Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import pipeline | |
from diffusers import StableDiffusionPipeline | |
import torch | |
import wget | |
# Define the device to use (either "cuda" for GPU or "cpu" for CPU) | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
# Load the models | |
# Image captioning model to generate captions from uploaded images | |
caption_image = pipeline("image-to-text", model="Salesforce/blip-image-captioning-large", device=device) | |
# Stable Diffusion model for generating new images based on captions | |
sd_pipeline = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5").to(device) | |
# Load the translation model (English to Arabic) | |
translator = pipeline( | |
task="translation", | |
model="facebook/nllb-200-distilled-600M", | |
torch_dtype=torch.bfloat16, | |
device=device | |
) | |
# Download the image | |
url1 = "https://github.com/Shahad-b/Image-database/blob/main/sea.jpg?raw=true" | |
sea = wget.download(url1) | |
url2 = "https://github.com/Shahad-b/Image-database/blob/main/Cat.jpeg?raw=true" | |
Cat = wget.download(url2) | |
url3 = "https://github.com/Shahad-b/Image-database/blob/main/Car.jpeg?raw=true" | |
Car = wget.download(url3) | |
# Function to generate images based on the image's caption | |
def generate_image_and_translate(image, num_images=1): | |
# Generate caption in English from the uploaded image | |
caption_en = caption_image(image)[0]['generated_text'] | |
# Translate the English caption to Arabic | |
caption_ar = translator(caption_en, src_lang="eng_Latn", tgt_lang="arb_Arab")[0]['translation_text'] | |
generated_images = [] | |
# Generate the specified number of images based on the English caption | |
for _ in range(num_images): | |
generated_image = sd_pipeline(prompt=caption_en).images[0] | |
generated_images.append(generated_image) | |
# Return the generated images along with both captions | |
return generated_images, caption_en, caption_ar | |
# Set up the Gradio interface | |
interface = gr.Interface( | |
fn=generate_image_and_translate, # Function to call when processing input | |
inputs=[ | |
gr.Image(type="pil", label="π€ Upload Image"), # Input for image upload | |
gr.Slider(minimum=1, maximum=10, label="π’ Number of Images", value=1, step=1) # Slider to select number of images | |
], | |
outputs=[ | |
gr.Gallery(label="πΌοΈ Generated Images"), | |
gr.Textbox(label="π Generated Caption (English)", interactive=False), | |
gr.Textbox(label="π Translated Caption (Arabic)", interactive=False) | |
], | |
title="Image Generation and Captioning", # Title of the interface | |
description="Upload an image to extract a caption and display it in both Arabic and English. Then, a new image will be generated based on that caption.", # Description | |
examples=[ # Example input | |
["sea.jpg", 3], | |
["Cat.jpeg", 4], | |
["Car.jpeg", 2] | |
], | |
theme='freddyaboulton/dracula_revamped' # Determine theme | |
) | |
# Launch the Gradio application | |
interface.launch() |