File size: 17,268 Bytes
9afcee2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

import torch
from torch import nn
from torch.nn import functional as F
import torchvision

from typing import Any, Dict, List, Tuple

from .sam.image_encoder import ImageEncoderViT
from .sam.mask_decoder import MaskDecoder
from .sam.prompt_encoder import PromptEncoder
from .detr import box_ops
from .detr.segmentation import dice_loss, sigmoid_focal_loss
from .detr.misc import nested_tensor_from_tensor_list, interpolate
from . import axis_ops, ilnr_loss #, pwnp_loss
from .vnl_loss import VNL_Loss
from .midas_loss import MidasLoss


class SamTransformer(nn.Module):
    mask_threshold: float = 0.0
    image_format: str = "RGB"

    def __init__(
        self,
        image_encoder: ImageEncoderViT,
        prompt_encoder: PromptEncoder,
        mask_decoder: MaskDecoder,
        affordance_decoder: MaskDecoder,
        depth_decoder: MaskDecoder,
        transformer_hidden_dim: int,
        backbone_name: str,
        pixel_mean: List[float] = [123.675, 116.28, 103.53],
        pixel_std: List[float] = [58.395, 57.12, 57.375],
    ) -> None:
        """
        SAM predicts object masks from an image and input prompts.

        Arguments:
          image_encoder (ImageEncoderViT): The backbone used to encode the
            image into image embeddings that allow for efficient mask prediction.
          prompt_encoder (PromptEncoder): Encodes various types of input prompts.
          mask_decoder (MaskDecoder): Predicts masks from the image embeddings
            and encoded prompts.
          pixel_mean (list(float)): Mean values for normalizing pixels in the input image.
          pixel_std (list(float)): Std values for normalizing pixels in the input image.
        """
        super().__init__()
        self.image_encoder = image_encoder
        self.prompt_encoder = prompt_encoder
        self.mask_decoder = mask_decoder
        self.affordance_decoder = affordance_decoder
        
        # depth head
        self.depth_decoder = depth_decoder
        self.depth_query = nn.Embedding(2, transformer_hidden_dim)
        fov = torch.tensor(1.0)
        image_size = (768, 1024)
        focal_length = (image_size[1] / 2 / torch.tan(fov / 2)).item()
        self.vnl_loss = VNL_Loss(focal_length, focal_length, image_size)
        self.midas_loss = MidasLoss(alpha=0.1)

        self.register_buffer("pixel_mean", torch.Tensor(pixel_mean).view(-1, 1, 1), False)
        self.register_buffer("pixel_std", torch.Tensor(pixel_std).view(-1, 1, 1), False)

        # if backbone_name == 'vit_h':
        #     checkpoint_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), '..', 'checkpoints', 'sam_vit_h_4b8939.pth')
        # elif backbone_name == 'vit_l':
        #     checkpoint_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), '..', 'checkpoints', 'sam_vit_l_0b3195.pth')
        # elif backbone_name == 'vit_b':
        #     checkpoint_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), '..', 'checkpoints', 'sam_vit_b_01ec64.pth')
        # else:
        #     raise ValueError

        # with open(checkpoint_path, "rb") as f:
        #     state_dict = torch.load(f)
        # self.load_state_dict(state_dict, strict=False)

        # self.affordance_decoder.load_state_dict(self.mask_decoder.state_dict(), strict=False)
        # self.depth_decoder.load_state_dict(self.mask_decoder.state_dict(), strict=False)

        self.num_queries = 15
        self._affordance_focal_alpha = 0.95
        self._ignore_index = -100

    @property
    def device(self) -> Any:
        return self.pixel_mean.device
    
    def freeze_layers(self, names):
        """
        Freeze layers in 'names'.
        """
        for name, param in self.named_parameters():
            for freeze_name in names:
                if freeze_name in name:
                    param.requires_grad = False
    
    def forward(
        self,
        image: torch.Tensor,
        valid: torch.Tensor,
        keypoints: torch.Tensor,
        bbox: torch.Tensor,
        masks: torch.Tensor,
        movable: torch.Tensor,
        rigid: torch.Tensor,
        kinematic: torch.Tensor,
        action: torch.Tensor,
        affordance: torch.Tensor,
        affordance_map: torch.FloatTensor,
        depth: torch.Tensor,
        axis: torch.Tensor,
        fov: torch.Tensor,
        backward: bool = True,
        **kwargs,
    ):
        device = image.device
        multimask_output = False
        
        # image encoder
        # pad image to square
        h, w = image.shape[-2:]
        padh = self.image_encoder.img_size - h
        padw = self.image_encoder.img_size - w
        x = F.pad(image, (0, padw, 0, padh))
        image_embeddings = self.image_encoder(x)

        outputs_seg_masks = []
        outputs_movable = []
        outputs_rigid = []
        outputs_kinematic = []
        outputs_action = []
        outputs_axis = []
        outputs_boxes = []
        outputs_aff_masks = []
        outputs_depth = []
        for idx, curr_embedding in enumerate(image_embeddings):
            point_coords = keypoints[idx].unsqueeze(1)
            point_labels = torch.ones_like(point_coords[:, :, 0])
            points = (point_coords, point_labels)
            sparse_embeddings, dense_embeddings = self.prompt_encoder(
                points=points,
                boxes=None,
                masks=None,
            )
            
            # mask decoder
            low_res_masks, iou_predictions, output_movable, output_rigid, output_kinematic, output_action, output_axis = self.mask_decoder(
                image_embeddings=curr_embedding.unsqueeze(0),
                image_pe=self.prompt_encoder.get_dense_pe(),
                sparse_prompt_embeddings=sparse_embeddings,
                dense_prompt_embeddings=dense_embeddings,
                multimask_output=multimask_output,
            )
            output_mask = self.postprocess_masks(
                low_res_masks,
                input_size=image.shape[-2:],
                original_size=(768, 1024),
            )
            outputs_seg_masks.append(output_mask[:, 0])
            outputs_movable.append(output_movable[:, 0])
            outputs_rigid.append(output_rigid[:, 0])
            outputs_kinematic.append(output_kinematic[:, 0])
            outputs_action.append(output_action[:, 0])
            outputs_axis.append(output_axis[:, 0])

            # convert masks to boxes for evaluation
            pred_mask_bbox = (output_mask[:, 0].clone() > 0.0).long() 
            empty_mask = pred_mask_bbox.sum(dim=-1).sum(dim=-1)
            pred_mask_bbox[empty_mask == 0] += 1
            pred_boxes = torchvision.ops.masks_to_boxes(pred_mask_bbox)
            #pred_boxes = box_ops.rescale_bboxes(pred_boxes, [1 / self._image_size[1], 1 / self._image_size[0]])
            pred_boxes = box_ops.rescale_bboxes(pred_boxes, [1 / 768, 1 / 1024])
            outputs_boxes.append(pred_boxes)

            # affordance decoder
            low_res_masks, iou_predictions = self.affordance_decoder(
                image_embeddings=curr_embedding.unsqueeze(0),
                image_pe=self.prompt_encoder.get_dense_pe(),
                sparse_prompt_embeddings=sparse_embeddings,
                dense_prompt_embeddings=dense_embeddings,
                multimask_output=multimask_output,
            )
            output_aff_masks = self.postprocess_masks(
                low_res_masks,
                input_size=image.shape[-2:],
                original_size=(192, 256),
            )
            outputs_aff_masks.append(output_aff_masks[:, 0])

            # depth decoder
            bs = keypoints.shape[0]
            #depth_sparse_embeddings = self.depth_query.weight.unsqueeze(0).repeat(bs, 1, 1)
            depth_sparse_embeddings = self.depth_query.weight.unsqueeze(0)
            #depth_dense_embeddings = torch.zeros((bs, 256, 64, 64)).to(dense_embeddings.device)
            depth_dense_embeddings = torch.zeros((1, 256, 64, 64)).to(dense_embeddings.device)
            low_res_masks, iou_predictions = self.depth_decoder(
                image_embeddings=curr_embedding.unsqueeze(0),
                image_pe=self.prompt_encoder.get_dense_pe(),
                sparse_prompt_embeddings=depth_sparse_embeddings,
                dense_prompt_embeddings=depth_dense_embeddings,
                multimask_output=multimask_output,
            )
            output_depth = self.postprocess_masks(
                low_res_masks,
                input_size=image.shape[-2:],
                original_size=(768, 1024),
            )
            outputs_depth.append(output_depth[:, 0])
        
        outputs_seg_masks = torch.stack(outputs_seg_masks)
        outputs_movable = torch.stack(outputs_movable)
        outputs_rigid = torch.stack(outputs_rigid)
        outputs_kinematic = torch.stack(outputs_kinematic)
        outputs_action = torch.stack(outputs_action)
        outputs_axis = torch.stack(outputs_axis)
        outputs_boxes = torch.stack(outputs_boxes)
        outputs_aff_masks = torch.stack(outputs_aff_masks)
        outputs_depth = torch.stack(outputs_depth)

 
        out = {
            'pred_boxes': outputs_boxes,
            'pred_movable': outputs_movable,
            'pred_rigid': outputs_rigid,
            'pred_kinematic': outputs_kinematic,
            'pred_action': outputs_action,
            'pred_masks': outputs_seg_masks,
            'pred_axis': outputs_axis,
            'pred_depth': outputs_depth,
            # 'pred_depth': outputs_seg_masks[:, :1].sigmoid(),
            'pred_affordance': outputs_aff_masks,
        }

        if not backward:
            return out

        # backward
        src_boxes = outputs_boxes
        target_boxes = bbox
        target_boxes = box_ops.box_xyxy_to_cxcywh(target_boxes)
        bbox_valid = bbox[:, :, 0] > -0.5
        num_boxes = bbox_valid.sum()

        out['loss_bbox'] = torch.tensor(0.0, requires_grad=True).to(device)
        out['loss_giou'] = torch.tensor(0.0, requires_grad=True).to(device)

        # affordance
        # out['loss_affordance'] = torch.tensor(0.0, requires_grad=True).to(device)
        affordance_valid = affordance[:, :, 0] > -0.5
        if affordance_valid.sum() == 0:
            out['loss_affordance'] = torch.tensor(0.0, requires_grad=True).to(device)
        else:
            src_aff_masks = outputs_aff_masks[affordance_valid]
            tgt_aff_masks = affordance_map[affordance_valid]
            src_aff_masks = src_aff_masks.flatten(1)
            tgt_aff_masks = tgt_aff_masks.flatten(1)
            loss_aff = sigmoid_focal_loss(
                src_aff_masks,
                tgt_aff_masks,
                affordance_valid.sum(),
                alpha=self._affordance_focal_alpha,
            )
            out['loss_affordance'] = loss_aff

        # axis
        axis_valid = axis[:, :, 0] > 0.0
        num_axis = axis_valid.sum()
        if num_axis == 0:
            out['loss_axis_angle'] = torch.tensor(0.0, requires_grad=True).to(device)
            out['loss_axis_offset'] = torch.tensor(0.0, requires_grad=True).to(device)
            out['loss_eascore'] = torch.tensor(0.0, requires_grad=True).to(device)
        else:
            # regress angle
            src_axis_angle = outputs_axis[axis_valid]
            src_axis_angle_norm = F.normalize(src_axis_angle[:, :2])
            src_axis_angle = torch.cat((src_axis_angle_norm, src_axis_angle[:, 2:]), dim=-1)
            target_axis_xyxy = axis[axis_valid]
            
            axis_center = target_boxes[axis_valid].clone()
            axis_center[:, 2:] = axis_center[:, :2] 
            target_axis_angle = axis_ops.line_xyxy_to_angle(target_axis_xyxy, center=axis_center)

            loss_axis_angle = F.l1_loss(src_axis_angle[:, :2], target_axis_angle[:, :2], reduction='sum') / num_axis
            loss_axis_offset = F.l1_loss(src_axis_angle[:, 2:], target_axis_angle[:, 2:], reduction='sum') / num_axis
            out['loss_axis_angle'] = loss_axis_angle
            out['loss_axis_offset'] = loss_axis_offset
            
            src_axis_xyxy = axis_ops.line_angle_to_xyxy(src_axis_angle, center=axis_center)
            target_axis_xyxy = axis_ops.line_angle_to_xyxy(target_axis_angle, center=axis_center)

            axis_eascore, _, _ = axis_ops.ea_score(src_axis_xyxy, target_axis_xyxy)
            loss_eascore = 1 - axis_eascore
            out['loss_eascore'] = loss_eascore.mean()


        loss_movable = F.cross_entropy(outputs_movable.permute(0, 2, 1), movable, ignore_index=self._ignore_index)
        if torch.isnan(loss_movable):
            loss_movable = torch.tensor(0.0, requires_grad=True).to(device)
        out['loss_movable'] = loss_movable

        loss_rigid = F.cross_entropy(outputs_rigid.permute(0, 2, 1), rigid, ignore_index=self._ignore_index)
        if torch.isnan(loss_rigid):
            loss_rigid = torch.tensor(0.0, requires_grad=True).to(device)
        out['loss_rigid'] = loss_rigid

        loss_kinematic = F.cross_entropy(outputs_kinematic.permute(0, 2, 1), kinematic, ignore_index=self._ignore_index)
        if torch.isnan(loss_kinematic):
            loss_kinematic = torch.tensor(0.0, requires_grad=True).to(device)
        out['loss_kinematic'] = loss_kinematic

        loss_action = F.cross_entropy(outputs_action.permute(0, 2, 1), action, ignore_index=self._ignore_index)
        if torch.isnan(loss_action):
            loss_action = torch.tensor(0.0, requires_grad=True).to(device)
        out['loss_action'] = loss_action

        # depth backward
        out['loss_depth'] = torch.tensor(0.0, requires_grad=True).to(device)
        out['loss_vnl'] = torch.tensor(0.0, requires_grad=True).to(device)
        # (bs, 1, H, W)
        src_depths = interpolate(outputs_depth, size=depth.shape[-2:], mode='bilinear', align_corners=False)
        src_depths = src_depths.clamp(min=0.0, max=1.0)
        tgt_depths = depth.unsqueeze(1)  # (bs, H, W)
        valid_depth = depth[:, 0, 0] > 0
        if valid_depth.any():
            src_depths = src_depths[valid_depth]
            tgt_depths = tgt_depths[valid_depth]
            depth_mask = tgt_depths > 1e-8
            midas_loss, ssi_loss, reg_loss = self.midas_loss(src_depths, tgt_depths, depth_mask)
            loss_vnl = self.vnl_loss(tgt_depths, src_depths)
            out['loss_depth'] = midas_loss
            out['loss_vnl'] = loss_vnl
        else:
            out['loss_depth'] = torch.tensor(0.0, requires_grad=True).to(device)
            out['loss_vnl'] = torch.tensor(0.0, requires_grad=True).to(device)
 
        # mask backward
        tgt_masks = masks
        src_masks = interpolate(outputs_seg_masks, size=tgt_masks.shape[-2:], mode='bilinear', align_corners=False)
        valid_mask = tgt_masks.sum(dim=-1).sum(dim=-1) > 10
        if valid_mask.sum() == 0:
            out['loss_mask'] = torch.tensor(0.0, requires_grad=True).to(device)
            out['loss_dice'] = torch.tensor(0.0, requires_grad=True).to(device)
        else:
            num_masks = valid_mask.sum()
            src_masks = src_masks[valid_mask]
            tgt_masks = tgt_masks[valid_mask]
            src_masks = src_masks.flatten(1)
            tgt_masks = tgt_masks.flatten(1)
            tgt_masks = tgt_masks.view(src_masks.shape)
            out['loss_mask'] = sigmoid_focal_loss(src_masks, tgt_masks.float(), num_masks)
            out['loss_dice'] = dice_loss(src_masks, tgt_masks, num_masks)

        return out

    def postprocess_masks(
        self,
        masks: torch.Tensor,
        input_size: Tuple[int, ...],
        original_size: Tuple[int, ...],
    ) -> torch.Tensor:
        """
        Remove padding and upscale masks to the original image size.

        Arguments:
          masks (torch.Tensor): Batched masks from the mask_decoder,
            in BxCxHxW format.
          input_size (tuple(int, int)): The size of the image input to the
            model, in (H, W) format. Used to remove padding.
          original_size (tuple(int, int)): The original size of the image
            before resizing for input to the model, in (H, W) format.

        Returns:
          (torch.Tensor): Batched masks in BxCxHxW format, where (H, W)
            is given by original_size.
        """
        masks = F.interpolate(
            masks,
            (self.image_encoder.img_size, self.image_encoder.img_size),
            mode="bilinear",
            align_corners=False,
        )
        masks = masks[..., : input_size[0], : input_size[1]]
        masks = F.interpolate(masks, original_size, mode="bilinear", align_corners=False)
        return masks

    def preprocess(self, x: torch.Tensor) -> torch.Tensor:
        """Normalize pixel values and pad to a square input."""
        # Normalize colors
        x = (x - self.pixel_mean) / self.pixel_std

        # Pad
        h, w = x.shape[-2:]
        padh = self.image_encoder.img_size - h
        padw = self.image_encoder.img_size - w
        x = F.pad(x, (0, padw, 0, padh))
        return x