dbc | |
import plotly.express as px | |
server = app.server | |
url='https://drive.google.com/file/d/1NaXOYHQFF5UO5rQr4rn8Lr3bkYMSOq4_/view?usp=sharing' | |
url='https://drive.google.com/uc?id=' + url.split('/')[-2] | |
# reading of file | |
df = pd.read_csv(url) | |
df['date'] = pd.to_datetime(df['date']) | |
unique_domains = df['domain_folder_name'].unique() | |
print(unique_domains) | |
unique_topics = df['Topic'].unique() | |
print(unique_topics) | |
#copying a column | |
df["Veículos de notícias"] = df["domain_folder_name"] | |
# df = df.rename(columns={df.columns[4]: "Veículos de notícias"}) | |
df['FinBERT_label'] = df['FinBERT_label'].astype(str) | |
df['FinBERT_label'].replace({ | |
'3.0': 'positive', | |
'2.0': 'neutral', | |
'1.0': 'negative' | |
}, inplace=True) | |
counts = df.groupby(['date', 'Topic', 'domain_folder_name', 'FinBERT_label']).size().reset_index(name='count') | |
counts['count'] = counts['count'].astype('float64') | |
counts['rolling_mean_counts'] = counts['count'].rolling(window=30, min_periods=2).mean() | |
df_pos = counts[[x in ['positive'] for x in counts.FinBERT_label]] | |
df_neu = counts[[x in ['neutral'] for x in counts.FinBERT_label]] | |
df_neg = counts[[x in ['negative'] for x in counts.FinBERT_label]] | |
app.layout = dbc.Container([ | |
dbc.Row([ # row 1 | |
dbc.Col([html.H1('Evolução temporal de sentimento em títulos de notícias')], | |
className="text-center mt-3 mb-1")]), | |
dbc.Row([ # row 2 | |
dbc.Label("Selecione um período (mm/dd/aaaa):", className="fw-bold")]), | |
dbc.Row([ # row 3 | |
dcc.DatePickerRange( | |
id='date-range', | |
min_date_allowed=df['date'].min().date(), | |
max_date_allowed=df['date'].max().date(), | |
initial_visible_month=df['date'].min().date(), | |
start_date=df['date'].min().date(), | |
end_date=df['date'].max().date())]), | |
dbc.Row([ # row 4 | |
dbc.Label("Escolha um tópico:", className="fw-bold") | |
]), | |
dbc.Row([ # row 5 | |
dbc.Col( | |
dcc.Dropdown( | |
id="topic-selector", | |
options=[ | |
{"label": topic, "value": topic} for topic in unique_topics | |
], | |
value="Imigrantes", # Set the initial value | |
style={"width": "50%"}) | |
) | |
]), | |
dbc.Row([ # row 6 | |
dbc.Col(dcc.Graph(id='line-graph-1')) | |
]), | |
dbc.Row([ # row 7 but needs to be updated | |
dbc.Col(dcc.Graph(id="bar-graph-1")) | |
]), | |
dbc.Row([ # row 7 | |
dbc.Label("Escolha um site de notícias:", className="fw-bold") | |
]), | |
dbc.Row([ # row 8 | |
dbc.Col( | |
dcc.Dropdown( | |
id="domain-selector", | |
options=[ | |
{"label": domain, "value": domain} for domain in unique_domains | |
], | |
value="expresso-pt", # Set the initial value | |
style={"width": "50%"}) | |
) | |
]), | |
dbc.Row([ # row 9 | |
dbc.Col(dcc.Graph(id='line-graph-2'), | |
) | |
]), | |
dbc.Row([ # row 10 | |
dbc.Col(dcc.Graph(id='line-graph-3'), | |
) | |
]), | |
dbc.Row([ # row 11 | |
dbc.Col(dcc.Graph(id='line-graph-4'), | |
) | |
]), | |
html.Div(id='pie-container-1') | |
]) | |
# # Create a function to generate pie charts | |
# def generate_pie_chart(category): | |
# labels = data[category]['labels'] | |
# values = data[category]['values'] | |
# trace = go.Pie(labels=labels, values=values) | |
# layout = go.Layout(title=f'Pie Chart - {category}') | |
# return dcc.Graph( | |
# figure={ | |
# 'data': [trace], | |
# 'layout': layout | |
# } | |
# ) | |
# callback decorator | |
def update_output(selected_topic, selected_domain, start_date, end_date): | |
#log | |
print("topic",selected_topic,"domain",selected_domain,"start", start_date,"date", end_date) | |
# filter dataframes based on updated data range | |
mask_1 = ((df["Topic"] == selected_topic) & (df['date'] >= start_date) & (df['date'] <= end_date)) | |
df_filtered = df.loc[mask_1] | |
print(df_filtered.shape) | |
if len(df_filtered)>0: | |
#create line graphs based on filtered dataframes | |
line_fig_1 = px.line(df_filtered, x="date", y="normalised results", | |
color='Veículos de notícias', title="O gráfico mostra a evolução temporal de sentimento dos títulos de notícias. Numa escala de -1 (negativo) a 1 (positivo), sendo 0 (neutro).") | |
# Veículos de notícias | |
#set x-axis title and y-axis title in line graphs | |
line_fig_1.update_layout( | |
xaxis_title='Data', | |
yaxis_title='Classificação de Sentimento') | |
#set label format on y-axis in line graphs | |
line_fig_1.update_xaxes(tickformat="%b %d<br>%Y") | |
# Bar Graph start | |
grouped_df = df_filtered.groupby(['date', 'Veículos de notícias']).size().reset_index(name='occurrences') | |
# Sort DataFrame by 'period' column | |
grouped_df = grouped_df.sort_values(by='date') | |
# Create a list of all unique media | |
all_media = df_filtered['domain_folder_name'].unique() | |
# Create a date range from Jan/2000 to the last month in the dataset | |
date_range = pd.date_range(start=df_filtered['date'].min().date(), end=df_filtered['date'].max().date(), freq='MS') | |
# Create a MultiIndex with all combinations of date_range and all_media | |
idx = pd.MultiIndex.from_product([date_range, all_media], names=['date', 'Veículos de notícias']) | |
# Reindex the DataFrame to include all periods and media | |
grouped_df = grouped_df.set_index(['date', 'Veículos de notícias']).reindex(idx, fill_value=0).reset_index() | |
bar_fig_1 = px.bar(grouped_df, x='date', y='occurrences', color='Veículos de notícias', | |
labels={'date': 'Período', 'occurrences': 'Número de notícias', 'Veículos de notícias': 'Portal'}, | |
title='Número de notícias por período de tempo') | |
bar_fig_1.update_xaxes(tickformat="%b %d<br>%Y") | |
# Bar Graph ends | |
# filter dataframes based on updated data range | |
mask_2 = ((df_pos["Topic"] == selected_topic) & (df_pos["domain_folder_name"] == selected_domain) & (df_pos['date'] >= start_date) & (df_pos['date'] <= end_date)) | |
mask_3 = ((df_neu["Topic"] == selected_topic) & (df_neu["domain_folder_name"] == selected_domain) & (df_neu['date'] >= start_date) & (df_neu['date'] <= end_date)) | |
mask_4 = ((df_neg["Topic"] == selected_topic) & (df_neg["domain_folder_name"] == selected_domain) & (df_neg['date'] >= start_date) & (df_neg['date'] <= end_date)) | |
df2_filtered = df_pos.loc[mask_2] | |
df3_filtered = df_neu.loc[mask_3] | |
df4_filtered = df_neg.loc[mask_4] | |
#create line graphs based on filtered dataframes | |
line_fig_2 = px.line(df2_filtered, x="date", y="rolling_mean_counts", line_group="FinBERT_label", | |
title="Positive") | |
line_fig_3 = px.line(df3_filtered, x="date", y="rolling_mean_counts", line_group="FinBERT_label", | |
title="Neutral") | |
line_fig_4 = px.line(df4_filtered, x="date", y="rolling_mean_counts", line_group="FinBERT_label", | |
title="Negative") | |
#set x-axis title and y-axis title in line graphs | |
line_fig_2.update_layout( | |
xaxis_title='Data', | |
yaxis_title='Número de notícias com sentimento positivo') | |
line_fig_3.update_layout( | |
xaxis_title='Data', | |
yaxis_title='Número de notícias com sentimento neutro') | |
line_fig_4.update_layout( | |
xaxis_title='Data', | |
yaxis_title='Número de notícias com sentimento negativo') | |
#set label format on y-axis in line graphs | |
line_fig_2.update_xaxes(tickformat="%b %d<br>%Y") | |
line_fig_3.update_xaxes(tickformat="%b %d<br>%Y") | |
line_fig_4.update_xaxes(tickformat="%b %d<br>%Y") | |
#set label format on y-axis in line graphs | |
line_fig_2.update_traces(line_color='#1E88E5') | |
line_fig_3.update_traces(line_color='#004D40') | |
line_fig_4.update_traces(line_color='#D81B60') | |
# | |
# pie_container_1 = generate_pie_chart(category) | |
# Map original labels to their translated versions | |
label_translation = {'positive': 'positivo', 'neutral': 'neutro', 'negative': 'negativo'} | |
df_filtered['FinBERT_label_transformed'] = df_filtered['FinBERT_label'].map(label_translation) | |
# Group by FinBERT_label and count occurrences | |
label_counts_all = df_filtered['FinBERT_label_transformed'].value_counts() | |
# Calculate percentage of each label | |
label_percentages_all = (label_counts_all / label_counts_all.sum()) * 100 | |
# Plot general pie chart | |
fig_general = px.pie( | |
values=label_percentages_all, | |
names=label_percentages_all.index, | |
title='Distribuição Geral', | |
color_discrete_sequence=['#039a4d', '#3c03f4', '#ca3919'] | |
) | |
# Get unique media categories | |
media_categories = df_filtered['Veículos de notícias'].unique() | |
# Define colors for each label | |
label_colors = {'positivo': '#039a4d', 'neutro': '#3c03f4', 'negativo': '#ca3919'} | |
pie_container_1 = [] | |
# Loop through each media category | |
row_content = [] | |
for media in media_categories: | |
# Filter DataFrame for current media category | |
media_df = df_filtered[df_filtered['Veículos de notícias'] == media] | |
# Group by FinBERT_label and count occurrences | |
label_counts = media_df['FinBERT_label_transformed'].value_counts() | |
# Calculate percentage of each label | |
label_percentages = (label_counts / label_counts.sum()) * 100 | |
# Plot pie chart | |
fig = px.pie( | |
values=label_percentages, | |
names=label_percentages.index, | |
title=f'Distribuição para {media}', | |
color_discrete_sequence=[label_colors[label] for label in label_percentages.index] | |
) | |
fig = dcc.Graph(figure=fig) | |
pie_chart = html.Div(fig,className='four columns') | |
row_content.append(pie_chart) | |
pie_container_1.append(html.Div(row_content, className='row')) | |
return line_fig_1, bar_fig_1, line_fig_2, line_fig_3, line_fig_4, pie_container_1 | |
else: | |
return {'data': []},{'data': []} ,{'data': []} ,{'data': []} , {'data': []}, {'data':[]} | |
# return line_fig_1 | |
# df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/gapminder_unfiltered.csv') | |
# app.layout = html.Div([ | |
# html.H1(children='Title of Dash App', style={'textAlign':'center'}), | |
# dcc.Dropdown(df.country.unique(), 'Canada', id='dropdown-selection'), | |
# dcc.Graph(id='graph-content') | |
# ]) | |
# @callback( | |
# Output('graph-content', 'figure'), | |
# Input('dropdown-selection', 'value') | |
# ) | |
# def update_graph(value): | |
# dff = df[df.country==value] | |
# return px.line(dff, x='year', y='pop') | |
if __name__ == '__main__': | |
app.run_server(debug=True) | |