|
from typing import Any, Optional, List, Dict, Tuple |
|
import threading |
|
import cv2 |
|
import numpy |
|
import onnxruntime |
|
|
|
import facefusion.globals |
|
from facefusion.face_cache import get_faces_cache, set_faces_cache |
|
from facefusion.face_helper import warp_face, create_static_anchors, distance_to_kps, distance_to_bbox, apply_nms |
|
from facefusion.typing import Frame, Face, FaceAnalyserOrder, FaceAnalyserAge, FaceAnalyserGender, ModelValue, Bbox, Kps, Score, Embedding |
|
from facefusion.utilities import resolve_relative_path, conditional_download |
|
from facefusion.vision import resize_frame_dimension |
|
|
|
FACE_ANALYSER = None |
|
THREAD_SEMAPHORE : threading.Semaphore = threading.Semaphore() |
|
THREAD_LOCK : threading.Lock = threading.Lock() |
|
MODELS : Dict[str, ModelValue] =\ |
|
{ |
|
'face_detector_retinaface': |
|
{ |
|
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/retinaface_10g.onnx', |
|
'path': resolve_relative_path('../.assets/models/retinaface_10g.onnx') |
|
}, |
|
'face_detector_yunet': |
|
{ |
|
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/yunet_2023mar.onnx', |
|
'path': resolve_relative_path('../.assets/models/yunet_2023mar.onnx') |
|
}, |
|
'face_recognizer_arcface_blendface': |
|
{ |
|
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/arcface_w600k_r50.onnx', |
|
'path': resolve_relative_path('../.assets/models/arcface_w600k_r50.onnx') |
|
}, |
|
'face_recognizer_arcface_inswapper': |
|
{ |
|
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/arcface_w600k_r50.onnx', |
|
'path': resolve_relative_path('../.assets/models/arcface_w600k_r50.onnx') |
|
}, |
|
'face_recognizer_arcface_simswap': |
|
{ |
|
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/arcface_simswap.onnx', |
|
'path': resolve_relative_path('../.assets/models/arcface_simswap.onnx') |
|
}, |
|
'gender_age': |
|
{ |
|
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/gender_age.onnx', |
|
'path': resolve_relative_path('../.assets/models/gender_age.onnx') |
|
} |
|
} |
|
|
|
|
|
def get_face_analyser() -> Any: |
|
global FACE_ANALYSER |
|
|
|
with THREAD_LOCK: |
|
if FACE_ANALYSER is None: |
|
if facefusion.globals.face_detector_model == 'retinaface': |
|
face_detector = onnxruntime.InferenceSession(MODELS.get('face_detector_retinaface').get('path'), providers = facefusion.globals.execution_providers) |
|
if facefusion.globals.face_detector_model == 'yunet': |
|
face_detector = cv2.FaceDetectorYN.create(MODELS.get('face_detector_yunet').get('path'), '', (0, 0)) |
|
if facefusion.globals.face_recognizer_model == 'arcface_blendface': |
|
face_recognizer = onnxruntime.InferenceSession(MODELS.get('face_recognizer_arcface_blendface').get('path'), providers = facefusion.globals.execution_providers) |
|
if facefusion.globals.face_recognizer_model == 'arcface_inswapper': |
|
face_recognizer = onnxruntime.InferenceSession(MODELS.get('face_recognizer_arcface_inswapper').get('path'), providers = facefusion.globals.execution_providers) |
|
if facefusion.globals.face_recognizer_model == 'arcface_simswap': |
|
face_recognizer = onnxruntime.InferenceSession(MODELS.get('face_recognizer_arcface_simswap').get('path'), providers = facefusion.globals.execution_providers) |
|
gender_age = onnxruntime.InferenceSession(MODELS.get('gender_age').get('path'), providers = facefusion.globals.execution_providers) |
|
FACE_ANALYSER =\ |
|
{ |
|
'face_detector': face_detector, |
|
'face_recognizer': face_recognizer, |
|
'gender_age': gender_age |
|
} |
|
return FACE_ANALYSER |
|
|
|
|
|
def clear_face_analyser() -> Any: |
|
global FACE_ANALYSER |
|
|
|
FACE_ANALYSER = None |
|
|
|
|
|
def pre_check() -> bool: |
|
if not facefusion.globals.skip_download: |
|
download_directory_path = resolve_relative_path('../.assets/models') |
|
model_urls =\ |
|
[ |
|
MODELS.get('face_detector_retinaface').get('url'), |
|
MODELS.get('face_detector_yunet').get('url'), |
|
MODELS.get('face_recognizer_arcface_inswapper').get('url'), |
|
MODELS.get('face_recognizer_arcface_simswap').get('url'), |
|
MODELS.get('gender_age').get('url') |
|
] |
|
conditional_download(download_directory_path, model_urls) |
|
return True |
|
|
|
|
|
def extract_faces(frame: Frame) -> List[Face]: |
|
face_detector_width, face_detector_height = map(int, facefusion.globals.face_detector_size.split('x')) |
|
frame_height, frame_width, _ = frame.shape |
|
temp_frame = resize_frame_dimension(frame, face_detector_width, face_detector_height) |
|
temp_frame_height, temp_frame_width, _ = temp_frame.shape |
|
ratio_height = frame_height / temp_frame_height |
|
ratio_width = frame_width / temp_frame_width |
|
if facefusion.globals.face_detector_model == 'retinaface': |
|
bbox_list, kps_list, score_list = detect_with_retinaface(temp_frame, temp_frame_height, temp_frame_width, face_detector_height, face_detector_width, ratio_height, ratio_width) |
|
return create_faces(frame, bbox_list, kps_list, score_list) |
|
elif facefusion.globals.face_detector_model == 'yunet': |
|
bbox_list, kps_list, score_list = detect_with_yunet(temp_frame, temp_frame_height, temp_frame_width, ratio_height, ratio_width) |
|
return create_faces(frame, bbox_list, kps_list, score_list) |
|
return [] |
|
|
|
|
|
def detect_with_retinaface(temp_frame : Frame, temp_frame_height : int, temp_frame_width : int, face_detector_height : int, face_detector_width : int, ratio_height : float, ratio_width : float) -> Tuple[List[Bbox], List[Kps], List[Score]]: |
|
face_detector = get_face_analyser().get('face_detector') |
|
bbox_list = [] |
|
kps_list = [] |
|
score_list = [] |
|
feature_strides = [ 8, 16, 32 ] |
|
feature_map_channel = 3 |
|
anchor_total = 2 |
|
prepare_frame = numpy.zeros((face_detector_height, face_detector_width, 3)) |
|
prepare_frame[:temp_frame_height, :temp_frame_width, :] = temp_frame |
|
temp_frame = (prepare_frame - 127.5) / 128.0 |
|
temp_frame = numpy.expand_dims(temp_frame.transpose(2, 0, 1), axis = 0).astype(numpy.float32) |
|
with THREAD_SEMAPHORE: |
|
detections = face_detector.run(None, |
|
{ |
|
face_detector.get_inputs()[0].name: temp_frame |
|
}) |
|
for index, feature_stride in enumerate(feature_strides): |
|
keep_indices = numpy.where(detections[index] >= facefusion.globals.face_detector_score)[0] |
|
if keep_indices.any(): |
|
stride_height = face_detector_height // feature_stride |
|
stride_width = face_detector_width // feature_stride |
|
anchors = create_static_anchors(feature_stride, anchor_total, stride_height, stride_width) |
|
bbox_raw = (detections[index + feature_map_channel] * feature_stride) |
|
kps_raw = detections[index + feature_map_channel * 2] * feature_stride |
|
for bbox in distance_to_bbox(anchors, bbox_raw)[keep_indices]: |
|
bbox_list.append(numpy.array( |
|
[ |
|
bbox[0] * ratio_width, |
|
bbox[1] * ratio_height, |
|
bbox[2] * ratio_width, |
|
bbox[3] * ratio_height |
|
])) |
|
for kps in distance_to_kps(anchors, kps_raw)[keep_indices]: |
|
kps_list.append(kps * [ ratio_width, ratio_height ]) |
|
for score in detections[index][keep_indices]: |
|
score_list.append(score[0]) |
|
return bbox_list, kps_list, score_list |
|
|
|
|
|
def detect_with_yunet(temp_frame : Frame, temp_frame_height : int, temp_frame_width : int, ratio_height : float, ratio_width : float) -> Tuple[List[Bbox], List[Kps], List[Score]]: |
|
face_detector = get_face_analyser().get('face_detector') |
|
face_detector.setInputSize((temp_frame_width, temp_frame_height)) |
|
face_detector.setScoreThreshold(facefusion.globals.face_detector_score) |
|
bbox_list = [] |
|
kps_list = [] |
|
score_list = [] |
|
with THREAD_SEMAPHORE: |
|
_, detections = face_detector.detect(temp_frame) |
|
if detections.any(): |
|
for detection in detections: |
|
bbox_list.append(numpy.array( |
|
[ |
|
detection[0] * ratio_width, |
|
detection[1] * ratio_height, |
|
(detection[0] + detection[2]) * ratio_width, |
|
(detection[1] + detection[3]) * ratio_height |
|
])) |
|
kps_list.append(detection[4:14].reshape((5, 2)) * [ ratio_width, ratio_height]) |
|
score_list.append(detection[14]) |
|
return bbox_list, kps_list, score_list |
|
|
|
|
|
def create_faces(frame : Frame, bbox_list : List[Bbox], kps_list : List[Kps], score_list : List[Score]) -> List[Face] : |
|
faces : List[Face] = [] |
|
if facefusion.globals.face_detector_score > 0: |
|
keep_indices = apply_nms(bbox_list, 0.4) |
|
for index in keep_indices: |
|
bbox = bbox_list[index] |
|
kps = kps_list[index] |
|
score = score_list[index] |
|
embedding, normed_embedding = calc_embedding(frame, kps) |
|
gender, age = detect_gender_age(frame, kps) |
|
faces.append(Face( |
|
bbox = bbox, |
|
kps = kps, |
|
score = score, |
|
embedding = embedding, |
|
normed_embedding = normed_embedding, |
|
gender = gender, |
|
age = age |
|
)) |
|
return faces |
|
|
|
|
|
def calc_embedding(temp_frame : Frame, kps : Kps) -> Tuple[Embedding, Embedding]: |
|
face_recognizer = get_face_analyser().get('face_recognizer') |
|
crop_frame, matrix = warp_face(temp_frame, kps, 'arcface_v2', (112, 112)) |
|
crop_frame = crop_frame.astype(numpy.float32) / 127.5 - 1 |
|
crop_frame = crop_frame[:, :, ::-1].transpose(2, 0, 1) |
|
crop_frame = numpy.expand_dims(crop_frame, axis = 0) |
|
embedding = face_recognizer.run(None, |
|
{ |
|
face_recognizer.get_inputs()[0].name: crop_frame |
|
})[0] |
|
embedding = embedding.ravel() |
|
normed_embedding = embedding / numpy.linalg.norm(embedding) |
|
return embedding, normed_embedding |
|
|
|
|
|
def detect_gender_age(frame : Frame, kps : Kps) -> Tuple[int, int]: |
|
gender_age = get_face_analyser().get('gender_age') |
|
crop_frame, affine_matrix = warp_face(frame, kps, 'arcface_v2', (96, 96)) |
|
crop_frame = numpy.expand_dims(crop_frame, axis = 0).transpose(0, 3, 1, 2).astype(numpy.float32) |
|
prediction = gender_age.run(None, |
|
{ |
|
gender_age.get_inputs()[0].name: crop_frame |
|
})[0][0] |
|
gender = int(numpy.argmax(prediction[:2])) |
|
age = int(numpy.round(prediction[2] * 100)) |
|
return gender, age |
|
|
|
|
|
def get_one_face(frame : Frame, position : int = 0) -> Optional[Face]: |
|
many_faces = get_many_faces(frame) |
|
if many_faces: |
|
try: |
|
return many_faces[position] |
|
except IndexError: |
|
return many_faces[-1] |
|
return None |
|
|
|
|
|
def get_many_faces(frame : Frame) -> List[Face]: |
|
try: |
|
faces_cache = get_faces_cache(frame) |
|
if faces_cache: |
|
faces = faces_cache |
|
else: |
|
faces = extract_faces(frame) |
|
set_faces_cache(frame, faces) |
|
if facefusion.globals.face_analyser_order: |
|
faces = sort_by_order(faces, facefusion.globals.face_analyser_order) |
|
if facefusion.globals.face_analyser_age: |
|
faces = filter_by_age(faces, facefusion.globals.face_analyser_age) |
|
if facefusion.globals.face_analyser_gender: |
|
faces = filter_by_gender(faces, facefusion.globals.face_analyser_gender) |
|
return faces |
|
except (AttributeError, ValueError): |
|
return [] |
|
|
|
|
|
def find_similar_faces(frame : Frame, reference_face : Face, face_distance : float) -> List[Face]: |
|
many_faces = get_many_faces(frame) |
|
similar_faces = [] |
|
if many_faces: |
|
for face in many_faces: |
|
if hasattr(face, 'normed_embedding') and hasattr(reference_face, 'normed_embedding'): |
|
current_face_distance = 1 - numpy.dot(face.normed_embedding, reference_face.normed_embedding) |
|
if current_face_distance < face_distance: |
|
similar_faces.append(face) |
|
return similar_faces |
|
|
|
|
|
def sort_by_order(faces : List[Face], order : FaceAnalyserOrder) -> List[Face]: |
|
if order == 'left-right': |
|
return sorted(faces, key = lambda face: face.bbox[0]) |
|
if order == 'right-left': |
|
return sorted(faces, key = lambda face: face.bbox[0], reverse = True) |
|
if order == 'top-bottom': |
|
return sorted(faces, key = lambda face: face.bbox[1]) |
|
if order == 'bottom-top': |
|
return sorted(faces, key = lambda face: face.bbox[1], reverse = True) |
|
if order == 'small-large': |
|
return sorted(faces, key = lambda face: (face.bbox[2] - face.bbox[0]) * (face.bbox[3] - face.bbox[1])) |
|
if order == 'large-small': |
|
return sorted(faces, key = lambda face: (face.bbox[2] - face.bbox[0]) * (face.bbox[3] - face.bbox[1]), reverse = True) |
|
if order == 'best-worst': |
|
return sorted(faces, key = lambda face: face.score, reverse = True) |
|
if order == 'worst-best': |
|
return sorted(faces, key = lambda face: face.score) |
|
return faces |
|
|
|
|
|
def filter_by_age(faces : List[Face], age : FaceAnalyserAge) -> List[Face]: |
|
filter_faces = [] |
|
for face in faces: |
|
if face.age < 13 and age == 'child': |
|
filter_faces.append(face) |
|
elif face.age < 19 and age == 'teen': |
|
filter_faces.append(face) |
|
elif face.age < 60 and age == 'adult': |
|
filter_faces.append(face) |
|
elif face.age > 59 and age == 'senior': |
|
filter_faces.append(face) |
|
return filter_faces |
|
|
|
|
|
def filter_by_gender(faces : List[Face], gender : FaceAnalyserGender) -> List[Face]: |
|
filter_faces = [] |
|
for face in faces: |
|
if face.gender == 0 and gender == 'female': |
|
filter_faces.append(face) |
|
if face.gender == 1 and gender == 'male': |
|
filter_faces.append(face) |
|
return filter_faces |
|
|