Spaces:
Runtime error
Runtime error
File size: 15,629 Bytes
9afcee2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 |
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
"""
This file provides the definition of the convolutional heads used to predict masks, as well as the losses
"""
import io
from collections import defaultdict
from typing import List, Optional
import pdb
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import Tensor
from PIL import Image
from . import box_ops
from .misc import NestedTensor, interpolate, nested_tensor_from_tensor_list
try:
from panopticapi.utils import id2rgb, rgb2id
except ImportError:
pass
class DETRsegm(nn.Module):
def __init__(self, detr, freeze_detr=False):
super().__init__()
self.detr = detr
if freeze_detr:
for p in self.parameters():
p.requires_grad_(False)
hidden_dim, nheads = detr.transformer.d_model, detr.transformer.nhead
self.bbox_attention = MHAttentionMap(hidden_dim, hidden_dim, nheads, dropout=0.0)
self.mask_head = MaskHeadSmallConv(hidden_dim + nheads, [1024, 512, 256], hidden_dim)
def forward(self, samples: NestedTensor):
if isinstance(samples, (list, torch.Tensor)):
samples = nested_tensor_from_tensor_list(samples)
features, pos = self.detr.backbone(samples)
bs = features[-1].tensors.shape[0]
src, mask = features[-1].decompose()
assert mask is not None
src_proj = self.detr.input_proj(src)
hs, memory = self.detr.transformer(src_proj, mask, self.detr.query_embed.weight, pos[-1])
outputs_class = self.detr.class_embed(hs)
outputs_coord = self.detr.bbox_embed(hs).sigmoid()
out = {"pred_logits": outputs_class[-1], "pred_boxes": outputs_coord[-1]}
if self.detr.aux_loss:
out['aux_outputs'] = self.detr._set_aux_loss(outputs_class, outputs_coord)
# FIXME h_boxes takes the last one computed, keep this in mind
bbox_mask = self.bbox_attention(hs[-1], memory, mask=mask)
seg_masks = self.mask_head(src_proj, bbox_mask, [features[2].tensors, features[1].tensors, features[0].tensors])
outputs_seg_masks = seg_masks.view(bs, self.detr.num_queries, seg_masks.shape[-2], seg_masks.shape[-1])
out["pred_masks"] = outputs_seg_masks
return out
def _expand(tensor, length: int):
return tensor.unsqueeze(1).repeat(1, int(length), 1, 1, 1).flatten(0, 1)
class MaskHeadSmallConv(nn.Module):
"""
Simple convolutional head, using group norm.
Upsampling is done using a FPN approach
"""
def __init__(self, dim, fpn_dims, context_dim, nheads = 8):
super().__init__()
inter_dims = [dim, context_dim // 2, context_dim // 4, context_dim // 8, context_dim // 16, context_dim // 64]
self.lay1 = torch.nn.Conv2d(dim, dim, 3, padding=1)
self.gn1 = torch.nn.GroupNorm(nheads, dim)
self.lay2 = torch.nn.Conv2d(dim, inter_dims[1], 3, padding=1)
self.gn2 = torch.nn.GroupNorm(nheads, inter_dims[1])
self.lay3 = torch.nn.Conv2d(inter_dims[1], inter_dims[2], 3, padding=1)
self.gn3 = torch.nn.GroupNorm(nheads, inter_dims[2])
self.lay4 = torch.nn.Conv2d(inter_dims[2], inter_dims[3], 3, padding=1)
self.gn4 = torch.nn.GroupNorm(nheads, inter_dims[3])
self.lay5 = torch.nn.Conv2d(inter_dims[3], inter_dims[4], 3, padding=1)
self.gn5 = torch.nn.GroupNorm(nheads, inter_dims[4])
self.out_lay = torch.nn.Conv2d(inter_dims[4], 1, 3, padding=1)
self.dim = dim
self.adapter1 = torch.nn.Conv2d(fpn_dims[0], inter_dims[1], 1)
self.adapter2 = torch.nn.Conv2d(fpn_dims[1], inter_dims[2], 1)
self.adapter3 = torch.nn.Conv2d(fpn_dims[2], inter_dims[3], 1)
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_uniform_(m.weight, a=1)
nn.init.constant_(m.bias, 0)
def forward(self, x: Tensor, bbox_mask: Tensor, fpns: List[Tensor]):
x = torch.cat([_expand(x, bbox_mask.shape[1]), bbox_mask.flatten(0, 1)], 1)
x = self.lay1(x)
x = self.gn1(x)
x = F.relu(x)
x = self.lay2(x)
x = self.gn2(x)
x = F.relu(x)
cur_fpn = self.adapter1(fpns[0])
if cur_fpn.size(0) != x.size(0):
cur_fpn = _expand(cur_fpn, x.size(0) // cur_fpn.size(0))
x = cur_fpn + F.interpolate(x, size=cur_fpn.shape[-2:], mode="nearest")
x = self.lay3(x)
x = self.gn3(x)
x = F.relu(x)
cur_fpn = self.adapter2(fpns[1])
if cur_fpn.size(0) != x.size(0):
cur_fpn = _expand(cur_fpn, x.size(0) // cur_fpn.size(0))
x = cur_fpn + F.interpolate(x, size=cur_fpn.shape[-2:], mode="nearest")
x = self.lay4(x)
x = self.gn4(x)
x = F.relu(x)
cur_fpn = self.adapter3(fpns[2])
if cur_fpn.size(0) != x.size(0):
cur_fpn = _expand(cur_fpn, x.size(0) // cur_fpn.size(0))
x = cur_fpn + F.interpolate(x, size=cur_fpn.shape[-2:], mode="nearest")
x = self.lay5(x)
x = self.gn5(x)
x = F.relu(x)
x = self.out_lay(x)
return x
class MHAttentionMap(nn.Module):
"""This is a 2D attention module, which only returns the attention softmax (no multiplication by value)"""
def __init__(self, query_dim, hidden_dim, num_heads, dropout=0.0, bias=True):
super().__init__()
self.num_heads = num_heads
self.hidden_dim = hidden_dim
self.dropout = nn.Dropout(dropout)
self.q_linear = nn.Linear(query_dim, hidden_dim, bias=bias)
self.k_linear = nn.Linear(query_dim, hidden_dim, bias=bias)
nn.init.zeros_(self.k_linear.bias)
nn.init.zeros_(self.q_linear.bias)
nn.init.xavier_uniform_(self.k_linear.weight)
nn.init.xavier_uniform_(self.q_linear.weight)
self.normalize_fact = float(hidden_dim / self.num_heads) ** -0.5
def forward(self, q, k, mask: Optional[Tensor] = None):
q = self.q_linear(q)
k = F.conv2d(k, self.k_linear.weight.unsqueeze(-1).unsqueeze(-1), self.k_linear.bias)
qh = q.view(q.shape[0], q.shape[1], self.num_heads, self.hidden_dim // self.num_heads)
kh = k.view(k.shape[0], self.num_heads, self.hidden_dim // self.num_heads, k.shape[-2], k.shape[-1])
weights = torch.einsum("bqnc,bnchw->bqnhw", qh * self.normalize_fact, kh)
if mask is not None:
weights.masked_fill_(mask.unsqueeze(1).unsqueeze(1), float("-inf"))
weights = F.softmax(weights.flatten(2), dim=-1).view(weights.size())
weights = self.dropout(weights)
return weights
def dice_loss(inputs, targets, num_boxes):
"""
Compute the DICE loss, similar to generalized IOU for masks
Args:
inputs: A float tensor of arbitrary shape.
The predictions for each example.
targets: A float tensor with the same shape as inputs. Stores the binary
classification label for each element in inputs
(0 for the negative class and 1 for the positive class).
"""
inputs = inputs.sigmoid()
inputs = inputs.flatten(1)
numerator = 2 * (inputs * targets).sum(1)
denominator = inputs.sum(-1) + targets.sum(-1)
loss = 1 - (numerator + 1) / (denominator + 1)
return loss.sum() / num_boxes
def sigmoid_focal_loss(inputs, targets, num_boxes, alpha: float = 0.25, gamma: float = 2):
"""
Loss used in RetinaNet for dense detection: https://arxiv.org/abs/1708.02002.
Args:
inputs: A float tensor of arbitrary shape.
The predictions for each example.
targets: A float tensor with the same shape as inputs. Stores the binary
classification label for each element in inputs
(0 for the negative class and 1 for the positive class).
alpha: (optional) Weighting factor in range (0,1) to balance
positive vs negative examples. Default = -1 (no weighting).
gamma: Exponent of the modulating factor (1 - p_t) to
balance easy vs hard examples.
Returns:
Loss tensor
"""
prob = inputs.sigmoid()
ce_loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction="none")
p_t = prob * targets + (1 - prob) * (1 - targets)
loss = ce_loss * ((1 - p_t) ** gamma)
#pdb.set_trace()
if alpha >= 0:
alpha_t = alpha * targets + (1 - alpha) * (1 - targets)
loss = alpha_t * loss
return loss.mean(1).sum() / num_boxes
class PostProcessSegm(nn.Module):
def __init__(self, threshold=0.5):
super().__init__()
self.threshold = threshold
@torch.no_grad()
def forward(self, results, outputs, orig_target_sizes, max_target_sizes):
assert len(orig_target_sizes) == len(max_target_sizes)
max_h, max_w = max_target_sizes.max(0)[0].tolist()
outputs_masks = outputs["pred_masks"].squeeze(2)
outputs_masks = F.interpolate(outputs_masks, size=(max_h, max_w), mode="bilinear", align_corners=False)
outputs_masks = (outputs_masks.sigmoid() > self.threshold).cpu()
for i, (cur_mask, t, tt) in enumerate(zip(outputs_masks, max_target_sizes, orig_target_sizes)):
img_h, img_w = t[0], t[1]
results[i]["masks"] = cur_mask[:, :img_h, :img_w].unsqueeze(1)
results[i]["masks"] = F.interpolate(
results[i]["masks"].float(), size=tuple(tt.tolist()), mode="nearest"
).byte()
return results
class PostProcessPanoptic(nn.Module):
"""This class converts the output of the model to the final panoptic result, in the format expected by the
coco panoptic API """
def __init__(self, is_thing_map, threshold=0.85):
"""
Parameters:
is_thing_map: This is a whose keys are the class ids, and the values a boolean indicating whether
the class is a thing (True) or a stuff (False) class
threshold: confidence threshold: segments with confidence lower than this will be deleted
"""
super().__init__()
self.threshold = threshold
self.is_thing_map = is_thing_map
def forward(self, outputs, processed_sizes, target_sizes=None):
""" This function computes the panoptic prediction from the model's predictions.
Parameters:
outputs: This is a dict coming directly from the model. See the model doc for the content.
processed_sizes: This is a list of tuples (or torch tensors) of sizes of the images that were passed to the
model, ie the size after data augmentation but before batching.
target_sizes: This is a list of tuples (or torch tensors) corresponding to the requested final size
of each prediction. If left to None, it will default to the processed_sizes
"""
if target_sizes is None:
target_sizes = processed_sizes
assert len(processed_sizes) == len(target_sizes)
out_logits, raw_masks, raw_boxes = outputs["pred_logits"], outputs["pred_masks"], outputs["pred_boxes"]
assert len(out_logits) == len(raw_masks) == len(target_sizes)
preds = []
def to_tuple(tup):
if isinstance(tup, tuple):
return tup
return tuple(tup.cpu().tolist())
for cur_logits, cur_masks, cur_boxes, size, target_size in zip(
out_logits, raw_masks, raw_boxes, processed_sizes, target_sizes
):
# we filter empty queries and detection below threshold
scores, labels = cur_logits.softmax(-1).max(-1)
keep = labels.ne(outputs["pred_logits"].shape[-1] - 1) & (scores > self.threshold)
cur_scores, cur_classes = cur_logits.softmax(-1).max(-1)
cur_scores = cur_scores[keep]
cur_classes = cur_classes[keep]
cur_masks = cur_masks[keep]
cur_masks = interpolate(cur_masks[:, None], to_tuple(size), mode="bilinear").squeeze(1)
cur_boxes = box_ops.box_cxcywh_to_xyxy(cur_boxes[keep])
h, w = cur_masks.shape[-2:]
assert len(cur_boxes) == len(cur_classes)
# It may be that we have several predicted masks for the same stuff class.
# In the following, we track the list of masks ids for each stuff class (they are merged later on)
cur_masks = cur_masks.flatten(1)
stuff_equiv_classes = defaultdict(lambda: [])
for k, label in enumerate(cur_classes):
if not self.is_thing_map[label.item()]:
stuff_equiv_classes[label.item()].append(k)
def get_ids_area(masks, scores, dedup=False):
# This helper function creates the final panoptic segmentation image
# It also returns the area of the masks that appears on the image
m_id = masks.transpose(0, 1).softmax(-1)
if m_id.shape[-1] == 0:
# We didn't detect any mask :(
m_id = torch.zeros((h, w), dtype=torch.long, device=m_id.device)
else:
m_id = m_id.argmax(-1).view(h, w)
if dedup:
# Merge the masks corresponding to the same stuff class
for equiv in stuff_equiv_classes.values():
if len(equiv) > 1:
for eq_id in equiv:
m_id.masked_fill_(m_id.eq(eq_id), equiv[0])
final_h, final_w = to_tuple(target_size)
seg_img = Image.fromarray(id2rgb(m_id.view(h, w).cpu().numpy()))
seg_img = seg_img.resize(size=(final_w, final_h), resample=Image.NEAREST)
np_seg_img = (
torch.ByteTensor(torch.ByteStorage.from_buffer(seg_img.tobytes())).view(final_h, final_w, 3).numpy()
)
m_id = torch.from_numpy(rgb2id(np_seg_img))
area = []
for i in range(len(scores)):
area.append(m_id.eq(i).sum().item())
return area, seg_img
area, seg_img = get_ids_area(cur_masks, cur_scores, dedup=True)
if cur_classes.numel() > 0:
# We know filter empty masks as long as we find some
while True:
filtered_small = torch.as_tensor(
[area[i] <= 4 for i, c in enumerate(cur_classes)], dtype=torch.bool, device=keep.device
)
if filtered_small.any().item():
cur_scores = cur_scores[~filtered_small]
cur_classes = cur_classes[~filtered_small]
cur_masks = cur_masks[~filtered_small]
area, seg_img = get_ids_area(cur_masks, cur_scores)
else:
break
else:
cur_classes = torch.ones(1, dtype=torch.long, device=cur_classes.device)
segments_info = []
for i, a in enumerate(area):
cat = cur_classes[i].item()
segments_info.append({"id": i, "isthing": self.is_thing_map[cat], "category_id": cat, "area": a})
del cur_classes
with io.BytesIO() as out:
seg_img.save(out, format="PNG")
predictions = {"png_string": out.getvalue(), "segments_info": segments_info}
preds.append(predictions)
return preds
|