Spaces:
Runtime error
Runtime error
File size: 1,716 Bytes
8b1da5c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
import numpy as np
import gradio as gr
from PIL import Image
import cv2
from skimage import color
from sklearn.cluster import KMeans
from typing import Tuple
f = "view.png"
img = Image.open(f)
img = np.array(img)[..., :3]
def proc(img: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
assert img.shape[-1] == 3
k_size = 11
sigma = 11
blurred = cv2.GaussianBlur(img, (k_size, k_size), sigma)
blurred_small = cv2.resize(blurred, (80, 80))
labs = color.rgb2lab(blurred_small)
lab_vectors = labs.reshape(-1, 3)
num_colors = 5
num_bins = 10
km = KMeans(n_clusters=num_colors)
km.fit(lab_vectors)
centroid_labs = km.cluster_centers_ # N x (L, a, b)
centroid_labs = np.array(
sorted(centroid_labs, key=lambda x: x[1] ** 2 + x[2] ** 2)
) # sort by L
centroid_ls = (
np.arange(0, 100, num_bins).reshape(1, num_bins, 1).repeat(num_colors, axis=0)
)
centroid_abs = centroid_labs[:, np.newaxis, 1:].repeat(num_bins, axis=1)
centroid_labs = np.concatenate([centroid_ls, centroid_abs], axis=-1).reshape(
num_colors, num_bins, 3
)
unique_indices = [0] + [
i
for i in range(1, num_colors)
if np.linalg.norm(centroid_labs[i] - centroid_labs[i - 1]) > 10
]
centroid_labs = centroid_labs[unique_indices, :, :]
centroid_rgbs = (color.lab2rgb(centroid_labs) * 255).astype(np.uint8)
centroid_rgb_vis = cv2.resize(
centroid_rgbs,
(int(img.shape[0] / num_colors * num_bins), img.shape[0]),
interpolation=cv2.INTER_NEAREST,
)
return centroid_rgb_vis
demo = gr.Interface(fn=proc, inputs="image", outputs="image")
if __name__ == "__main__":
demo.launch()
|