|
import time |
|
import torch |
|
import onnx |
|
import cv2 |
|
import onnxruntime |
|
import numpy as np |
|
from tqdm import tqdm |
|
from onnx import numpy_helper |
|
from skimage import transform as trans |
|
import torchvision.transforms.functional as F |
|
from utils import make_white_image, laplacian_blending |
|
|
|
arcface_dst = np.array( |
|
[[38.2946, 51.6963], [73.5318, 51.5014], [56.0252, 71.7366], |
|
[41.5493, 92.3655], [70.7299, 92.2041]], |
|
dtype=np.float32) |
|
|
|
def estimate_norm(lmk, image_size=112, mode='arcface'): |
|
assert lmk.shape == (5, 2) |
|
assert image_size % 112 == 0 or image_size % 128 == 0 |
|
if image_size % 112 == 0: |
|
ratio = float(image_size) / 112.0 |
|
diff_x = 0 |
|
else: |
|
ratio = float(image_size) / 128.0 |
|
diff_x = 8.0 * ratio |
|
dst = arcface_dst * ratio |
|
dst[:, 0] += diff_x |
|
tform = trans.SimilarityTransform() |
|
tform.estimate(lmk, dst) |
|
M = tform.params[0:2, :] |
|
return M |
|
|
|
|
|
def norm_crop2(img, landmark, image_size=112, mode='arcface'): |
|
M = estimate_norm(landmark, image_size, mode) |
|
warped = cv2.warpAffine(img, M, (image_size, image_size), borderValue=0.0) |
|
return warped, M |
|
|
|
|
|
class Inswapper(): |
|
def __init__(self, model_file=None, batch_size=32, providers=['CPUExecutionProvider']): |
|
self.model_file = model_file |
|
self.batch_size = batch_size |
|
|
|
model = onnx.load(self.model_file) |
|
graph = model.graph |
|
self.emap = numpy_helper.to_array(graph.initializer[-1]) |
|
self.input_mean = 0.0 |
|
self.input_std = 255.0 |
|
|
|
self.session_options = onnxruntime.SessionOptions() |
|
self.session = onnxruntime.InferenceSession(self.model_file, sess_options=self.session_options, providers=providers) |
|
|
|
inputs = self.session.get_inputs() |
|
self.input_names = [inp.name for inp in inputs] |
|
outputs = self.session.get_outputs() |
|
self.output_names = [out.name for out in outputs] |
|
assert len(self.output_names) == 1 |
|
self.output_shape = outputs[0].shape |
|
input_cfg = inputs[0] |
|
input_shape = input_cfg.shape |
|
self.input_shape = input_shape |
|
self.input_size = tuple(input_shape[2:4][::-1]) |
|
|
|
def forward(self, imgs, latents): |
|
preds = [] |
|
for img, latent in zip(imgs, latents): |
|
img = (img - self.input_mean) / self.input_std |
|
pred = self.session.run(self.output_names, {self.input_names[0]: img, self.input_names[1]: latent})[0] |
|
preds.append(pred) |
|
|
|
def get(self, imgs, target_faces, source_faces): |
|
imgs = list(imgs) |
|
|
|
preds = [None] * len(imgs) |
|
aimgs = [None] * len(imgs) |
|
matrs = [None] * len(imgs) |
|
|
|
for idx, (img, target_face, source_face) in enumerate(zip(imgs, target_faces, source_faces)): |
|
aimg, M, blob, latent = self.prepare_data(img, target_face, source_face) |
|
aimgs[idx] = aimg |
|
matrs[idx] = M |
|
pred = self.session.run(self.output_names, {self.input_names[0]: blob, self.input_names[1]: latent})[0] |
|
pred = pred.transpose((0, 2, 3, 1))[0] |
|
pred = np.clip(255 * pred, 0, 255).astype(np.uint8)[:, :, ::-1] |
|
preds[idx] = pred |
|
|
|
return (preds, aimgs, matrs) |
|
|
|
def prepare_data(self, img, target_face, source_face): |
|
if isinstance(img, str): |
|
img = cv2.imread(img) |
|
|
|
aimg, M = norm_crop2(img, target_face.kps, self.input_size[0]) |
|
|
|
blob = cv2.dnn.blobFromImage(aimg, 1.0 / self.input_std, self.input_size, |
|
(self.input_mean, self.input_mean, self.input_mean), swapRB=True) |
|
|
|
latent = source_face.normed_embedding.reshape((1, -1)) |
|
latent = np.dot(latent, self.emap) |
|
latent /= np.linalg.norm(latent) |
|
|
|
return (aimg, M, blob, latent) |
|
|
|
def batch_forward(self, img_list, target_f_list, source_f_list): |
|
num_samples = len(img_list) |
|
num_batches = (num_samples + self.batch_size - 1) // self.batch_size |
|
|
|
preds = [] |
|
aimgs = [] |
|
matrs = [] |
|
|
|
for i in tqdm(range(num_batches), desc="Swapping face"): |
|
start_idx = i * self.batch_size |
|
end_idx = min((i + 1) * self.batch_size, num_samples) |
|
|
|
batch_img = img_list[start_idx:end_idx] |
|
batch_target_f = target_f_list[start_idx:end_idx] |
|
batch_source_f = source_f_list[start_idx:end_idx] |
|
|
|
batch_pred, batch_aimg, batch_matr = self.get(batch_img, batch_target_f, batch_source_f) |
|
preds.extend(batch_pred) |
|
aimgs.extend(batch_aimg) |
|
matrs.extend(batch_matr) |
|
|
|
return (preds, aimgs, matrs) |
|
|
|
|
|
def paste_to_whole(bgr_fake, aimg, M, whole_img, laplacian_blend=True, crop_mask=(0,0,0,0)): |
|
IM = cv2.invertAffineTransform(M) |
|
|
|
img_white = make_white_image(aimg.shape[:2], crop=crop_mask, white_value=255) |
|
|
|
bgr_fake = cv2.warpAffine(bgr_fake, IM, (whole_img.shape[1], whole_img.shape[0]), borderValue=0.0) |
|
img_white = cv2.warpAffine(img_white, IM, (whole_img.shape[1], whole_img.shape[0]), borderValue=0.0) |
|
|
|
img_white[img_white > 20] = 255 |
|
img_mask = img_white |
|
mask_h_inds, mask_w_inds = np.where(img_mask == 255) |
|
mask_size = int(np.sqrt(np.ptp(mask_h_inds) * np.ptp(mask_w_inds))) |
|
|
|
k = max(mask_size // 10, 10) |
|
img_mask = cv2.erode(img_mask, np.ones((k, k), np.uint8), iterations=1) |
|
|
|
k = max(mask_size // 20, 5) |
|
kernel_size = (k, k) |
|
blur_size = tuple(2 * i + 1 for i in kernel_size) |
|
img_mask = cv2.GaussianBlur(img_mask, blur_size, 0) / 255 |
|
img_mask = np.tile(np.expand_dims(img_mask, axis=-1), (1, 1, 3)) |
|
|
|
if laplacian_blend: |
|
bgr_fake = laplacian_blending(bgr_fake.astype("float32").clip(0,255), whole_img.astype("float32").clip(0,255), img_mask.clip(0,1)) |
|
bgr_fake = bgr_fake.astype("float32") |
|
|
|
fake_merged = img_mask * bgr_fake + (1 - img_mask) * whole_img.astype(np.float32) |
|
return fake_merged.astype("uint8") |
|
|
|
def place_foreground_on_background(foreground, background, matrix): |
|
matrix = cv2.invertAffineTransform(matrix) |
|
mask = np.ones(foreground.shape, dtype="float32") |
|
foreground = cv2.warpAffine(foreground, matrix, (background.shape[1], background.shape[0]), borderValue=0.0) |
|
mask = cv2.warpAffine(mask, matrix, (background.shape[1], background.shape[0]), borderValue=0.0) |
|
composite_image = mask * foreground + (1 - mask) * background |
|
return composite_image |