Spaces:
Runtime error
Runtime error
File size: 17,268 Bytes
9afcee2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import torch
from torch import nn
from torch.nn import functional as F
import torchvision
from typing import Any, Dict, List, Tuple
from .sam.image_encoder import ImageEncoderViT
from .sam.mask_decoder import MaskDecoder
from .sam.prompt_encoder import PromptEncoder
from .detr import box_ops
from .detr.segmentation import dice_loss, sigmoid_focal_loss
from .detr.misc import nested_tensor_from_tensor_list, interpolate
from . import axis_ops, ilnr_loss #, pwnp_loss
from .vnl_loss import VNL_Loss
from .midas_loss import MidasLoss
class SamTransformer(nn.Module):
mask_threshold: float = 0.0
image_format: str = "RGB"
def __init__(
self,
image_encoder: ImageEncoderViT,
prompt_encoder: PromptEncoder,
mask_decoder: MaskDecoder,
affordance_decoder: MaskDecoder,
depth_decoder: MaskDecoder,
transformer_hidden_dim: int,
backbone_name: str,
pixel_mean: List[float] = [123.675, 116.28, 103.53],
pixel_std: List[float] = [58.395, 57.12, 57.375],
) -> None:
"""
SAM predicts object masks from an image and input prompts.
Arguments:
image_encoder (ImageEncoderViT): The backbone used to encode the
image into image embeddings that allow for efficient mask prediction.
prompt_encoder (PromptEncoder): Encodes various types of input prompts.
mask_decoder (MaskDecoder): Predicts masks from the image embeddings
and encoded prompts.
pixel_mean (list(float)): Mean values for normalizing pixels in the input image.
pixel_std (list(float)): Std values for normalizing pixels in the input image.
"""
super().__init__()
self.image_encoder = image_encoder
self.prompt_encoder = prompt_encoder
self.mask_decoder = mask_decoder
self.affordance_decoder = affordance_decoder
# depth head
self.depth_decoder = depth_decoder
self.depth_query = nn.Embedding(2, transformer_hidden_dim)
fov = torch.tensor(1.0)
image_size = (768, 1024)
focal_length = (image_size[1] / 2 / torch.tan(fov / 2)).item()
self.vnl_loss = VNL_Loss(focal_length, focal_length, image_size)
self.midas_loss = MidasLoss(alpha=0.1)
self.register_buffer("pixel_mean", torch.Tensor(pixel_mean).view(-1, 1, 1), False)
self.register_buffer("pixel_std", torch.Tensor(pixel_std).view(-1, 1, 1), False)
# if backbone_name == 'vit_h':
# checkpoint_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), '..', 'checkpoints', 'sam_vit_h_4b8939.pth')
# elif backbone_name == 'vit_l':
# checkpoint_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), '..', 'checkpoints', 'sam_vit_l_0b3195.pth')
# elif backbone_name == 'vit_b':
# checkpoint_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), '..', 'checkpoints', 'sam_vit_b_01ec64.pth')
# else:
# raise ValueError
# with open(checkpoint_path, "rb") as f:
# state_dict = torch.load(f)
# self.load_state_dict(state_dict, strict=False)
# self.affordance_decoder.load_state_dict(self.mask_decoder.state_dict(), strict=False)
# self.depth_decoder.load_state_dict(self.mask_decoder.state_dict(), strict=False)
self.num_queries = 15
self._affordance_focal_alpha = 0.95
self._ignore_index = -100
@property
def device(self) -> Any:
return self.pixel_mean.device
def freeze_layers(self, names):
"""
Freeze layers in 'names'.
"""
for name, param in self.named_parameters():
for freeze_name in names:
if freeze_name in name:
param.requires_grad = False
def forward(
self,
image: torch.Tensor,
valid: torch.Tensor,
keypoints: torch.Tensor,
bbox: torch.Tensor,
masks: torch.Tensor,
movable: torch.Tensor,
rigid: torch.Tensor,
kinematic: torch.Tensor,
action: torch.Tensor,
affordance: torch.Tensor,
affordance_map: torch.FloatTensor,
depth: torch.Tensor,
axis: torch.Tensor,
fov: torch.Tensor,
backward: bool = True,
**kwargs,
):
device = image.device
multimask_output = False
# image encoder
# pad image to square
h, w = image.shape[-2:]
padh = self.image_encoder.img_size - h
padw = self.image_encoder.img_size - w
x = F.pad(image, (0, padw, 0, padh))
image_embeddings = self.image_encoder(x)
outputs_seg_masks = []
outputs_movable = []
outputs_rigid = []
outputs_kinematic = []
outputs_action = []
outputs_axis = []
outputs_boxes = []
outputs_aff_masks = []
outputs_depth = []
for idx, curr_embedding in enumerate(image_embeddings):
point_coords = keypoints[idx].unsqueeze(1)
point_labels = torch.ones_like(point_coords[:, :, 0])
points = (point_coords, point_labels)
sparse_embeddings, dense_embeddings = self.prompt_encoder(
points=points,
boxes=None,
masks=None,
)
# mask decoder
low_res_masks, iou_predictions, output_movable, output_rigid, output_kinematic, output_action, output_axis = self.mask_decoder(
image_embeddings=curr_embedding.unsqueeze(0),
image_pe=self.prompt_encoder.get_dense_pe(),
sparse_prompt_embeddings=sparse_embeddings,
dense_prompt_embeddings=dense_embeddings,
multimask_output=multimask_output,
)
output_mask = self.postprocess_masks(
low_res_masks,
input_size=image.shape[-2:],
original_size=(768, 1024),
)
outputs_seg_masks.append(output_mask[:, 0])
outputs_movable.append(output_movable[:, 0])
outputs_rigid.append(output_rigid[:, 0])
outputs_kinematic.append(output_kinematic[:, 0])
outputs_action.append(output_action[:, 0])
outputs_axis.append(output_axis[:, 0])
# convert masks to boxes for evaluation
pred_mask_bbox = (output_mask[:, 0].clone() > 0.0).long()
empty_mask = pred_mask_bbox.sum(dim=-1).sum(dim=-1)
pred_mask_bbox[empty_mask == 0] += 1
pred_boxes = torchvision.ops.masks_to_boxes(pred_mask_bbox)
#pred_boxes = box_ops.rescale_bboxes(pred_boxes, [1 / self._image_size[1], 1 / self._image_size[0]])
pred_boxes = box_ops.rescale_bboxes(pred_boxes, [1 / 768, 1 / 1024])
outputs_boxes.append(pred_boxes)
# affordance decoder
low_res_masks, iou_predictions = self.affordance_decoder(
image_embeddings=curr_embedding.unsqueeze(0),
image_pe=self.prompt_encoder.get_dense_pe(),
sparse_prompt_embeddings=sparse_embeddings,
dense_prompt_embeddings=dense_embeddings,
multimask_output=multimask_output,
)
output_aff_masks = self.postprocess_masks(
low_res_masks,
input_size=image.shape[-2:],
original_size=(192, 256),
)
outputs_aff_masks.append(output_aff_masks[:, 0])
# depth decoder
bs = keypoints.shape[0]
#depth_sparse_embeddings = self.depth_query.weight.unsqueeze(0).repeat(bs, 1, 1)
depth_sparse_embeddings = self.depth_query.weight.unsqueeze(0)
#depth_dense_embeddings = torch.zeros((bs, 256, 64, 64)).to(dense_embeddings.device)
depth_dense_embeddings = torch.zeros((1, 256, 64, 64)).to(dense_embeddings.device)
low_res_masks, iou_predictions = self.depth_decoder(
image_embeddings=curr_embedding.unsqueeze(0),
image_pe=self.prompt_encoder.get_dense_pe(),
sparse_prompt_embeddings=depth_sparse_embeddings,
dense_prompt_embeddings=depth_dense_embeddings,
multimask_output=multimask_output,
)
output_depth = self.postprocess_masks(
low_res_masks,
input_size=image.shape[-2:],
original_size=(768, 1024),
)
outputs_depth.append(output_depth[:, 0])
outputs_seg_masks = torch.stack(outputs_seg_masks)
outputs_movable = torch.stack(outputs_movable)
outputs_rigid = torch.stack(outputs_rigid)
outputs_kinematic = torch.stack(outputs_kinematic)
outputs_action = torch.stack(outputs_action)
outputs_axis = torch.stack(outputs_axis)
outputs_boxes = torch.stack(outputs_boxes)
outputs_aff_masks = torch.stack(outputs_aff_masks)
outputs_depth = torch.stack(outputs_depth)
out = {
'pred_boxes': outputs_boxes,
'pred_movable': outputs_movable,
'pred_rigid': outputs_rigid,
'pred_kinematic': outputs_kinematic,
'pred_action': outputs_action,
'pred_masks': outputs_seg_masks,
'pred_axis': outputs_axis,
'pred_depth': outputs_depth,
# 'pred_depth': outputs_seg_masks[:, :1].sigmoid(),
'pred_affordance': outputs_aff_masks,
}
if not backward:
return out
# backward
src_boxes = outputs_boxes
target_boxes = bbox
target_boxes = box_ops.box_xyxy_to_cxcywh(target_boxes)
bbox_valid = bbox[:, :, 0] > -0.5
num_boxes = bbox_valid.sum()
out['loss_bbox'] = torch.tensor(0.0, requires_grad=True).to(device)
out['loss_giou'] = torch.tensor(0.0, requires_grad=True).to(device)
# affordance
# out['loss_affordance'] = torch.tensor(0.0, requires_grad=True).to(device)
affordance_valid = affordance[:, :, 0] > -0.5
if affordance_valid.sum() == 0:
out['loss_affordance'] = torch.tensor(0.0, requires_grad=True).to(device)
else:
src_aff_masks = outputs_aff_masks[affordance_valid]
tgt_aff_masks = affordance_map[affordance_valid]
src_aff_masks = src_aff_masks.flatten(1)
tgt_aff_masks = tgt_aff_masks.flatten(1)
loss_aff = sigmoid_focal_loss(
src_aff_masks,
tgt_aff_masks,
affordance_valid.sum(),
alpha=self._affordance_focal_alpha,
)
out['loss_affordance'] = loss_aff
# axis
axis_valid = axis[:, :, 0] > 0.0
num_axis = axis_valid.sum()
if num_axis == 0:
out['loss_axis_angle'] = torch.tensor(0.0, requires_grad=True).to(device)
out['loss_axis_offset'] = torch.tensor(0.0, requires_grad=True).to(device)
out['loss_eascore'] = torch.tensor(0.0, requires_grad=True).to(device)
else:
# regress angle
src_axis_angle = outputs_axis[axis_valid]
src_axis_angle_norm = F.normalize(src_axis_angle[:, :2])
src_axis_angle = torch.cat((src_axis_angle_norm, src_axis_angle[:, 2:]), dim=-1)
target_axis_xyxy = axis[axis_valid]
axis_center = target_boxes[axis_valid].clone()
axis_center[:, 2:] = axis_center[:, :2]
target_axis_angle = axis_ops.line_xyxy_to_angle(target_axis_xyxy, center=axis_center)
loss_axis_angle = F.l1_loss(src_axis_angle[:, :2], target_axis_angle[:, :2], reduction='sum') / num_axis
loss_axis_offset = F.l1_loss(src_axis_angle[:, 2:], target_axis_angle[:, 2:], reduction='sum') / num_axis
out['loss_axis_angle'] = loss_axis_angle
out['loss_axis_offset'] = loss_axis_offset
src_axis_xyxy = axis_ops.line_angle_to_xyxy(src_axis_angle, center=axis_center)
target_axis_xyxy = axis_ops.line_angle_to_xyxy(target_axis_angle, center=axis_center)
axis_eascore, _, _ = axis_ops.ea_score(src_axis_xyxy, target_axis_xyxy)
loss_eascore = 1 - axis_eascore
out['loss_eascore'] = loss_eascore.mean()
loss_movable = F.cross_entropy(outputs_movable.permute(0, 2, 1), movable, ignore_index=self._ignore_index)
if torch.isnan(loss_movable):
loss_movable = torch.tensor(0.0, requires_grad=True).to(device)
out['loss_movable'] = loss_movable
loss_rigid = F.cross_entropy(outputs_rigid.permute(0, 2, 1), rigid, ignore_index=self._ignore_index)
if torch.isnan(loss_rigid):
loss_rigid = torch.tensor(0.0, requires_grad=True).to(device)
out['loss_rigid'] = loss_rigid
loss_kinematic = F.cross_entropy(outputs_kinematic.permute(0, 2, 1), kinematic, ignore_index=self._ignore_index)
if torch.isnan(loss_kinematic):
loss_kinematic = torch.tensor(0.0, requires_grad=True).to(device)
out['loss_kinematic'] = loss_kinematic
loss_action = F.cross_entropy(outputs_action.permute(0, 2, 1), action, ignore_index=self._ignore_index)
if torch.isnan(loss_action):
loss_action = torch.tensor(0.0, requires_grad=True).to(device)
out['loss_action'] = loss_action
# depth backward
out['loss_depth'] = torch.tensor(0.0, requires_grad=True).to(device)
out['loss_vnl'] = torch.tensor(0.0, requires_grad=True).to(device)
# (bs, 1, H, W)
src_depths = interpolate(outputs_depth, size=depth.shape[-2:], mode='bilinear', align_corners=False)
src_depths = src_depths.clamp(min=0.0, max=1.0)
tgt_depths = depth.unsqueeze(1) # (bs, H, W)
valid_depth = depth[:, 0, 0] > 0
if valid_depth.any():
src_depths = src_depths[valid_depth]
tgt_depths = tgt_depths[valid_depth]
depth_mask = tgt_depths > 1e-8
midas_loss, ssi_loss, reg_loss = self.midas_loss(src_depths, tgt_depths, depth_mask)
loss_vnl = self.vnl_loss(tgt_depths, src_depths)
out['loss_depth'] = midas_loss
out['loss_vnl'] = loss_vnl
else:
out['loss_depth'] = torch.tensor(0.0, requires_grad=True).to(device)
out['loss_vnl'] = torch.tensor(0.0, requires_grad=True).to(device)
# mask backward
tgt_masks = masks
src_masks = interpolate(outputs_seg_masks, size=tgt_masks.shape[-2:], mode='bilinear', align_corners=False)
valid_mask = tgt_masks.sum(dim=-1).sum(dim=-1) > 10
if valid_mask.sum() == 0:
out['loss_mask'] = torch.tensor(0.0, requires_grad=True).to(device)
out['loss_dice'] = torch.tensor(0.0, requires_grad=True).to(device)
else:
num_masks = valid_mask.sum()
src_masks = src_masks[valid_mask]
tgt_masks = tgt_masks[valid_mask]
src_masks = src_masks.flatten(1)
tgt_masks = tgt_masks.flatten(1)
tgt_masks = tgt_masks.view(src_masks.shape)
out['loss_mask'] = sigmoid_focal_loss(src_masks, tgt_masks.float(), num_masks)
out['loss_dice'] = dice_loss(src_masks, tgt_masks, num_masks)
return out
def postprocess_masks(
self,
masks: torch.Tensor,
input_size: Tuple[int, ...],
original_size: Tuple[int, ...],
) -> torch.Tensor:
"""
Remove padding and upscale masks to the original image size.
Arguments:
masks (torch.Tensor): Batched masks from the mask_decoder,
in BxCxHxW format.
input_size (tuple(int, int)): The size of the image input to the
model, in (H, W) format. Used to remove padding.
original_size (tuple(int, int)): The original size of the image
before resizing for input to the model, in (H, W) format.
Returns:
(torch.Tensor): Batched masks in BxCxHxW format, where (H, W)
is given by original_size.
"""
masks = F.interpolate(
masks,
(self.image_encoder.img_size, self.image_encoder.img_size),
mode="bilinear",
align_corners=False,
)
masks = masks[..., : input_size[0], : input_size[1]]
masks = F.interpolate(masks, original_size, mode="bilinear", align_corners=False)
return masks
def preprocess(self, x: torch.Tensor) -> torch.Tensor:
"""Normalize pixel values and pad to a square input."""
# Normalize colors
x = (x - self.pixel_mean) / self.pixel_std
# Pad
h, w = x.shape[-2:]
padh = self.image_encoder.img_size - h
padw = self.image_encoder.img_size - w
x = F.pad(x, (0, padw, 0, padh))
return x
|