from fastai.vision.all import * import gradio as gr learn = load_learner("model/what_brew_machine_v1.pkl") categories = tuple(learn.dls.vocab) def what_machine(img): pred, idx, probs = learn.predict(img) return dict(zip(categories, map(float, probs))) image = gr.inputs.Image(shape=(192,192)) label = gr.outputs.Label() examples = ['sample_imgs/aeropress_go.jpg', 'sample_imgs/delonghi_espresso.jpg', 'sample_imgs/moka_pot_red.jpeg'] intf = gr.Interface(fn=what_machine, inputs=image, outputs=label, examples=examples) intf.launch(inline=False)