sergey21000's picture
Update app.py
ced57cc verified
from pathlib import Path
from shutil import rmtree
from typing import Union, List, Dict, Tuple, Optional
from tqdm import tqdm
import requests
import gradio as gr
from llama_cpp import Llama
# ================== ANNOTATIONS ========================
CHAT_HISTORY = List[Optional[Dict[str, Optional[str]]]]
MODEL_DICT = Dict[str, Llama]
# ================== FUNCS =============================
def download_file(file_url: str, file_path: Union[str, Path]) -> None:
response = requests.get(file_url, stream=True)
if response.status_code != 200:
raise Exception(f'Файл недоступен для скачивания по ссылке: {file_url}')
total_size = int(response.headers.get('content-length', 0))
progress_tqdm = tqdm(desc='Loading GGUF file', total=total_size, unit='iB', unit_scale=True)
progress_gradio = gr.Progress()
completed_size = 0
with open(file_path, 'wb') as file:
for data in response.iter_content(chunk_size=4096):
size = file.write(data)
progress_tqdm.update(size)
completed_size += size
desc = f'Loading GGUF file, {completed_size/1024**3:.3f}/{total_size/1024**3:.3f} GB'
progress_gradio(completed_size/total_size, desc=desc)
def download_gguf_and_init_model(gguf_url: str, model_dict: MODEL_DICT) -> Tuple[MODEL_DICT, bool, str]:
log = ''
if not gguf_url.endswith('.gguf'):
log += f'The link must be a direct link to the GGUF file\n'
return model_dict, log
gguf_filename = gguf_url.rsplit('/')[-1]
model_path = MODELS_PATH / gguf_filename
progress = gr.Progress()
if not model_path.is_file():
progress(0.3, desc='Шаг 1/2: Loading GGUF model file')
try:
download_file(gguf_url, model_path)
log += f'Model file {gguf_filename} successfully loaded\n'
except Exception as ex:
log += f'Error loading model from link {gguf_url}, error code:\n{ex}\n'
curr_model = model_dict.get('model')
if curr_model is None:
log += f'Model is missing from dictionary "model_dict"\n'
return model_dict, load_log
curr_model_filename = Path(curr_model.model_path).name
log += f'Current initialized model: {curr_model_filename}\n'
return model_dict, log
else:
log += f'Model file {gguf_filename} loaded, initializing model...\n'
progress(0.7, desc='Шаг 2/2: Model initialization')
model = Llama(model_path=str(model_path), n_gpu_layers=-1, verbose=True)
model_dict = {'model': model}
support_system_role = 'System role not supported' not in model.metadata['tokenizer.chat_template']
log += f'Model {gguf_filename} initialized\n'
return model_dict, support_system_role, log
def user_message_to_chatbot(user_message: str, chatbot: CHAT_HISTORY) -> Tuple[str, CHAT_HISTORY]:
if user_message:
chatbot.append({'role': 'user', 'metadata': {'title': None}, 'content': user_message})
return '', chatbot
def bot_response_to_chatbot(
chatbot: CHAT_HISTORY,
model_dict: MODEL_DICT,
system_prompt: str,
support_system_role: bool,
history_len: int,
do_sample: bool,
*generate_args,
):
model = model_dict.get('model')
if model is None:
gr.Info('Model not initialized')
yield chatbot
return
if len(chatbot) == 0 or chatbot[-1]['role'] == 'assistant':
yield chatbot
return
messages = []
if support_system_role and system_prompt:
messages.append({'role': 'system', 'metadata': {'title': None}, 'content': system_prompt})
if history_len != 0:
messages.extend(chatbot[:-1][-(history_len*2):])
messages.append(chatbot[-1])
gen_kwargs = dict(zip(GENERATE_KWARGS.keys(), generate_args))
gen_kwargs['top_k'] = int(gen_kwargs['top_k'])
if not do_sample:
gen_kwargs['top_p'] = 0.0
gen_kwargs['top_k'] = 1
gen_kwargs['repeat_penalty'] = 1.0
stream_response = model.create_chat_completion(
messages=messages,
stream=True,
**gen_kwargs,
)
chatbot.append({'role': 'assistant', 'metadata': {'title': None}, 'content': ''})
for chunk in stream_response:
token = chunk['choices'][0]['delta'].get('content')
if token is not None:
chatbot[-1]['content'] += token
yield chatbot
def get_system_prompt_component(interactive: bool) -> gr.Textbox:
value = '' if interactive else 'System prompt is not supported by this model'
return gr.Textbox(value=value, label='System prompt', interactive=interactive)
def get_generate_args(do_sample: bool) -> List[gr.component]:
generate_args = [
gr.Slider(minimum=0.1, maximum=3, value=GENERATE_KWARGS['temperature'], step=0.1, label='temperature', visible=do_sample),
gr.Slider(minimum=0, maximum=1, value=GENERATE_KWARGS['top_p'], step=0.01, label='top_p', visible=do_sample),
gr.Slider(minimum=1, maximum=50, value=GENERATE_KWARGS['top_k'], step=1, label='top_k', visible=do_sample),
gr.Slider(minimum=1, maximum=5, value=GENERATE_KWARGS['repeat_penalty'], step=0.1, label='repeat_penalty', visible=do_sample),
]
return generate_args
# ================== VARIABLES =============================
MODELS_PATH = Path('models')
MODELS_PATH.mkdir(exist_ok=True)
DEFAULT_GGUF_URL = 'https://huggingface.co/bartowski/gemma-2-2b-it-GGUF/resolve/main/gemma-2-2b-it-Q8_0.gguf'
start_model_dict, start_support_system_role, start_load_log = download_gguf_and_init_model(
gguf_url=DEFAULT_GGUF_URL, model_dict={},
)
GENERATE_KWARGS = dict(
temperature=0.2,
top_p=0.95,
top_k=40,
repeat_penalty=1.0,
)
theme = gr.themes.Base(primary_hue='green', secondary_hue='yellow', neutral_hue='zinc').set(
loader_color='rgb(0, 255, 0)',
slider_color='rgb(0, 200, 0)',
body_text_color_dark='rgb(0, 200, 0)',
button_secondary_background_fill_dark='green',
)
css = '''.gradio-container {width: 60% !important}'''
# ================== INTERFACE =============================
with gr.Blocks(theme=theme, css=css) as interface:
model_dict = gr.State(start_model_dict)
support_system_role = gr.State(start_support_system_role)
# ================= CHAT BOT PAGE ======================
with gr.Tab('Chatbot'):
with gr.Row():
with gr.Column(scale=3):
chatbot = gr.Chatbot(
type='messages', # new in gradio 5+
show_copy_button=True,
bubble_full_width=False,
height=480,
)
user_message = gr.Textbox(label='User')
with gr.Row():
user_message_btn = gr.Button('Send')
stop_btn = gr.Button('Stop')
clear_btn = gr.Button('Clear')
system_prompt = get_system_prompt_component(interactive=support_system_role.value)
with gr.Column(scale=1, min_width=80):
with gr.Group():
gr.Markdown('Length of message history')
history_len = gr.Slider(
minimum=0,
maximum=10,
value=0,
step=1,
info='Number of previous messages taken into account in history',
label='history_len',
show_label=False,
)
with gr.Group():
gr.Markdown('Generation parameters')
do_sample = gr.Checkbox(
value=False,
label='do_sample',
info='Activate random sampling',
)
generate_args = get_generate_args(do_sample.value)
do_sample.change(
fn=get_generate_args,
inputs=do_sample,
outputs=generate_args,
show_progress=False,
)
generate_event = gr.on(
triggers=[user_message.submit, user_message_btn.click],
fn=user_message_to_chatbot,
inputs=[user_message, chatbot],
outputs=[user_message, chatbot],
).then(
fn=bot_response_to_chatbot,
inputs=[chatbot, model_dict, system_prompt, support_system_role, history_len, do_sample, *generate_args],
outputs=[chatbot],
)
stop_btn.click(
fn=None,
inputs=None,
outputs=None,
cancels=generate_event,
)
clear_btn.click(
fn=lambda: None,
inputs=None,
outputs=[chatbot],
)
# ================= LOAD MODELS PAGE ======================
with gr.Tab('Load model'):
gguf_url = gr.Textbox(
value='',
label='Link to GGUF',
placeholder='URL link to the model in GGUF format',
)
load_model_btn = gr.Button('Downloading GGUF and initializing the model')
load_log = gr.Textbox(
value=start_load_log,
label='Model loading status',
lines=3,
)
load_model_btn.click(
fn=download_gguf_and_init_model,
inputs=[gguf_url, model_dict],
outputs=[model_dict, support_system_role, load_log],
).success(
fn=get_system_prompt_component,
inputs=[support_system_role],
outputs=[system_prompt],
)
gr.HTML("""<h3 style='text-align: center'>
<a href="https://github.com/sergey21000/gradio-llamacpp-chatbot" target='_blank'>GitHub Repository</a></h3>
""")
interface.launch(server_name='0.0.0.0', server_port=7860)