Spaces:
Running
on
Zero
Running
on
Zero
sergiopaniego
commited on
Commit
•
4580854
1
Parent(s):
6c27fbc
First iteration of the Gradio space
Browse files- app.py +73 -0
- requirements.txt +3 -0
app.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import spaces
|
3 |
+
import torch
|
4 |
+
|
5 |
+
from PIL import Image
|
6 |
+
import requests
|
7 |
+
from transformers import DetrImageProcessor
|
8 |
+
from transformers import DetrForObjectDetection
|
9 |
+
import matplotlib.pyplot as plt
|
10 |
+
import io
|
11 |
+
|
12 |
+
|
13 |
+
processor = DetrImageProcessor.from_pretrained("sergiopaniego/fashionpedia-finetuned_albumentations_coco")
|
14 |
+
model = DetrForObjectDetection.from_pretrained("sergiopaniego/fashionpedia-finetuned_albumentations_coco")
|
15 |
+
|
16 |
+
|
17 |
+
COLORS = [[0.000, 0.447, 0.741], [0.850, 0.325, 0.098], [0.929, 0.694, 0.125],
|
18 |
+
[0.494, 0.184, 0.556], [0.466, 0.674, 0.188], [0.301, 0.745, 0.933]]
|
19 |
+
|
20 |
+
def get_output_figure(pil_img, scores, labels, boxes):
|
21 |
+
plt.figure(figsize=(16, 10))
|
22 |
+
plt.imshow(pil_img)
|
23 |
+
ax = plt.gca()
|
24 |
+
colors = COLORS * 100
|
25 |
+
for score, label, (xmin, ymin, xmax, ymax), c in zip(scores.tolist(), labels.tolist(), boxes.tolist(), colors):
|
26 |
+
ax.add_patch(plt.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin, fill=False, color=c, linewidth=3))
|
27 |
+
text = f'{model.config.id2label[label]}: {score:0.2f}'
|
28 |
+
ax.text(xmin, ymin, text, fontsize=15,
|
29 |
+
bbox=dict(facecolor='yellow', alpha=0.5))
|
30 |
+
plt.axis('off')
|
31 |
+
|
32 |
+
return plt.gcf()
|
33 |
+
|
34 |
+
@spaces.GPU
|
35 |
+
def detect(image):
|
36 |
+
encoding = processor(image, return_tensors='pt')
|
37 |
+
print(encoding.keys())
|
38 |
+
|
39 |
+
with torch.no_grad():
|
40 |
+
outputs = model(**encoding)
|
41 |
+
|
42 |
+
width, height = image.size
|
43 |
+
postprocessed_outputs = processor.post_process_object_detection(outputs, target_sizes=[(height, width)], threshold=0.9)
|
44 |
+
results = postprocessed_outputs[0]
|
45 |
+
|
46 |
+
|
47 |
+
output_figure = get_output_figure(image, results['scores'], results['labels'], results['boxes'])
|
48 |
+
|
49 |
+
buf = io.BytesIO()
|
50 |
+
output_figure.savefig(buf, bbox_inches='tight')
|
51 |
+
buf.seek(0)
|
52 |
+
output_pil_img = Image.open(buf)
|
53 |
+
|
54 |
+
return output_pil_img
|
55 |
+
|
56 |
+
with gr.Blocks() as demo:
|
57 |
+
gr.Markdown("# Object detection with DETR")
|
58 |
+
gr.Markdown(
|
59 |
+
"""
|
60 |
+
This applciation uses DETR (DEtection TRansformers) to detect objects on images.
|
61 |
+
You can load an image and see the predictions for the objects detected along with the attention weights.
|
62 |
+
"""
|
63 |
+
)
|
64 |
+
|
65 |
+
gr.Interface(
|
66 |
+
fn=detect,
|
67 |
+
inputs=gr.Image(label="Input image", type="pil"),
|
68 |
+
outputs=[
|
69 |
+
gr.Image(label="Output prediction", type="pil")
|
70 |
+
]
|
71 |
+
)#.launch()
|
72 |
+
|
73 |
+
demo.launch(show_error=True)
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
transformers
|
2 |
+
timm
|
3 |
+
torch
|