import dash from dash import Dash, html, dcc, callback, Output, Input import plotly.express as px from app import app import pandas as pd import datetime import requests from io import StringIO from datetime import date # from jupyter_dash import JupyterDash # from dash.dependencies import Input, Output import dash_bootstrap_components as dbc import plotly.express as px server = app.server url='https://drive.google.com/file/d/1NaXOYHQFF5UO5rQr4rn8Lr3bkYMSOq4_/view?usp=sharing' url='https://drive.google.com/uc?id=' + url.split('/')[-2] # reading of file df = pd.read_csv(url) df['date'] = pd.to_datetime(df['date']) unique_domains = df['domain_folder_name'].unique() print(unique_domains) unique_topics = df['Topic'].unique() print(unique_topics) #copying a column df["Veículos de notícias"] = df["domain_folder_name"] # df = df.rename(columns={df.columns[4]: "Veículos de notícias"}) df['FinBERT_label'] = df['FinBERT_label'].astype(str) df['FinBERT_label'].replace({ '3.0': 'positive', '2.0': 'neutral', '1.0': 'negative' }, inplace=True) counts = df.groupby(['date', 'Topic', 'domain_folder_name', 'FinBERT_label']).size().reset_index(name='count') counts['count'] = counts['count'].astype('float64') counts['rolling_mean_counts'] = counts['count'].rolling(window=30, min_periods=2).mean() df_pos = counts[[x in ['positive'] for x in counts.FinBERT_label]] df_neu = counts[[x in ['neutral'] for x in counts.FinBERT_label]] df_neg = counts[[x in ['negative'] for x in counts.FinBERT_label]] app.layout = dbc.Container([ dbc.Row([ # row 1 dbc.Col([html.H1('Evolução temporal de sentimento em títulos de notícias')], className="text-center mt-3 mb-1")]), dbc.Row([ # row 2 dbc.Label("Selecione um período (mm/dd/aaaa):", className="fw-bold")]), dbc.Row([ # row 3 dcc.DatePickerRange( id='date-range', min_date_allowed=df['date'].min().date(), max_date_allowed=df['date'].max().date(), initial_visible_month=df['date'].min().date(), start_date=df['date'].min().date(), end_date=df['date'].max().date())]), dbc.Row([ # row 4 dbc.Label("Escolha um tópico:", className="fw-bold") ]), dbc.Row([ # row 5 dbc.Col( dcc.Dropdown( id="topic-selector", options=[ {"label": topic, "value": topic} for topic in unique_topics ], value="Imigrantes", # Set the initial value style={"width": "50%"}) ) ]), dbc.Row([ # row 6 dbc.Col(dcc.Graph(id='line-graph-1')) ]), dbc.Row([ # row 7 but needs to be updated dbc.Col(dcc.Graph(id="bar-graph-1")) ]), dbc.Row([ # row 7 dbc.Label("Escolha um site de notícias:", className="fw-bold") ]), dbc.Row([ # row 8 dbc.Col( dcc.Dropdown( id="domain-selector", options=[ {"label": domain, "value": domain} for domain in unique_domains ], value="expresso-pt", # Set the initial value style={"width": "50%"}) ) ]), dbc.Row([ # row 9 dbc.Col(dcc.Graph(id='line-graph-2'), ) ]), dbc.Row([ # row 10 dbc.Col(dcc.Graph(id='line-graph-3'), ) ]), dbc.Row([ # row 11 dbc.Col(dcc.Graph(id='line-graph-4'), ) ]), html.Div(id='pie-container-1') ]) # # Create a function to generate pie charts # def generate_pie_chart(category): # labels = data[category]['labels'] # values = data[category]['values'] # trace = go.Pie(labels=labels, values=values) # layout = go.Layout(title=f'Pie Chart - {category}') # return dcc.Graph( # figure={ # 'data': [trace], # 'layout': layout # } # ) # callback decorator @app.callback( Output('line-graph-1', 'figure'), Output('bar-graph-1','figure'), Output('line-graph-2', 'figure'), Output('line-graph-3', 'figure'), Output('line-graph-4', 'figure'), Output('pie-container-1', 'children'), Input("topic-selector", "value"), Input ("domain-selector", "value"), Input('date-range', 'start_date'), Input('date-range', 'end_date') ) def update_output(selected_topic, selected_domain, start_date, end_date): #log print("topic",selected_topic,"domain",selected_domain,"start", start_date,"date", end_date) # filter dataframes based on updated data range mask_1 = ((df["Topic"] == selected_topic) & (df['date'] >= start_date) & (df['date'] <= end_date)) df_filtered = df.loc[mask_1] print(df_filtered.shape) if len(df_filtered)>0: #create line graphs based on filtered dataframes line_fig_1 = px.line(df_filtered, x="date", y="normalised results", color='Veículos de notícias', title="O gráfico mostra a evolução temporal de sentimento dos títulos de notícias. Numa escala de -1 (negativo) a 1 (positivo), sendo 0 (neutro).") # Veículos de notícias #set x-axis title and y-axis title in line graphs line_fig_1.update_layout( xaxis_title='Data', yaxis_title='Classificação de Sentimento') #set label format on y-axis in line graphs line_fig_1.update_xaxes(tickformat="%b %d
%Y") # Bar Graph start grouped_df = df_filtered.groupby(['date', 'Veículos de notícias']).size().reset_index(name='occurrences') # Sort DataFrame by 'period' column grouped_df = grouped_df.sort_values(by='date') # Create a list of all unique media all_media = df_filtered['domain_folder_name'].unique() # Create a date range from Jan/2000 to the last month in the dataset date_range = pd.date_range(start=df_filtered['date'].min().date(), end=df_filtered['date'].max().date(), freq='MS') # Create a MultiIndex with all combinations of date_range and all_media idx = pd.MultiIndex.from_product([date_range, all_media], names=['date', 'Veículos de notícias']) # Reindex the DataFrame to include all periods and media grouped_df = grouped_df.set_index(['date', 'Veículos de notícias']).reindex(idx, fill_value=0).reset_index() bar_fig_1 = px.bar(grouped_df, x='date', y='occurrences', color='Veículos de notícias', labels={'date': 'Período', 'occurrences': 'Número de notícias', 'Veículos de notícias': 'Portal'}, title='Número de notícias por período de tempo') bar_fig_1.update_xaxes(tickformat="%b %d
%Y") # Bar Graph ends # filter dataframes based on updated data range mask_2 = ((df_pos["Topic"] == selected_topic) & (df_pos["domain_folder_name"] == selected_domain) & (df_pos['date'] >= start_date) & (df_pos['date'] <= end_date)) mask_3 = ((df_neu["Topic"] == selected_topic) & (df_neu["domain_folder_name"] == selected_domain) & (df_neu['date'] >= start_date) & (df_neu['date'] <= end_date)) mask_4 = ((df_neg["Topic"] == selected_topic) & (df_neg["domain_folder_name"] == selected_domain) & (df_neg['date'] >= start_date) & (df_neg['date'] <= end_date)) df2_filtered = df_pos.loc[mask_2] df3_filtered = df_neu.loc[mask_3] df4_filtered = df_neg.loc[mask_4] #create line graphs based on filtered dataframes line_fig_2 = px.line(df2_filtered, x="date", y="rolling_mean_counts", line_group="FinBERT_label", title="Positive") line_fig_3 = px.line(df3_filtered, x="date", y="rolling_mean_counts", line_group="FinBERT_label", title="Neutral") line_fig_4 = px.line(df4_filtered, x="date", y="rolling_mean_counts", line_group="FinBERT_label", title="Negative") #set x-axis title and y-axis title in line graphs line_fig_2.update_layout( xaxis_title='Data', yaxis_title='Número de notícias com sentimento positivo') line_fig_3.update_layout( xaxis_title='Data', yaxis_title='Número de notícias com sentimento neutro') line_fig_4.update_layout( xaxis_title='Data', yaxis_title='Número de notícias com sentimento negativo') #set label format on y-axis in line graphs line_fig_2.update_xaxes(tickformat="%b %d
%Y") line_fig_3.update_xaxes(tickformat="%b %d
%Y") line_fig_4.update_xaxes(tickformat="%b %d
%Y") #set label format on y-axis in line graphs line_fig_2.update_traces(line_color='#1E88E5') line_fig_3.update_traces(line_color='#004D40') line_fig_4.update_traces(line_color='#D81B60') # # pie_container_1 = generate_pie_chart(category) # Map original labels to their translated versions label_translation = {'positive': 'positivo', 'neutral': 'neutro', 'negative': 'negativo'} df_filtered['FinBERT_label_transformed'] = df_filtered['FinBERT_label'].map(label_translation) # Group by FinBERT_label and count occurrences label_counts_all = df_filtered['FinBERT_label_transformed'].value_counts() # Calculate percentage of each label label_percentages_all = (label_counts_all / label_counts_all.sum()) * 100 # Plot general pie chart fig_general = px.pie( values=label_percentages_all, names=label_percentages_all.index, title='Distribuição Geral', color_discrete_sequence=['#039a4d', '#3c03f4', '#ca3919'] ) # Get unique media categories media_categories = df_filtered['Veículos de notícias'].unique() # Define colors for each label label_colors = {'positivo': '#039a4d', 'neutro': '#3c03f4', 'negativo': '#ca3919'} pie_container_1 = [] # Loop through each media category row_content = [] for media in media_categories: # Filter DataFrame for current media category media_df = df_filtered[df_filtered['Veículos de notícias'] == media] # Group by FinBERT_label and count occurrences label_counts = media_df['FinBERT_label_transformed'].value_counts() # Calculate percentage of each label label_percentages = (label_counts / label_counts.sum()) * 100 # Plot pie chart fig = px.pie( values=label_percentages, names=label_percentages.index, title=f'Distribuição para {media}', color_discrete_sequence=[label_colors[label] for label in label_percentages.index] ) fig = dcc.Graph(figure=fig) pie_chart = html.Div(fig,className='four columns') row_content.append(pie_chart) pie_container_1.append(html.Div(row_content, className='row')) return line_fig_1, bar_fig_1, line_fig_2, line_fig_3, line_fig_4, pie_container_1 else: return {'data': []},{'data': []} ,{'data': []} ,{'data': []} , {'data': []}, {'data':[]} # return line_fig_1 # df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/gapminder_unfiltered.csv') # app.layout = html.Div([ # html.H1(children='Title of Dash App', style={'textAlign':'center'}), # dcc.Dropdown(df.country.unique(), 'Canada', id='dropdown-selection'), # dcc.Graph(id='graph-content') # ]) # @callback( # Output('graph-content', 'figure'), # Input('dropdown-selection', 'value') # ) # def update_graph(value): # dff = df[df.country==value] # return px.line(dff, x='year', y='pop') if __name__ == '__main__': app.run_server(debug=True)