Spaces:
Runtime error
Runtime error
sgonzalezsilot
commited on
Commit
•
05d6563
1
Parent(s):
7bb27c9
Copiando proyecto TFG
Browse files- README.md +3 -3
- app.py +75 -0
- requeriments.txt +3 -0
README.md
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
---
|
2 |
title: TFM DATCOM
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
sdk_version: 3.35.2
|
8 |
app_file: app.py
|
|
|
1 |
---
|
2 |
title: TFM DATCOM
|
3 |
+
emoji: 📰
|
4 |
+
colorFrom: red
|
5 |
+
colorTo: blue
|
6 |
sdk: gradio
|
7 |
sdk_version: 3.35.2
|
8 |
app_file: app.py
|
app.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from huggingface_hub import from_pretrained_keras
|
3 |
+
from huggingface_hub import KerasModelHubMixin
|
4 |
+
import transformers
|
5 |
+
from transformers import AutoTokenizer
|
6 |
+
import numpy as np
|
7 |
+
|
8 |
+
|
9 |
+
m = from_pretrained_keras('sgonzalezsilot/FakeNews-Detection-Twitter-Thesis')
|
10 |
+
|
11 |
+
MODEL = "digitalepidemiologylab/covid-twitter-bert-v2"
|
12 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL)
|
13 |
+
|
14 |
+
def bert_encode(tokenizer,data,maximum_length) :
|
15 |
+
input_ids = []
|
16 |
+
attention_masks = []
|
17 |
+
|
18 |
+
|
19 |
+
for i in range(len(data)):
|
20 |
+
encoded = tokenizer.encode_plus(
|
21 |
+
|
22 |
+
data[i],
|
23 |
+
add_special_tokens=True,
|
24 |
+
max_length=maximum_length,
|
25 |
+
pad_to_max_length=True,
|
26 |
+
truncation = True,
|
27 |
+
return_attention_mask=True,
|
28 |
+
)
|
29 |
+
|
30 |
+
input_ids.append(encoded['input_ids'])
|
31 |
+
attention_masks.append(encoded['attention_mask'])
|
32 |
+
|
33 |
+
return np.array(input_ids),np.array(attention_masks)
|
34 |
+
|
35 |
+
# train_encodings = tokenizer(train_texts, truncation=True, padding=True)
|
36 |
+
# test_encodings = tokenizer(test_texts, truncation=True, padding=True)
|
37 |
+
|
38 |
+
|
39 |
+
|
40 |
+
|
41 |
+
def get_news(input_text):
|
42 |
+
sentence_length = 110
|
43 |
+
train_input_ids,train_attention_masks = bert_encode(tokenizer,[input_text],sentence_length)
|
44 |
+
|
45 |
+
pred = m.predict([train_input_ids,train_attention_masks])
|
46 |
+
pred = np.round(pred)
|
47 |
+
pred = pred.flatten()
|
48 |
+
|
49 |
+
if pred == 1:
|
50 |
+
result = "Fake News"
|
51 |
+
else:
|
52 |
+
result = "True News"
|
53 |
+
return result
|
54 |
+
|
55 |
+
tweet_input = gr.Textbox(label = "Enter the tweet")
|
56 |
+
output = gr.Textbox(label="Result")
|
57 |
+
|
58 |
+
descripcion = (
|
59 |
+
"""
|
60 |
+
<center>
|
61 |
+
Demo of the Covid-Twitter Fake News Detection System from my thesis.
|
62 |
+
</center>
|
63 |
+
"""
|
64 |
+
)
|
65 |
+
iface = gr.Interface(fn = get_news,
|
66 |
+
inputs = tweet_input,
|
67 |
+
outputs = output,
|
68 |
+
title = 'Covid Fake News Detection System',
|
69 |
+
description=descripcion,
|
70 |
+
examples=["CDC Recommends Mothers Stop Breastfeeding To Boost Vaccine Efficacy",
|
71 |
+
"An article claiming that Bill Gates' vaccine would modify human DNA.",
|
72 |
+
"In the first half of 2020 WHO coordinated the logistics & shipped 😷More than 3M surgical masks 🧤More than 2M gloves 🧰More than 1M diagnostic kits 🥼More than 200K gowns 🛡️More than 100K face shields to 135 countries across the🌍🌎🌏. https://t.co/iz4YQkbSGM",
|
73 |
+
"Many COVID-19 treatments may be associated with adverse skin reactions and should be considered in a differential diagnosis new report says. https://t.co/GLSeYX2VDq"])
|
74 |
+
|
75 |
+
iface.launch()
|
requeriments.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
tensorflow~=2.8
|
2 |
+
transformers
|
3 |
+
huggingface-hub
|