import streamlit.components.v1 as components from streamlit_player import st_player from transformers import pipeline import streamlit as st import random def tester(text): classifier = pipeline("sentiment-analysis", model='bhadresh-savani/distilbert-base-uncased-emotion') results = classifier(text) if (results[0]['label']=="joy"): #songs for joy emotion with open('joyplaylist.txt') as f: contents = f.read() components.html(contents,width=560,height=325) contents.close() elif (results[0]['label']=="anger"): #songs for anger emotion with open('angryplaylist.txt') as f: contents = f.read() components.html(contents,width=560,height=325) contents.close() elif (results[0]['label']=="disgust"): st_player("https://www.youtube.com/watch?v=zWq2TT3ieGE") elif (results[0]['label']=="fear"): with open('fearplaylist.txt') as f: contents = f.read() components.html(contents,width=560,height=325) contents.close() elif (results[0]['label']=="sadness"): #songs for sadness emotion with open('sadplaylist.txt') as f: contents = f.read() components.html(contents,width=560,height=325) contents.close() elif (results[0]['label']=="surprise"): st.write("gulat ka noh") elif (results[0]['label']=="love"): with open('loveplaylist.txt') as f: contents = f.read() components.html(contents,width=560,height=325) contents.close() return results[0]['label'] st.header("stream your emotions") #st.write("Enter a text/phrase/sentence. A corresponding song will be recommended based on its emotion") emo = st.text_input("Enter a text/phrase/sentence. A corresponding song will be recommended based on its emotion.") st.write("Examples: i love you so much") st.write("I am exhausted.") st.write("I feel energetic.") st.write("bro you scared me there") tester(emo)