Spaces:
Runtime error
Runtime error
import numpy as np | |
import gradio as gr | |
from PIL import Image | |
import cv2 | |
from skimage import color | |
from sklearn.cluster import KMeans | |
from typing import Tuple | |
def proc(img: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: | |
assert img.shape[-1] == 3 | |
k_size = 11 | |
sigma = 11 | |
blurred = cv2.GaussianBlur(img, (k_size, k_size), sigma) | |
blurred_small = cv2.resize(blurred, (80, 80)) | |
labs = color.rgb2lab(blurred_small) | |
lab_vectors = labs.reshape(-1, 3) | |
num_colors = 5 | |
num_bins = 10 | |
km = KMeans(n_clusters=num_colors) | |
km.fit(lab_vectors) | |
centroid_labs = km.cluster_centers_ # N x (L, a, b) | |
centroid_labs = np.array( | |
sorted(centroid_labs, key=lambda x: x[1] ** 2 + x[2] ** 2) | |
) # sort by L | |
seeds = np.log(np.arange(0, 100, num_bins) + num_bins) | |
ls = seeds * 100 / seeds[-1] | |
centroid_ls = np.clip(ls, 0, 100).reshape(1, num_bins, 1).repeat(num_colors, axis=0) | |
centroid_abs = centroid_labs[:, np.newaxis, 1:].repeat(num_bins, axis=1) | |
centroid_labs = np.concatenate([centroid_ls, centroid_abs], axis=-1).reshape( | |
num_colors, num_bins, 3 | |
) | |
unique_indices = [0] + [ | |
i | |
for i in range(1, num_colors) | |
if np.linalg.norm(centroid_labs[i] - centroid_labs[i - 1]) > 10 | |
] | |
centroid_labs = centroid_labs[unique_indices, :, :] | |
centroid_rgbs = (color.lab2rgb(centroid_labs) * 255).astype(np.uint8) | |
centroid_rgb_vis = cv2.resize( | |
centroid_rgbs, | |
(int(img.shape[0] / num_colors * num_bins), img.shape[0]), | |
interpolation=cv2.INTER_NEAREST, | |
) | |
return centroid_rgb_vis | |
demo = gr.Interface(fn=proc, inputs="image", outputs="image") | |
if __name__ == "__main__": | |
demo.launch() | |