File size: 7,335 Bytes
020af7d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 |
import spaces
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoFeatureExtractor
from parler_tts import ParlerTTSForConditionalGeneration
import docx2txt
from PyPDF2 import PdfReader
import re
import os
from pydub import AudioSegment
import tempfile
# Global variables and model initialization
device = "cuda:0" if torch.cuda.is_available() else "cpu"
repo_id = "parler-tts/parler-tts-mini-v1"
model = ParlerTTSForConditionalGeneration.from_pretrained(repo_id).to(device)
tokenizer = AutoTokenizer.from_pretrained(repo_id)
feature_extractor = AutoFeatureExtractor.from_pretrained(repo_id)
SAMPLE_RATE = feature_extractor.sampling_rate
def preprocess_text(text):
# Remove extra whitespace, normalize text, and handle numbers
text = re.sub(r'\s+', ' ', text).strip()
text = re.sub(r'\d+', lambda m: ' '.join(m.group(0)), text)
return text
def extract_text_from_file(file):
if file.name.endswith('.txt'):
with open(file.name, 'r', encoding='utf-8') as f:
return f.read()
elif file.name.endswith('.docx'):
return docx2txt.process(file.name)
elif file.name.endswith('.pdf'):
with open(file.name, 'rb') as f:
reader = PdfReader(f)
return ' '.join([page.extract_text() for page in reader.pages])
else:
raise ValueError("Unsupported file type")
def split_text_into_chunks(text, max_length=1000):
words = text.split()
chunks = []
current_chunk = []
current_length = 0
for word in words:
if current_length + len(word) + 1 > max_length:
chunks.append(' '.join(current_chunk))
current_chunk = [word]
current_length = len(word)
else:
current_chunk.append(word)
current_length += len(word) + 1
if current_chunk:
chunks.append(' '.join(current_chunk))
return chunks
@spaces.GPU(duration=300)
def generate_audio(text, description):
preprocessed_text = preprocess_text(text)
inputs = tokenizer(description.strip(), return_tensors="pt").to(device)
prompt = tokenizer(preprocessed_text, return_tensors="pt").to(device)
generation = model.generate(
input_ids=inputs.input_ids,
prompt_input_ids=prompt.input_ids,
attention_mask=inputs.attention_mask,
prompt_attention_mask=prompt.attention_mask,
do_sample=True,
temperature=1.0
)
audio_arr = generation.cpu().numpy().squeeze()
return SAMPLE_RATE, audio_arr
def process_input(file, text_input, description, max_duration):
if file:
text = extract_text_from_file(file)
else:
text = text_input
if not text:
return None, "Please provide text input or upload a file."
try:
chunks = split_text_into_chunks(text)
audio_segments = []
total_duration = 0
for chunk in chunks:
audio = generate_audio(chunk, description)
segment = AudioSegment(
audio[1].tobytes(),
frame_rate=audio[0],
sample_width=2,
channels=1
)
chunk_duration = len(segment) / 1000 # Duration in seconds
if total_duration + chunk_duration > max_duration:
break
audio_segments.append(segment)
total_duration += chunk_duration
if not audio_segments:
return None, "Generated audio exceeds maximum duration. Please use shorter text."
combined_audio = sum(audio_segments)
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_file:
combined_audio.export(temp_file.name, format="wav")
return temp_file.name, None
except Exception as e:
return None, f"Error generating audio: {str(e)}"
def update_max_duration(file, text_input):
if file:
text = extract_text_from_file(file)
else:
text = text_input
if not text:
return gr.Slider.update(value=60)
estimated_duration = len(text.split()) / 3 # Rough estimate: 3 words per second
return gr.Slider.update(value=min(300, max(60, estimated_duration)))
# Gradio interface
css = """
.container {
max-width: 850px;
margin: auto;
padding: 20px;
background-color: #f0f4f8;
border-radius: 12px;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
}
.input-area, .output-area {
background-color: white;
padding: 25px;
border-radius: 8px;
box-shadow: 0 2px 4px rgba(0,0,0,0.05);
margin-bottom: 20px;
}
.generate-btn {
background-color: #4CAF50 !important;
color: white !important;
padding: 10px 20px !important;
font-size: 16px !important;
font-weight: bold !important;
border-radius: 5px !important;
border: none !important;
cursor: pointer !important;
transition: background-color 0.3s !important;
}
.generate-btn:hover {
background-color: #45a049 !important;
}
"""
with gr.Blocks(css=css) as demo:
gr.Markdown("# ποΈ Parler TTS: Advanced Text-to-Speech Generator")
with gr.Row(elem_classes="container"):
with gr.Column(elem_classes="input-area"):
file_input = gr.File(label="π Upload File (TXT, DOCX, PDF)")
text_input = gr.Textbox(label="βοΈ Or enter text here", lines=5, placeholder="Type or paste your text here...")
description = gr.Textbox(
label="π£οΈ Voice Description",
lines=2,
value="A clear, neutral voice with minimal background noise.",
placeholder="Describe the voice characteristics you want..."
)
max_duration = gr.Slider(
minimum=10,
maximum=300,
value=60,
step=10,
label="β±οΈ Maximum Audio Duration (seconds)"
)
submit_btn = gr.Button("π Generate Audio", elem_classes="generate-btn")
with gr.Column(elem_classes="output-area"):
output_audio = gr.Audio(label="π Generated Audio")
error_output = gr.Markdown()
file_input.change(
fn=update_max_duration,
inputs=[file_input, text_input],
outputs=[max_duration]
)
text_input.change(
fn=update_max_duration,
inputs=[file_input, text_input],
outputs=[max_duration]
)
submit_btn.click(
fn=process_input,
inputs=[file_input, text_input, description, max_duration],
outputs=[output_audio, error_output]
)
gr.Markdown(
"""
## π Tips for Best Results
- For longer texts, the generator will create audio up to the specified maximum duration.
- Experiment with different voice descriptions to achieve the desired output.
- Use punctuation to control pacing and intonation in the generated speech.
- For optimal quality, try to keep individual sentences or paragraphs concise.
## π οΈ Technical Details
- This demo uses the Parler TTS Mini v1 model.
- Audio generation is GPU-accelerated for faster processing.
- Maximum file size for uploads: 5MB
"""
)
demo.queue()
demo.launch()
|