|
import os |
|
import cv2 |
|
import time |
|
import glob |
|
import torch |
|
import shutil |
|
import platform |
|
import datetime |
|
import subprocess |
|
import numpy as np |
|
from threading import Thread |
|
from moviepy.editor import VideoFileClip, ImageSequenceClip |
|
from moviepy.video.io.ffmpeg_tools import ffmpeg_extract_subclip |
|
from face_parsing import init_parser, swap_regions, mask_regions, mask_regions_to_list, SoftErosion |
|
|
|
|
|
logo_image = cv2.imread("./assets/images/logo.png", cv2.IMREAD_UNCHANGED) |
|
|
|
|
|
quality_types = ["poor", "low", "medium", "high", "best"] |
|
|
|
|
|
bitrate_quality_by_resolution = { |
|
240: {"poor": "300k", "low": "500k", "medium": "800k", "high": "1000k", "best": "1200k"}, |
|
360: {"poor": "500k","low": "800k","medium": "1200k","high": "1500k","best": "2000k"}, |
|
480: {"poor": "800k","low": "1200k","medium": "2000k","high": "2500k","best": "3000k"}, |
|
720: {"poor": "1500k","low": "2500k","medium": "4000k","high": "5000k","best": "6000k"}, |
|
1080: {"poor": "2500k","low": "4000k","medium": "6000k","high": "7000k","best": "8000k"}, |
|
1440: {"poor": "4000k","low": "6000k","medium": "8000k","high": "10000k","best": "12000k"}, |
|
2160: {"poor": "8000k","low": "10000k","medium": "12000k","high": "15000k","best": "20000k"} |
|
} |
|
|
|
|
|
crf_quality_by_resolution = { |
|
240: {"poor": 45, "low": 35, "medium": 28, "high": 23, "best": 20}, |
|
360: {"poor": 35, "low": 28, "medium": 23, "high": 20, "best": 18}, |
|
480: {"poor": 28, "low": 23, "medium": 20, "high": 18, "best": 16}, |
|
720: {"poor": 23, "low": 20, "medium": 18, "high": 16, "best": 14}, |
|
1080: {"poor": 20, "low": 18, "medium": 16, "high": 14, "best": 12}, |
|
1440: {"poor": 18, "low": 16, "medium": 14, "high": 12, "best": 10}, |
|
2160: {"poor": 16, "low": 14, "medium": 12, "high": 10, "best": 8} |
|
} |
|
|
|
|
|
def get_bitrate_for_resolution(resolution, quality): |
|
available_resolutions = list(bitrate_quality_by_resolution.keys()) |
|
closest_resolution = min(available_resolutions, key=lambda x: abs(x - resolution)) |
|
return bitrate_quality_by_resolution[closest_resolution][quality] |
|
|
|
|
|
def get_crf_for_resolution(resolution, quality): |
|
available_resolutions = list(crf_quality_by_resolution.keys()) |
|
closest_resolution = min(available_resolutions, key=lambda x: abs(x - resolution)) |
|
return crf_quality_by_resolution[closest_resolution][quality] |
|
|
|
|
|
def get_video_bitrate(video_file): |
|
ffprobe_cmd = ['ffprobe', '-v', 'error', '-select_streams', 'v:0', '-show_entries', |
|
'stream=bit_rate', '-of', 'default=noprint_wrappers=1:nokey=1', video_file] |
|
result = subprocess.run(ffprobe_cmd, stdout=subprocess.PIPE) |
|
kbps = max(int(result.stdout) // 1000, 10) |
|
return str(kbps) + 'k' |
|
|
|
|
|
def trim_video(video_path, output_path, start_frame, stop_frame): |
|
video_name, _ = os.path.splitext(os.path.basename(video_path)) |
|
trimmed_video_filename = video_name + "_trimmed" + ".mp4" |
|
temp_path = os.path.join(output_path, "trim") |
|
os.makedirs(temp_path, exist_ok=True) |
|
trimmed_video_file_path = os.path.join(temp_path, trimmed_video_filename) |
|
|
|
video = VideoFileClip(video_path) |
|
fps = video.fps |
|
start_time = start_frame / fps |
|
duration = (stop_frame - start_frame) / fps |
|
|
|
bitrate = get_bitrate_for_resolution(min(*video.size), "high") |
|
|
|
trimmed_video = video.subclip(start_time, start_time + duration) |
|
trimmed_video.write_videofile( |
|
trimmed_video_file_path, codec="libx264", audio_codec="aac", bitrate=bitrate, |
|
) |
|
trimmed_video.close() |
|
video.close() |
|
|
|
return trimmed_video_file_path |
|
|
|
|
|
def open_directory(path=None): |
|
if path is None: |
|
return |
|
try: |
|
os.startfile(path) |
|
except: |
|
subprocess.Popen(["xdg-open", path]) |
|
|
|
|
|
class StreamerThread(object): |
|
def __init__(self, src=0): |
|
self.capture = cv2.VideoCapture(src) |
|
self.capture.set(cv2.CAP_PROP_BUFFERSIZE, 2) |
|
self.FPS = 1 / 30 |
|
self.FPS_MS = int(self.FPS * 1000) |
|
self.thread = None |
|
self.stopped = False |
|
self.frame = None |
|
|
|
def start(self): |
|
self.thread = Thread(target=self.update, args=()) |
|
self.thread.daemon = True |
|
self.thread.start() |
|
|
|
def stop(self): |
|
self.stopped = True |
|
self.thread.join() |
|
print("stopped") |
|
|
|
def update(self): |
|
while not self.stopped: |
|
if self.capture.isOpened(): |
|
(self.status, self.frame) = self.capture.read() |
|
time.sleep(self.FPS) |
|
|
|
|
|
class ProcessBar: |
|
def __init__(self, bar_length, total, before="⬛", after="🟨"): |
|
self.bar_length = bar_length |
|
self.total = total |
|
self.before = before |
|
self.after = after |
|
self.bar = [self.before] * bar_length |
|
self.start_time = time.time() |
|
|
|
def get(self, index): |
|
total = self.total |
|
elapsed_time = time.time() - self.start_time |
|
average_time_per_iteration = elapsed_time / (index + 1) |
|
remaining_iterations = total - (index + 1) |
|
estimated_remaining_time = remaining_iterations * average_time_per_iteration |
|
|
|
self.bar[int(index / total * self.bar_length)] = self.after |
|
info_text = f"({index+1}/{total}) {''.join(self.bar)} " |
|
info_text += f"(ETR: {int(estimated_remaining_time // 60)} min {int(estimated_remaining_time % 60)} sec)" |
|
return info_text |
|
|
|
|
|
def add_logo_to_image(img, logo=logo_image): |
|
logo_size = int(img.shape[1] * 0.1) |
|
logo = cv2.resize(logo, (logo_size, logo_size)) |
|
if logo.shape[2] == 4: |
|
alpha = logo[:, :, 3] |
|
else: |
|
alpha = np.ones_like(logo[:, :, 0]) * 255 |
|
padding = int(logo_size * 0.1) |
|
roi = img.shape[0] - logo_size - padding, img.shape[1] - logo_size - padding |
|
for c in range(0, 3): |
|
img[roi[0] : roi[0] + logo_size, roi[1] : roi[1] + logo_size, c] = ( |
|
alpha / 255.0 |
|
) * logo[:, :, c] + (1 - alpha / 255.0) * img[ |
|
roi[0] : roi[0] + logo_size, roi[1] : roi[1] + logo_size, c |
|
] |
|
return img |
|
|
|
|
|
def split_list_by_lengths(data, length_list): |
|
split_data = [] |
|
start_idx = 0 |
|
for length in length_list: |
|
end_idx = start_idx + length |
|
sublist = data[start_idx:end_idx] |
|
split_data.append(sublist) |
|
start_idx = end_idx |
|
return split_data |
|
|
|
|
|
def merge_img_sequence_from_ref(ref_video_path, image_sequence, output_file_name): |
|
video_clip = VideoFileClip(ref_video_path) |
|
fps = video_clip.fps |
|
duration = video_clip.duration |
|
total_frames = video_clip.reader.nframes |
|
audio_clip = video_clip.audio if video_clip.audio is not None else None |
|
edited_video_clip = ImageSequenceClip(image_sequence, fps=fps) |
|
|
|
if audio_clip is not None: |
|
edited_video_clip = edited_video_clip.set_audio(audio_clip) |
|
|
|
bitrate = get_bitrate_for_resolution(min(*edited_video_clip.size), "high") |
|
|
|
edited_video_clip.set_duration(duration).write_videofile( |
|
output_file_name, codec="libx264", bitrate=bitrate, |
|
) |
|
edited_video_clip.close() |
|
video_clip.close() |
|
|
|
|
|
def scale_bbox_from_center(bbox, scale_width, scale_height, image_width, image_height): |
|
|
|
x1, y1, x2, y2 = bbox |
|
|
|
|
|
center_x = (x1 + x2) / 2 |
|
center_y = (y1 + y2) / 2 |
|
|
|
|
|
width = x2 - x1 |
|
height = y2 - y1 |
|
new_width = width * scale_width |
|
new_height = height * scale_height |
|
|
|
|
|
new_x1 = center_x - new_width / 2 |
|
new_y1 = center_y - new_height / 2 |
|
new_x2 = center_x + new_width / 2 |
|
new_y2 = center_y + new_height / 2 |
|
|
|
|
|
new_x1 = max(0, new_x1) |
|
new_y1 = max(0, new_y1) |
|
new_x2 = min(image_width - 1, new_x2) |
|
new_y2 = min(image_height - 1, new_y2) |
|
|
|
|
|
scaled_bbox = [new_x1, new_y1, new_x2, new_y2] |
|
return scaled_bbox |
|
|
|
|
|
def laplacian_blending(A, B, m, num_levels=4): |
|
assert A.shape == B.shape |
|
assert B.shape == m.shape |
|
height = m.shape[0] |
|
width = m.shape[1] |
|
size_list = np.array([4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096]) |
|
size = size_list[np.where(size_list > max(height, width))][0] |
|
GA = np.zeros((size, size, 3), dtype=np.float32) |
|
GA[:height, :width, :] = A |
|
GB = np.zeros((size, size, 3), dtype=np.float32) |
|
GB[:height, :width, :] = B |
|
GM = np.zeros((size, size, 3), dtype=np.float32) |
|
GM[:height, :width, :] = m |
|
gpA = [GA] |
|
gpB = [GB] |
|
gpM = [GM] |
|
for i in range(num_levels): |
|
GA = cv2.pyrDown(GA) |
|
GB = cv2.pyrDown(GB) |
|
GM = cv2.pyrDown(GM) |
|
gpA.append(np.float32(GA)) |
|
gpB.append(np.float32(GB)) |
|
gpM.append(np.float32(GM)) |
|
lpA = [gpA[num_levels-1]] |
|
lpB = [gpB[num_levels-1]] |
|
gpMr = [gpM[num_levels-1]] |
|
for i in range(num_levels-1,0,-1): |
|
LA = np.subtract(gpA[i-1], cv2.pyrUp(gpA[i])) |
|
LB = np.subtract(gpB[i-1], cv2.pyrUp(gpB[i])) |
|
lpA.append(LA) |
|
lpB.append(LB) |
|
gpMr.append(gpM[i-1]) |
|
LS = [] |
|
for la,lb,gm in zip(lpA,lpB,gpMr): |
|
ls = la * gm + lb * (1.0 - gm) |
|
LS.append(ls) |
|
ls_ = LS[0] |
|
for i in range(1,num_levels): |
|
ls_ = cv2.pyrUp(ls_) |
|
ls_ = cv2.add(ls_, LS[i]) |
|
ls_ = np.clip(ls_[:height, :width, :], 0, 255) |
|
return ls_ |
|
|
|
|
|
def make_white_image(shape, crop=None, white_value=255): |
|
img_white = np.full((shape[0], shape[1]), white_value, dtype=np.float32) |
|
if crop is not None: |
|
top = int(crop[0]) |
|
bottom = int(crop[1]) |
|
if top + bottom < shape[1]: |
|
if top > 0: img_white[:top, :] = 0 |
|
if bottom > 0: img_white[-bottom:, :] = 0 |
|
|
|
left = int(crop[2]) |
|
right = int(crop[3]) |
|
if left + right < shape[0]: |
|
if left > 0: img_white[:, :left] = 0 |
|
if right > 0: img_white[:, -right:] = 0 |
|
|
|
return img_white |
|
|
|
|
|
def remove_hair(img, model=None): |
|
if model is None: |
|
path = "./assets/pretrained_models/79999_iter.pth" |
|
model = init_parser(path, mode="cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
|