|
import time |
|
import torch |
|
import onnx |
|
import cv2 |
|
import onnxruntime |
|
import numpy as np |
|
from tqdm import tqdm |
|
import torch.nn as nn |
|
from onnx import numpy_helper |
|
from skimage import transform as trans |
|
import torchvision.transforms.functional as F |
|
import torch.nn.functional as F |
|
from utils import mask_crop, laplacian_blending |
|
|
|
|
|
arcface_dst = np.array( |
|
[[38.2946, 51.6963], [73.5318, 51.5014], [56.0252, 71.7366], |
|
[41.5493, 92.3655], [70.7299, 92.2041]], |
|
dtype=np.float32) |
|
|
|
def estimate_norm(lmk, image_size=112, mode='arcface'): |
|
assert lmk.shape == (5, 2) |
|
assert image_size % 112 == 0 or image_size % 128 == 0 |
|
if image_size % 112 == 0: |
|
ratio = float(image_size) / 112.0 |
|
diff_x = 0 |
|
else: |
|
ratio = float(image_size) / 128.0 |
|
diff_x = 8.0 * ratio |
|
dst = arcface_dst * ratio |
|
dst[:, 0] += diff_x |
|
tform = trans.SimilarityTransform() |
|
tform.estimate(lmk, dst) |
|
M = tform.params[0:2, :] |
|
return M |
|
|
|
|
|
def norm_crop2(img, landmark, image_size=112, mode='arcface'): |
|
M = estimate_norm(landmark, image_size, mode) |
|
warped = cv2.warpAffine(img, M, (image_size, image_size), borderValue=0.0) |
|
return warped, M |
|
|
|
|
|
class Inswapper(): |
|
def __init__(self, model_file=None, batch_size=32, providers=['CPUExecutionProvider']): |
|
self.model_file = model_file |
|
self.batch_size = batch_size |
|
|
|
model = onnx.load(self.model_file) |
|
graph = model.graph |
|
self.emap = numpy_helper.to_array(graph.initializer[-1]) |
|
|
|
self.session_options = onnxruntime.SessionOptions() |
|
self.session = onnxruntime.InferenceSession(self.model_file, sess_options=self.session_options, providers=providers) |
|
|
|
def forward(self, imgs, latents): |
|
preds = [] |
|
for img, latent in zip(imgs, latents): |
|
img = img / 255 |
|
pred = self.session.run(['output'], {'target': img, 'source': latent})[0] |
|
preds.append(pred) |
|
|
|
def get(self, imgs, target_faces, source_faces): |
|
imgs = list(imgs) |
|
|
|
preds = [None] * len(imgs) |
|
matrs = [None] * len(imgs) |
|
|
|
for idx, (img, target_face, source_face) in enumerate(zip(imgs, target_faces, source_faces)): |
|
matrix, blob, latent = self.prepare_data(img, target_face, source_face) |
|
pred = self.session.run(['output'], {'target': blob, 'source': latent})[0] |
|
pred = pred.transpose((0, 2, 3, 1))[0] |
|
pred = np.clip(255 * pred, 0, 255).astype(np.uint8)[:, :, ::-1] |
|
|
|
preds[idx] = pred |
|
matrs[idx] = matrix |
|
|
|
return (preds, matrs) |
|
|
|
def prepare_data(self, img, target_face, source_face): |
|
if isinstance(img, str): |
|
img = cv2.imread(img) |
|
|
|
aligned_img, matrix = norm_crop2(img, target_face.kps, 128) |
|
|
|
blob = cv2.dnn.blobFromImage(aligned_img, 1.0 / 255, (128, 128), (0., 0., 0.), swapRB=True) |
|
|
|
latent = source_face.normed_embedding.reshape((1, -1)) |
|
latent = np.dot(latent, self.emap) |
|
latent /= np.linalg.norm(latent) |
|
|
|
return (matrix, blob, latent) |
|
|
|
def batch_forward(self, img_list, target_f_list, source_f_list): |
|
num_samples = len(img_list) |
|
num_batches = (num_samples + self.batch_size - 1) // self.batch_size |
|
|
|
for i in tqdm(range(num_batches), desc="Generating face"): |
|
start_idx = i * self.batch_size |
|
end_idx = min((i + 1) * self.batch_size, num_samples) |
|
|
|
batch_img = img_list[start_idx:end_idx] |
|
batch_target_f = target_f_list[start_idx:end_idx] |
|
batch_source_f = source_f_list[start_idx:end_idx] |
|
|
|
batch_pred, batch_matr = self.get(batch_img, batch_target_f, batch_source_f) |
|
|
|
yield batch_pred, batch_matr |
|
|
|
|
|
def paste_to_whole(foreground, background, matrix, mask=None, crop_mask=(0,0,0,0), blur_amount=0.1, erode_amount = 0.15, blend_method='linear'): |
|
inv_matrix = cv2.invertAffineTransform(matrix) |
|
fg_shape = foreground.shape[:2] |
|
bg_shape = (background.shape[1], background.shape[0]) |
|
foreground = cv2.warpAffine(foreground, inv_matrix, bg_shape, borderValue=0.0) |
|
|
|
if mask is None: |
|
mask = np.full(fg_shape, 1., dtype=np.float32) |
|
mask = mask_crop(mask, crop_mask) |
|
mask = cv2.warpAffine(mask, inv_matrix, bg_shape, borderValue=0.0) |
|
else: |
|
assert fg_shape == mask.shape[:2], "foreground & mask shape mismatch!" |
|
mask = mask_crop(mask, crop_mask).astype('float32') |
|
mask = cv2.warpAffine(mask, inv_matrix, (background.shape[1], background.shape[0]), borderValue=0.0) |
|
|
|
_mask = mask.copy() |
|
_mask[_mask > 0.05] = 1. |
|
non_zero_points = cv2.findNonZero(_mask) |
|
_, _, w, h = cv2.boundingRect(non_zero_points) |
|
mask_size = int(np.sqrt(w * h)) |
|
|
|
if erode_amount > 0: |
|
kernel_size = max(int(mask_size * erode_amount), 1) |
|
structuring_element = cv2.getStructuringElement(cv2.MORPH_RECT, (kernel_size, kernel_size)) |
|
mask = cv2.erode(mask, structuring_element) |
|
|
|
if blur_amount > 0: |
|
kernel_size = max(int(mask_size * blur_amount), 3) |
|
if kernel_size % 2 == 0: |
|
kernel_size += 1 |
|
mask = cv2.GaussianBlur(mask, (kernel_size, kernel_size), 0) |
|
|
|
mask = np.tile(np.expand_dims(mask, axis=-1), (1, 1, 3)) |
|
|
|
if blend_method == 'laplacian': |
|
composite_image = laplacian_blending(foreground, background, mask.clip(0,1), num_levels=4) |
|
else: |
|
composite_image = mask * foreground + (1 - mask) * background |
|
|
|
return composite_image.astype("uint8").clip(0, 255) |
|
|