sharmaarush commited on
Commit
29fad46
1 Parent(s): 192c276

initial commit

Browse files
Files changed (3) hide show
  1. README.md +27 -6
  2. app.py +91 -0
  3. requirements.txt +8 -0
README.md CHANGED
@@ -1,13 +1,34 @@
1
  ---
2
- title: Edit Background
3
- emoji: 🏃
4
- colorFrom: green
5
- colorTo: green
6
  sdk: gradio
7
- sdk_version: 4.28.1
8
  app_file: app.py
9
  pinned: false
10
  license: apache-2.0
11
  ---
12
 
13
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ title: Edit Image
3
+ emoji: 💻
4
+ colorFrom: purple
5
+ colorTo: purple
6
  sdk: gradio
7
+ sdk_version: 4.26.0
8
  app_file: app.py
9
  pinned: false
10
  license: apache-2.0
11
  ---
12
 
13
+ Background_editor
14
+
15
+ #Setting up locally:
16
+
17
+ 1. git clone the repo and cd into the directory ` cd Edit_image`
18
+ 2. install the dependencies using ` pip install -r requirements.txt`
19
+ 3. run the app file using ` gradio app.py`
20
+
21
+ # Approach:
22
+
23
+ Reference: 'https://huggingface.co/docs/diffusers/en/using-diffusers/inpaint'
24
+
25
+ Model used: `runwayml/stable-diffusion-inpainting`
26
+
27
+ 1. Loading the required image
28
+ 2. Creating a binary mask for the image
29
+ 3. Invert the mask created
30
+ 4. Convert the mask into an image to be passes into the model pipline
31
+ 5. Pass the inverted mask image into the pipeline along with the prompt
32
+
33
+ Collab Notebook link (easier and also can use gpu for faster compute)
34
+ Hosted on hugging face (`https://huggingface.co/spaces/sharmaarush/Edit_image`) this might take time because running on cpu
app.py ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from diffusers.utils import load_image, make_image_grid
2
+ import gradio as gr
3
+ import cv2
4
+ import numpy as np
5
+ from diffusers import StableDiffusionControlNetInpaintPipeline, ControlNetModel, UniPCMultistepScheduler
6
+ import torch
7
+
8
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
9
+
10
+ controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_inpaint", torch_dtype=torch.float16, use_safetensors=True)
11
+ pipe = StableDiffusionControlNetInpaintPipeline.from_pretrained(
12
+ "runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16, use_safetensors=True
13
+ ).to(device)
14
+
15
+ pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
16
+ pipe.enable_model_cpu_offload()
17
+
18
+ def create_mask(img):
19
+ img = cv2.imread(img, cv2.IMREAD_GRAYSCALE)
20
+
21
+ # Create a binary mask
22
+ mask = cv2.threshold(img, 254, 255, cv2.THRESH_BINARY)[1]
23
+
24
+ # Invert the mask
25
+ inverted_mask = cv2.bitwise_not(mask)
26
+ return mask
27
+
28
+ def load_and_resize_images(image_path, mask_path, target_size=(512, 512)):
29
+ init_image = load_image(image_path)
30
+ init_image = init_image.resize(target_size)
31
+
32
+ mask_image = load_image(mask_path)
33
+ mask_image = mask_image.resize(target_size)
34
+
35
+ return init_image, mask_image
36
+
37
+ def make_inpaint_condition(image, image_mask):
38
+ image = np.array(image.convert("RGB")).astype(np.float32) / 255.0
39
+ image_mask = np.array(image_mask.convert("L")).astype(np.float32) / 255.0
40
+
41
+ assert image.shape[0:1] == image_mask.shape[0:1]
42
+ image[image_mask > 0.5] = -1.0 # set as masked pixel
43
+ image = np.expand_dims(image, 0).transpose(0, 3, 1, 2)
44
+ image = torch.from_numpy(image)
45
+ return image
46
+
47
+ def generate_inpainting(init_image, mask_image, prompt, negative_prompt=None):
48
+ control_image = make_inpaint_condition(init_image, mask_image)
49
+
50
+ output = pipe(
51
+ prompt=prompt,
52
+ negative_prompt=negative_prompt,
53
+ num_inference_steps=50,
54
+ eta=1.0,
55
+ image=init_image,
56
+ mask_image=mask_image,
57
+ control_image=control_image,
58
+ ).images[0]
59
+
60
+ return output
61
+
62
+ def process_images_and_generate_inpainting(image_path, mask_path, prompt, negative_prompt=None):
63
+ init_image, mask_image = load_and_resize_images(image_path, mask_path)
64
+ output_image = generate_inpainting(init_image, mask_image, prompt, negative_prompt)
65
+ return output_image
66
+
67
+ maskGen = gr.Interface(
68
+ fn=create_mask,
69
+ inputs=gr.Image(type='filepath', label="Original Image"),
70
+ outputs=gr.Image(label="Masked Image Image"),
71
+ allow_flagging="never")
72
+
73
+ inpaintImg = gr.Interface(
74
+ fn=process_images_and_generate_inpainting,
75
+ inputs=[
76
+ gr.Image(type='filepath', label="Original Image"),
77
+ gr.Image(type='filepath', label="Masked Image"),
78
+ gr.Textbox(label="Prompt"),
79
+ gr.Textbox(label="Negative Prompt")
80
+ ],
81
+ outputs=[
82
+ gr.Image(label="Result Image")
83
+ ],
84
+ allow_flagging="never")
85
+
86
+ demo = gr.TabbedInterface(
87
+ [maskGen, inpaintImg],
88
+ ["Generate Mask", "Make new Image"]
89
+ )
90
+
91
+ demo.launch(share=True)
requirements.txt ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ diffusers
2
+ gradio
3
+ opencv-python-headless
4
+ torch
5
+ torchvision
6
+ transformers
7
+ accelerate
8
+