import gradio as gr import os from dotenv import load_dotenv load_dotenv() # Use followin json data to feed to Chroma import json <<<<<<< HEAD with open("final_data_for_vectorstore.json",'r') as file: ======= with open("data/processed/final_data_for_vectorstore.json",'r') as file: >>>>>>> 612a8de184fb59eb13e55539c9c67457aef5f624 data4chroma= json.load(file) # Initiate vector store from langchain_community.vectorstores import Chroma from langchain_huggingface import HuggingFaceEmbeddings embedding_function=HuggingFaceEmbeddings(model_name='all-MiniLM-L6-v2') vectorstore=Chroma.from_texts(texts=data4chroma['chunks'], embedding=embedding_function, ids=data4chroma["chunk_ids"], metadatas=data4chroma["chunk_metadatas"], collection_name='qual_books', ) from langchain_core.prompts import ChatPromptTemplate template="""You are a helpful AI assistant. Please answer the query based on provided context.\ *Do not make any assumptions if you don't know the answer. In that case just respond by saying\ the answer of query cannot be found in the given context. *The English of the provided text is not well-structured. You should respond with the same content but in improved, clear, and correct English, without simply copying the original text. *Also provide the response in bullet points but in detail where necessary. Context: {context} Query: {question} Answer: """ prompt= ChatPromptTemplate.from_template(template) from langchain_huggingface import HuggingFaceEndpoint llm=HuggingFaceEndpoint(repo_id="meta-llama/Meta-Llama-3.1-70B-Instruct", max_new_tokens=3000, top_k=20, top_p=0.95, typical_p=0.95, temperature=0.001, repetition_penalty=1.03, huggingfacehub_api_token=os.getenv("huggingfacehub_api_token") ) chain = prompt | llm def respond( query: str, data_type: str = "Preprocessed doc", llm_chain = chain, vectorstore=vectorstore ): """ Generate a response to a user query using document retrieval and language model completion Parameters: chatbot (List): List representing the chatbot's conversation history. message (str): The user's query. data_type (str): Type of data used for document retrieval temperature (float); Returns: Tuple: A tuple containing an empty string, the updated chat history, and reference from retrieved documents """ # Retrieve embedding function from code env resources if data_type=="Preprocessed doc": retriever=vectorstore.as_retriever(search_type="mmr", search_kwargs={"k":10,"fetch_k":100}) retrieved_docs=retriever.invoke(query) input_2_chain={"context": retrieved_docs, "question":query} response=llm_chain.invoke(input_2_chain) return response demo = gr.Interface(fn=respond, inputs="text", outputs="text") demo.launch(share=True)