Spaces:
Sleeping
Sleeping
refactor, a single process
Browse files
app.py
CHANGED
@@ -27,7 +27,11 @@ class Chunker:
|
|
27 |
self.split_seq = split_seq
|
28 |
self.chunk_len = chunk_len
|
29 |
if strategy == "recursive":
|
30 |
-
|
|
|
|
|
|
|
|
|
31 |
if strategy == "sequence":
|
32 |
self.split = self.seq_splitter
|
33 |
if strategy == "constant":
|
@@ -51,26 +55,6 @@ def generator(input_ds, input_text_col, chunker):
|
|
51 |
yield {input_text_col: chunk}
|
52 |
|
53 |
|
54 |
-
def chunk(input_ds, input_splits, input_text_col, output_ds, strategy, split_seq, chunk_len, private):
|
55 |
-
input_splits = [spl.strip() for spl in input_splits.split(",") if spl]
|
56 |
-
input_ds = load_dataset(input_ds, split="+".join(input_splits))
|
57 |
-
chunker = Chunker(strategy, split_seq, chunk_len)
|
58 |
-
|
59 |
-
gen_kwargs = {
|
60 |
-
"input_ds": input_ds,
|
61 |
-
"input_text_col": input_text_col,
|
62 |
-
"chunker": chunker
|
63 |
-
}
|
64 |
-
dataset = Dataset.from_generator(generator, gen_kwargs=gen_kwargs)
|
65 |
-
dataset.push_to_hub(
|
66 |
-
output_ds,
|
67 |
-
private=private,
|
68 |
-
token=HF_TOKEN
|
69 |
-
)
|
70 |
-
|
71 |
-
logger.info("Done chunking")
|
72 |
-
|
73 |
-
|
74 |
async def embed_sent(sentence, embed_in_text_col, semaphore, tei_url, tmp_file):
|
75 |
async with semaphore:
|
76 |
payload = {
|
@@ -108,6 +92,7 @@ async def embed_ds(input_ds, tei_url, embed_in_text_col, temp_file):
|
|
108 |
|
109 |
|
110 |
def wake_up_endpoint(url):
|
|
|
111 |
n_loop = 0
|
112 |
while requests.get(
|
113 |
url=url,
|
@@ -115,30 +100,61 @@ def wake_up_endpoint(url):
|
|
115 |
).status_code != 200:
|
116 |
time.sleep(2)
|
117 |
n_loop += 1
|
118 |
-
if n_loop >
|
119 |
-
raise
|
120 |
logger.info("TEI endpoint is up")
|
121 |
|
122 |
|
123 |
-
def
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
|
|
|
|
|
|
129 |
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
|
|
|
|
|
|
|
|
|
|
136 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
logger.info("Done embedding")
|
138 |
|
139 |
|
140 |
def change_dropdown(choice):
|
141 |
-
if choice == "recursive"
|
|
|
|
|
|
|
|
|
|
|
142 |
return [
|
143 |
gr.Textbox(visible=True),
|
144 |
gr.Textbox(visible=False)
|
@@ -153,73 +169,52 @@ def change_dropdown(choice):
|
|
153 |
with gr.Blocks() as demo:
|
154 |
gr.Markdown(
|
155 |
"""
|
156 |
-
## Chunk
|
157 |
"""
|
158 |
)
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
dropdown, split_seq, chunk_len, chunk_private]
|
203 |
-
)
|
204 |
-
|
205 |
-
with gr.Tab("Embed"):
|
206 |
-
embed_in_ds = gr.Textbox(lines=1, label="Input dataset name")
|
207 |
-
with gr.Row():
|
208 |
-
embed_in_splits = gr.Textbox(lines=1, label="Input dataset splits", placeholder="train, test")
|
209 |
-
embed_in_text_col = gr.Textbox(lines=1, label="Input text column name", placeholder="text")
|
210 |
-
with gr.Row():
|
211 |
-
embed_out_ds = gr.Textbox(lines=1, label="Output dataset name", scale=6)
|
212 |
-
embed_private = gr.Checkbox(label="Make embedded dataset private")
|
213 |
-
tei_url = gr.Textbox(lines=1, label="TEI endpoint url")
|
214 |
-
with gr.Row():
|
215 |
-
gr.ClearButton(
|
216 |
-
components=[embed_in_ds, embed_in_splits, embed_in_text_col, embed_out_ds, tei_url, embed_private]
|
217 |
-
)
|
218 |
-
embed_btn = gr.Button("Run embed")
|
219 |
-
embed_btn.click(
|
220 |
-
fn=run_embed,
|
221 |
-
inputs=[embed_in_ds, embed_in_splits, embed_in_text_col, embed_out_ds, tei_url, embed_private]
|
222 |
-
)
|
223 |
-
|
224 |
|
|
|
225 |
demo.launch(debug=True)
|
|
|
27 |
self.split_seq = split_seq
|
28 |
self.chunk_len = chunk_len
|
29 |
if strategy == "recursive":
|
30 |
+
# https://huggingface.co/spaces/m-ric/chunk_visualizer
|
31 |
+
self.split = RecursiveCharacterTextSplitter(
|
32 |
+
chunk_size=chunk_len,
|
33 |
+
separators=[split_seq]
|
34 |
+
).split_text
|
35 |
if strategy == "sequence":
|
36 |
self.split = self.seq_splitter
|
37 |
if strategy == "constant":
|
|
|
55 |
yield {input_text_col: chunk}
|
56 |
|
57 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
async def embed_sent(sentence, embed_in_text_col, semaphore, tei_url, tmp_file):
|
59 |
async with semaphore:
|
60 |
payload = {
|
|
|
92 |
|
93 |
|
94 |
def wake_up_endpoint(url):
|
95 |
+
logger.info("Starting up TEI endpoint")
|
96 |
n_loop = 0
|
97 |
while requests.get(
|
98 |
url=url,
|
|
|
100 |
).status_code != 200:
|
101 |
time.sleep(2)
|
102 |
n_loop += 1
|
103 |
+
if n_loop > 40:
|
104 |
+
raise gr.Error("TEI endpoint is unavailable")
|
105 |
logger.info("TEI endpoint is up")
|
106 |
|
107 |
|
108 |
+
def chunk_embed(input_ds, input_splits, input_text_col, chunk_out_ds,
|
109 |
+
strategy, split_seq, chunk_len, embed_out_ds, tei_url, private):
|
110 |
+
gr.Info("Started chunking")
|
111 |
+
try:
|
112 |
+
input_splits = [spl.strip() for spl in input_splits.split(",") if spl]
|
113 |
+
input_ds = load_dataset(input_ds, split="+".join(input_splits), token=HF_TOKEN)
|
114 |
+
chunker = Chunker(strategy, split_seq, chunk_len)
|
115 |
+
except Exception as e:
|
116 |
+
raise gr.Error(str(e))
|
117 |
|
118 |
+
gen_kwargs = {
|
119 |
+
"input_ds": input_ds,
|
120 |
+
"input_text_col": input_text_col,
|
121 |
+
"chunker": chunker
|
122 |
+
}
|
123 |
+
chunked_ds = Dataset.from_generator(generator, gen_kwargs=gen_kwargs)
|
124 |
+
chunked_ds.push_to_hub(
|
125 |
+
chunk_out_ds,
|
126 |
+
private=private,
|
127 |
+
token=HF_TOKEN
|
128 |
+
)
|
129 |
|
130 |
+
gr.Info("Done chunking")
|
131 |
+
logger.info("Done chunking")
|
132 |
+
|
133 |
+
try:
|
134 |
+
wake_up_endpoint(tei_url)
|
135 |
+
with tempfile.NamedTemporaryFile(mode="a", suffix=".jsonl") as temp_file:
|
136 |
+
asyncio.run(embed_ds(chunked_ds, tei_url, input_text_col, temp_file))
|
137 |
+
|
138 |
+
embedded_ds = Dataset.from_json(temp_file.name)
|
139 |
+
embedded_ds.push_to_hub(
|
140 |
+
embed_out_ds,
|
141 |
+
private=private,
|
142 |
+
token=HF_TOKEN
|
143 |
+
)
|
144 |
+
except Exception as e:
|
145 |
+
raise gr.Error(str(e))
|
146 |
+
|
147 |
+
gr.Info("Done embedding")
|
148 |
logger.info("Done embedding")
|
149 |
|
150 |
|
151 |
def change_dropdown(choice):
|
152 |
+
if choice == "recursive":
|
153 |
+
return [
|
154 |
+
gr.Textbox(visible=True),
|
155 |
+
gr.Textbox(visible=True)
|
156 |
+
]
|
157 |
+
elif choice == "sequence":
|
158 |
return [
|
159 |
gr.Textbox(visible=True),
|
160 |
gr.Textbox(visible=False)
|
|
|
169 |
with gr.Blocks() as demo:
|
170 |
gr.Markdown(
|
171 |
"""
|
172 |
+
## Chunk and embed
|
173 |
"""
|
174 |
)
|
175 |
+
input_ds = gr.Textbox(lines=1, label="Input dataset name")
|
176 |
+
with gr.Row():
|
177 |
+
input_splits = gr.Textbox(lines=1, label="Input dataset splits", placeholder="train, test")
|
178 |
+
input_text_col = gr.Textbox(lines=1, label="Input text column name", placeholder="text")
|
179 |
+
chunk_out_ds = gr.Textbox(lines=1, label="Chunked dataset name")
|
180 |
+
with gr.Row():
|
181 |
+
dropdown = gr.Dropdown(
|
182 |
+
["recursive", "sequence", "constant"], label="Chunking strategy",
|
183 |
+
info="'recursive' uses a Langchain recursive tokenizer, 'sequence' splits texts by a chosen sequence, "
|
184 |
+
"'constant' makes chunks of the constant size",
|
185 |
+
scale=2
|
186 |
+
)
|
187 |
+
split_seq = gr.Textbox(
|
188 |
+
lines=1,
|
189 |
+
interactive=True,
|
190 |
+
visible=False,
|
191 |
+
label="Sequence",
|
192 |
+
info="A text sequence to split on",
|
193 |
+
placeholder="\n\n"
|
194 |
+
)
|
195 |
+
chunk_len = gr.Textbox(
|
196 |
+
lines=1,
|
197 |
+
interactive=True,
|
198 |
+
visible=False,
|
199 |
+
label="Length",
|
200 |
+
info="The length of chunks to split into in characters",
|
201 |
+
placeholder="512"
|
202 |
+
)
|
203 |
+
dropdown.change(fn=change_dropdown, inputs=dropdown, outputs=[split_seq, chunk_len])
|
204 |
+
embed_out_ds = gr.Textbox(lines=1, label="Embedded dataset name")
|
205 |
+
private = gr.Checkbox(label="Make output datasets private")
|
206 |
+
tei_url = gr.Textbox(lines=1, label="TEI endpoint url")
|
207 |
+
with gr.Row():
|
208 |
+
clear = gr.ClearButton(
|
209 |
+
components=[input_ds, input_splits, input_text_col, chunk_out_ds,
|
210 |
+
dropdown, split_seq, chunk_len, embed_out_ds, tei_url, private]
|
211 |
+
)
|
212 |
+
embed_btn = gr.Button("Submit")
|
213 |
+
embed_btn.click(
|
214 |
+
fn=chunk_embed,
|
215 |
+
inputs=[input_ds, input_splits, input_text_col, chunk_out_ds,
|
216 |
+
dropdown, split_seq, chunk_len, embed_out_ds, tei_url, private]
|
217 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
218 |
|
219 |
+
demo.queue()
|
220 |
demo.launch(debug=True)
|