Spaces:
Runtime error
Runtime error
File size: 19,054 Bytes
8c1187a f1b169c 8c1187a 7780ccc 8c1187a 7780ccc 8c1187a 7951d45 8c1187a 7951d45 8c1187a 7951d45 8c1187a 7951d45 8c1187a 7951d45 8c1187a 7951d45 8c1187a 7951d45 8c1187a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 |
import datetime
import numpy as np
import pandas as pd
import re
import json
import os
import glob
import torch
import torch.nn.functional as F
from torch.optim import Adam
from tqdm import tqdm
from torch import nn
from transformers import BertModel
from transformers import AutoTokenizer
import argparse
from bs4 import BeautifulSoup
import requests
def split_essay_to_sentence(origin_essay):
origin_essay_sentence = sum([[a.strip() for a in i.split('.')] for i in origin_essay.split('\n')], [])
essay_sent = [a for a in origin_essay_sentence if len(a) > 0]
return essay_sent
def get_first_extraction(text_sentence):
row_dict = {}
for row in tqdm(text_sentence):
question = 'what is the feeling?'
answer = question_answerer(question=question, context=row)
row_dict[row] = answer
return row_dict
def get_sent_labeldata():
label =pd.read_csv('./rawdata/sentimental_label.csv', encoding = 'cp949', header = None)
label[1] = label[1].apply(lambda x : re.findall(r'[๊ฐ-ํฃ]+', x)[0])
label_dict =label[label.index % 10 == 0].set_index(0).to_dict()[1]
emo2idx = {v : k for k, v in enumerate(label_dict.items())}
idx2emo = {v : k[1] for k, v in emo2idx.items()}
return emo2idx, idx2emo
class myDataset_for_infer(torch.utils.data.Dataset):
def __init__(self, X):
self.X = X
def __len__(self):
return len(self.X)
def __getitem__(self,idx):
sentences = tokenizer(self.X[idx], return_tensors = 'pt', padding = 'max_length', max_length = 96, truncation = True)
return sentences
def infer_data(model, main_feeling_keyword):
#ds = myDataset_for_infer()
df_infer = myDataset_for_infer(main_feeling_keyword)
infer_dataloader = torch.utils.data.DataLoader(df_infer, batch_size= 16)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
if device == 'cuda':
model = model.cuda()
result_list = []
with torch.no_grad():
for idx, infer_input in tqdm(enumerate(infer_dataloader)):
mask = infer_input['attention_mask'].to(device)
input_id = infer_input['input_ids'].squeeze(1).to(device)
output = model(input_id, mask)
result = np.argmax(output.logits, axis=1).numpy()
result_list.extend(result)
return result_list
def get_word_emotion_pair(cls_model, origin_essay_sentence, idx2emo):
import re
def get_noun(sent):
return [re.sub(r'[์๋ฅผ]+', '', vocab) for (vocab, pos) in nlp(sent) if len(vocab) > 1 and pos == 'NOUN']
def get_adj(sent):
return [re.sub(r'[์๋ฅผ]+', '', vocab) for (vocab, pos) in nlp(sent) if len(vocab) > 1 and pos == 'ADJ']
def get_verb(sent):
return [re.sub(r'[์๋ฅผ]+', '', vocab) for (vocab, pos) in nlp(sent) if len(vocab) > 1 and pos == 'VERB']
result_list = infer_data(cls_model, origin_essay_sentence)
final_result = pd.DataFrame(data = {'text': origin_essay_sentence , 'label' : result_list})
final_result['emotion'] = final_result['label'].map(idx2emo)
nlp=lambda x:[(x[t["start"]:t["end"]],t["entity_group"]) for t in pipeline(x)]
#essay_sent_pos = [nlp(i) for i in tqdm(essay_sent)]
#final_result['text_pos'] = essay_sent_pos
final_result['noun_list'] = final_result['text'].map(get_noun)
final_result['adj_list'] = final_result['text'].map(get_adj)
final_result['verb_list'] = final_result['text'].map(get_verb)
final_result['title'] = 'none'
file_made_dt = datetime.datetime.now()
file_made_dt_str = datetime.datetime.strftime(file_made_dt, '%Y%m%d_%H%M%d')
os.makedirs(f'./result/{nickname}/{file_made_dt_str}/', exist_ok = True)
final_result.to_csv(f"./result/{nickname}/{file_made_dt_str}/essay_result.csv", index = False)
return final_result, file_made_dt_str
def get_essay_base_analysis(file_made_dt_str, nickname):
essay1 = pd.read_csv(f"./result/{nickname}/{file_made_dt_str}/essay_result.csv")
essay1['noun_list_len'] = essay1['noun_list'].apply(lambda x : len(x))
essay1['noun_list_uniqlen'] = essay1['noun_list'].apply(lambda x : len(set(x)))
essay1['adj_list_len'] = essay1['adj_list'].apply(lambda x : len(x))
essay1['adj_list_uniqlen'] = essay1['adj_list'].apply(lambda x : len(set(x)))
essay1['vocab_all'] = essay1[['noun_list','adj_list']].apply(lambda x : sum((eval(x[0]),eval(x[1])), []), axis=1)
essay1['vocab_cnt'] = essay1['vocab_all'].apply(lambda x : len(x))
essay1['vocab_unique_cnt'] = essay1['vocab_all'].apply(lambda x : len(set(x)))
essay1['noun_list'] = essay1['noun_list'].apply(lambda x : eval(x))
essay1['adj_list'] = essay1['adj_list'].apply(lambda x : eval(x))
d = essay1.groupby('title')[['noun_list','adj_list']].sum([]).reset_index()
d['noun_cnt'] = d['noun_list'].apply(lambda x : len(set(x)))
d['adj_cnt'] = d['adj_list'].apply(lambda x : len(set(x)))
# ๋ฌธ์ฅ ๊ธฐ์ค ์ต๊ณ ๊ฐ์
essay_summary =essay1.groupby(['title'])['emotion'].value_counts().unstack(level =1)
emo_vocab_dict = {}
for k, v in essay1[['emotion','noun_list']].values:
for vocab in v:
if (k, 'noun', vocab) not in emo_vocab_dict:
emo_vocab_dict[(k, 'noun', vocab)] = 0
emo_vocab_dict[(k, 'noun', vocab)] += 1
for k, v in essay1[['emotion','adj_list']].values:
for vocab in v:
if (k, 'adj', vocab) not in emo_vocab_dict:
emo_vocab_dict[(k, 'adj', vocab)] = 0
emo_vocab_dict[(k, 'adj', vocab)] += 1
vocab_emo_cnt_dict = {}
for k, v in essay1[['emotion','noun_list']].values:
for vocab in v:
if (vocab, 'noun') not in vocab_emo_cnt_dict:
vocab_emo_cnt_dict[('noun', vocab)] = {}
if k not in vocab_emo_cnt_dict[( 'noun', vocab)]:
vocab_emo_cnt_dict[( 'noun', vocab)][k] = 0
vocab_emo_cnt_dict[('noun', vocab)][k] += 1
for k, v in essay1[['emotion','adj_list']].values:
for vocab in v:
if ('adj', vocab) not in vocab_emo_cnt_dict:
vocab_emo_cnt_dict[( 'adj', vocab)] = {}
if k not in vocab_emo_cnt_dict[( 'adj', vocab)]:
vocab_emo_cnt_dict[( 'adj', vocab)][k] = 0
vocab_emo_cnt_dict[('adj', vocab)][k] += 1
vocab_emo_cnt_df = pd.DataFrame(vocab_emo_cnt_dict).T
vocab_emo_cnt_df['total'] = vocab_emo_cnt_df.sum(axis=1)
# ๋จ์ด๋ณ ์ต๊ณ ๊ฐ์ ๋ฐ ๊ฐ์ ๊ฐ์
all_result=vocab_emo_cnt_df.sort_values(by = 'total', ascending = False)
# ๋จ์ด๋ณ ์ต๊ณ ๊ฐ์ ๋ฐ ๊ฐ์ ๊ฐ์ , ํ์ฉ์ฌ ํฌํจ ์
adj_result=vocab_emo_cnt_df.sort_values(by = 'total', ascending = False)
# ๋ช
์ฌ๋ง ์ฌ์ฉ ์
noun_result=vocab_emo_cnt_df[vocab_emo_cnt_df.index.get_level_values(0) == 'noun'].sort_values(by = 'total', ascending = False)
final_file_name = f"essay_all_vocab_result.csv"
adj_file_name = f"essay_adj_vocab_result.csv"
noun_file_name = f"essay_noun_vocab_result.csv"
os.makedirs(f'./result/{nickname}/{file_made_dt_str}/', exist_ok = True)
all_result.to_csv(f"./result/{nickname}/{file_made_dt_str}/essay_all_vocab_result.csv", index = False)
adj_result.to_csv(f"./result/{nickname}/{file_made_dt_str}/essay_adj_vocab_result.csv", index = False)
noun_result.to_csv(f"./result/{nickname}/{file_made_dt_str}/essay_noun_vocab_result.csv", index = False)
return all_result, adj_result, noun_result, essay_summary, file_made_dt_str
from transformers import pipeline
#model_name = 'AlexKay/xlm-roberta-large-qa-multilingual-finedtuned-ru'
model_name = 'monologg/koelectra-base-v2-finetuned-korquad'
question_answerer = pipeline("question-answering", model=model_name)
from transformers import AutoTokenizer,AutoModelForTokenClassification,TokenClassificationPipeline
tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/roberta-large-korean-upos")
posmodel=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/roberta-large-korean-upos")
pipeline=TokenClassificationPipeline(tokenizer=tokenizer,
model=posmodel,
aggregation_strategy="simple",
task = 'token-classification')
nlp=lambda x:[(x[t["start"]:t["end"]],t["entity_group"]) for t in pipeline(x)]
from transformers import AutoModelForSequenceClassification
device = 'cuda' if torch.cuda.is_available() else 'cpu'
def all_process(origin_essay, nickname):
essay_sent =split_essay_to_sentence(origin_essay)
row_dict = {}
for row in tqdm(essay_sent):
question = 'what is the feeling?'
answer = question_answerer(question=question, context=row)
row_dict[row] = answer
emo2idx, idx2emo = get_sent_labeldata()
tokenizer = AutoTokenizer.from_pretrained('bert-base-multilingual-cased')
cls_model = AutoModelForSequenceClassification.from_pretrained('seriouspark/bert-base-multilingual-cased-finetuning-sentimental-6label')
#cls_model = AutoModelForSequenceClassification.from_pretrained('bert-base-multilingual-cased', num_labels = 6)
final_result, file_name_dt = get_word_emotion_pair(cls_model, essay_sent, idx2emo)
all_result, adj_result, noun_result, essay_summary, file_made_dt_str = get_essay_base_analysis(file_name_dt, nickname)
summary_result = pd.concat([adj_result, noun_result]).fillna(0).sort_values(by = 'total', ascending = False).fillna(0).reset_index()[:30]
with open(f'./result/{nickname}/{file_name_dt}/summary.json','w') as f:
json.dump( essay_summary.to_json(),f)
with open(f'./result/{nickname}/{file_made_dt_str}/all_result.json','w') as f:
json.dump( all_result.to_json(),f)
with open(f'./result/{nickname}/{file_made_dt_str}/adj_result.json','w') as f:
json.dump( adj_result.to_json(),f)
with open(f'./result/{nickname}/{file_made_dt_str}/noun_result.json','w') as f:
json.dump( noun_result.to_json(),f)
#return essay_summary, summary_result
total_cnt = essay_summary.sum(axis=1).values[0]
essay_summary_list = sorted(essay_summary.T.to_dict()['none'].items(), key = lambda x: x[1], reverse =True)
essay_summary_list_str = ' '.join([f'{row[0]} {int(row[1]*100 / total_cnt)}%' for row in essay_summary_list])
summary1 = f"""{nickname}๋, ๋น์ ์ ๊ธ ์์์ ๋๊ปด์ง๋ ๊ฐ์ ๋ถํฌ๋ [{essay_summary_list_str}] ์
๋๋ค"""
return summary1
def get_similar_vocab(message):
#print(re.findall('[๊ฐ-ํฃ]+',message))
if (len(message) > 0) & (len(re.findall('[๊ฐ-ํฃ]+',message))>0):
vocab = message
all_dict_url = f"https://dict.naver.com/search.dict?dicQuery={vocab}&query={vocab}&target=dic&ie=utf8&query_utf=&isOnlyViewEE="
response = requests.get(all_dict_url)
html_content = response.text
# BeautifulSoup๋ก HTML ํ์ฑ
soup = BeautifulSoup(html_content, 'html.parser')
resulttext = soup.find('script').string
# "similarWordName" ๋ค์์ ๋จ์ด ์ถ์ถ
similar_words = re.findall(r'similarWordName:"([^"]+)"', resulttext)
similar_words_final = list(set(sum([re.findall('[๊ฐ-ํฃ]+', i) for i in similar_words], [])))
similar_words_final = [i for i in set(sum([re.findall('[๊ฐ-ํฃ]+', i) for i in similar_words], [])) if i not in ('๋ฑ๋ง','๋ง','์ด์ฌ')]
return similar_words_final
else:
return '๋จ์ด๋ฅผ ์
๋ ฅํด ์ฃผ์ธ์'
def get_similar_means(vocab):
all_dict_url = f"https://dict.naver.com/search.dict?dicQuery={vocab}&query={vocab}&target=dic&ie=utf8&query_utf=&isOnlyViewEE="
response = requests.get(all_dict_url)
html_content = response.text
# BeautifulSoup๋ก HTML ํ์ฑ
soup = BeautifulSoup(html_content, 'html.parser')
resulttext = soup.find('script').string
# "meanList" ๋ค์์ ๋ฆฌ์คํธ ์ถ์ถ (๋ฆฌ์คํธ ๋ด์ฉ์ ๋ฌธ์์ด๋ก ์ถ์ถ)
mean_list_str = re.findall(r'meanList:(\[.*?\])', resulttext, re.DOTALL)
mean_list_str = [i.replace('\\u002F','').replace('\\u003C','').replace('strong','').replace('\\u003E','') for i in mean_list_str]
matches_list = []
for i in range(len(mean_list_str)):
matches = re.findall(r'mean:"(.*?)"', mean_list_str[i])
matches_list.append(matches)
mean_list_str_final = [i for i in sum(matches_list, []) if (len(re.findall(r'[A-Za-z0-9]', i) )==0 ) & (len(re.findall(r'[๊ฐ-ํฃ]', i) )!=0 )]
return mean_list_str_final
info_dict = {}
#info_dict = {}
def run_all(message, history):
global info_dict
if message.find('๋๋ค์:')>=0:
global nickname
nickname = message.replace('๋๋ค์','').replace(':','').strip()
#global nickname
info_dict[nickname] = {}
return f'''์ข์์! ์์ํ ๊ฒ์ {nickname}๋.
์ง๊ธ ๋จธ๋ฆฟ์์ ๋ ์ค๋ฅด๋ ๋จ์ด๋ฅผ ํ๋ ์
๋ ฅํด์ฃผ์ธ์.
\n\n\n๋จ์ด๋ฅผ ์
๋ ฅํ ๋ \"๋จ์ด: \" ๋ฅผ ํฌํจํด์ฃผ์ธ์
์์ <๋จ์ด: ์ปคํผ>
'''
try :
#print(nickname)
if message.find('๋จ์ด:')>=0:
clear_message = message.replace('๋จ์ด','').replace(':','').strip()
info_dict[nickname]['main_word'] = clear_message
vocab_mean_list = []
similar_words_final = get_similar_vocab(message)
similar_words_final_with_main = similar_words_final + [message]
if len(similar_words_final_with_main)>0:
for w in similar_words_final_with_main:
temp_means = get_similar_means(w)
vocab_mean_list.append(temp_means)
fixed_similar_words_final = list(set([i for i in sum(vocab_mean_list, []) if len(i) > 10]))[:10]
word_str = ' \n'.join([str(idx) + ") " + i for idx, i in enumerate(similar_words_final, 1)])
sentence_str = ' \n'.join([str(idx) + ") " + i for idx, i in enumerate(fixed_similar_words_final, 1)])
return f'''<{clear_message}> ์ ํ์ฉํ ๊ธ์ฐ๊ธฐ๋ฅผ ์์ํด๋ณผ๊น์?
์ฐ์ , ์ ์ฌํ ๋จ์ด๋ถํฐ ํ์ธํด๋ณผ๊ฒ์.
{word_str} \n
์ ์ฌํ ๋จ์ด๋ค์ ๋ป์ ์๋์ ๊ฐ์ต๋๋ค.
{sentence_str}\n
์ ๋ป ์ค์ ์ํ๋ ๋ป์ ๊ณจ๋ผ ์
๋ ฅํด์ฃผ์ธ์
\n\n\n ์
๋ ฅ์์ \"๋ฌธ์ฅ:\" ์ ํฌํจํด์ฃผ์ธ์. ์์๋ ๋ณด์ฌ๋๋ฆด๊ฒ์.
\n ์์ <๋ฌธ์ฅ: ์ผ์ ํ ์ฃผ์ ๋ ์ค๊ฑฐ๋ฆฌ๋ฅผ ๊ฐ์ง ์ด์ผ๊ธฐ>
'''
else:
return '\"๋จ์ด:\" ๋ฅผ ํฌํจํด์ ๋จ์ด๋ฅผ ์
๋ ฅํด์ฃผ์ธ์ (๋จ์ด: ์ปคํผ)'
elif message.find('๋ฌธ์ฅ:')>=0:
clear_message = message.replace('๋ฌธ์ฅ','').replace(':','').strip()
info_dict[nickname]['selected_sentence'] = clear_message
return f'''[{clear_message}]๋ฅผ ๊ณ ๋ฅด์
จ๋ค์.
\n ์ ๋ฌธ์ฅ์ ํ์ฉํด ์งง์ ๊ธ์ฐ๊ธฐ๋ฅผ ํด๋ณผ๊น์?
\n\n\n ์
๋ ฅ์์\"์งง์๊ธ: \"์ ํฌํจํด์ฃผ์ธ์. ์์๋ ๋ณด์ฌ๋๋ฆด๊ฒ์.
\n ์์ <์งง์๊ธ: ์ง๊ธ ๋ฐฅ์ ๋จน๊ณ ์๋ ์ค์ด๋ค>
'''
elif message.find('์งง์๊ธ:')>=0:
clear_message = message.replace('์งง์๊ธ','').replace(':','').strip()
info_dict[nickname]['short_contents'] = clear_message
return f'''<{clear_message}>๋ผ๊ณ ์
๋ ฅํด์ฃผ์
จ๋ค์.
\n ์ ๋ฌธ์ฅ์ ํ์ฉํด ๊ธด ๊ธ์ฐ๊ธฐ๋ฅผ ํด๋ณผ๊น์? 500์ ์ด์ ์์ฑํด์ฃผ์๋ฉด ์ข์์.
\n\n\n ์
๋ ฅ์์\"๊ธด๊ธ: \"์ ํฌํจํด์ฃผ์ธ์. ์์๋ ๋ณด์ฌ๋๋ฆด๊ฒ์.
\n ์์ <๊ธด๊ธ: ์ง๊ธ ๋ฐฅ์ ๋จน๊ณ ์๋ ์ค์ด๋ค. ๋ฐฅ์ ๋จน์๋ ๋ง๋ค ๋๋ ๋ฐฅ์์ ํ๋ฐ๋ฅ์ผ๋ก ๊ตด๋ ค๋ณธ๋ค. ... (์๋ต) >
'''
elif message.find('๊ธด๊ธ:')>=0:
long_message = message.replace('๊ธด๊ธ','').replace(':','').strip()
length_of_lm = len(long_message)
if length_of_lm >= 500:
info_dict['long_contents'] = long_message
os.makedirs(f"./result/{nickname}/", exist_ok = True)
with open(f"./result/{nickname}/contents.txt",'w') as f:
f.write(long_message)
return f'์
๋ ฅํด์ฃผ์ ๊ธ์ {length_of_lm}์ ์
๋๋ค. ์ด ๊ธ์ ๋ถ์ํด๋ณผ๋ง ํด์. ๋ถ์์ ์ํ์ ๋ค๋ฉด "๋ถ์์์" ์ด๋ผ๊ณ ์
๋ ฅํด์ฃผ์ธ์'
else :
return f'์
๋ ฅํด์ฃผ์ ๊ธ์ {length_of_lm}์ ์
๋๋ค. ๋ถ์ํ๊ธฐ์ ์กฐ๊ธ ์งง์์. ์กฐ๊ธ ๋ ์
๋ ฅํด์ฃผ์๊ฒ ์ด์?'
elif message.find('๋ถ์์์')>=0:
with open(f"./result/{nickname}/contents.txt",'r') as f:
orign_essay = f.read()
summary = all_process(orign_essay, nickname)
#print(summary)
return summary
else:
return '์ฒ์๋ถํฐ ์์ํด์ฃผ์ธ์'
except:
return '์๋ฌ๊ฐ ๋ฐ์ํ์ด์. ์ฒ์๋ถํฐ ์์ํฉ๋๋ค. ๋๋ค์: ์ ์
๋ ฅํด์ฃผ์ธ์'
import gradio as gr
import requests
history = []
info_dict = {}
iface = gr.ChatInterface(
fn=run_all,
chatbot = gr.Chatbot(),
textbox = gr.Textbox(placeholder='์ฑ๋ด์ ์์ฒญ ์ ๋์ฌ๋ฅผ ํฌํจํ์ฌ ์
๋ ฅํด์ฃผ์ธ์', container = True, scale = 7),
title = 'MooGeulMooGeul',
description = '๋น์ ์ ๋๋ค์๋ถํฐ ์ ํด์ ์๋ ค์ฃผ์ธ์. "๋๋ค์: " ์ ํฌํจํด์ ์
๋ ฅํด์ฃผ์ธ์.',
theme = 'soft',
examples = ['๋๋ค์: ์ปคํผ๋ฌ๋ฒ',
'๋จ์ด: ์ปคํผ',
'๋ฌธ์ฅ: ์ผ์ ํ ์ฃผ์ ๋ ์ค๊ฑฐ๋ฆฌ๋ฅผ ๊ฐ์ง ์ด์ผ๊ธฐ',
'์งง์๊ธ: ์ด๋ค ์ฃผ์ ๋ ์ค๊ฑฐ๋ฆฌ์ ๋ํด์๋ ์ด์ผ๊ธฐ๋ฅผ ์ ํ๋ ์ฌ๋์ด ํ๋ ์์๋ค. ๋์ ์ด๋ชจ. ๊ทธ ์ฌ๋์ ์ปคํผ ํ์๋ง ์๋ค๋ฉด ์ด๋ค ์ด์ผ๊ธฐ๋ ๋ด๊ฒ ๋ค๋ ค์ฃผ์๋ค.',
'''๊ธด๊ธ: ์ด๋ค ์ฃผ์ ๋ ์ค๊ฑฐ๋ฆฌ์ ๋ํด์๋ ์ด์ผ๊ธฐ๋ฅผ ์ ํ๋ ์ฌ๋์ด ํ๋ ์์๋ค. ๋์ ์ด๋ชจ. ๊ทธ ์ฌ๋์ ์ปคํผ ํ ์๋ง ์๋ค๋ฉด ์ด๋ค ์ด์ผ๊ธฐ๋ ํ ์ ์์๋ค.
์ด๋ฆฐ์์ ์ ๋๋ ๊ทธ ์ด์ผ๊ธฐ๋ฅผ ๋ฃ๊ธฐ ์ํด ํ์ฌ์ ์ผ๋ก ์ง์ผ๋ก ๋์์๋ค. ์ ์น์๋๋ ์ง์ ๊ฐ์ผ ํ๋ค๋ฉฐ ๋ผ๋ฅผ ์ฐ๊ณ ์ธ์๋ค๊ณ ํ๋ค.
์ด๋ฑํ์์ด ๋์ด์๋ 4๊ต์ ๋ก! ํ๋ ์๋ฆฌ๊ฐ ๋ค๋ฆฌ๋ฉด ๊ฐ๋ฐฉ์ ์ฌ๋นจ๋ฆฌ ์ธ์ ์ง์ผ๋ก ๋์์๋ค. ์ง์๋ ํญ์ ๋๋ฅผ ๊ธฐ๋ค๋ฆฌ๊ณ ์๋ ์ด๋ชจ์ ์ด๋ชจ์ ์ปคํผ ๋์๊ฐ ์์๋ค.
๋ฐ๋ปํ ๋ฏน์ค์ปคํผ๋์, ๊ทธ๋ฆฌ๊ณ ๊ณ ์ํ ์ง์์ ์ธ๋ฆฌ๋ ์ด์ผ๊น๊ฑฐ๋ฆฌ๊ฐ ์์ํ๋ค. ์ด๋ชจ๋ ์ด๋ป๊ฒ ๊ทธ ๋ง์ ์ด์ผ๊ธฐ๋ฅผ ์๊ณ ์์์๊น.
ํ๋ฒ์ ์ ๋ง ๋ฌผ์ด๋ณธ ์ ์ด ์์๋ค. ์ด๋ป๊ฒ ํด์ ๊ทธ๋ฐ ์ด์ผ๊ธฐ๋ฅผ ์๊ณ ์๋๋๊ณ . ๊ทธ๋ด๋ ๋ง๋ค ์ด๋ชจ๋ ๋ด๊ฒ ์ด๋ฅธ์ด ๋๋ผ๊ณ ๋งํด์คฌ๋ค.
'์ด๋ฅธ์ด ๋๋ฉด ์ ์ ์์ด. ์ด๋ฅธ์ด ๋๋ ด.'
์ด๋ฅธ, ๊ทธ ๋น์์ ๋๋ ์ฅ๋ํฌ๋ง์ผ๋ก <์ด๋ฅธ>์ ์จ๋ฃ์ ์ ๋์๋ค.
'''],
cache_examples = False,
retry_btn = None,
undo_btn = 'Delete Previous',
clear_btn = 'Clear',
)
iface.launch(share=True) |