3DOI / monoarti /midas_loss.py
Shengyi Qian
init
9afcee2
raw
history blame
5.43 kB
import torch
import torch.nn as nn
import numpy as np
#from .masked_losses import masked_l1_loss
def masked_l1_loss(preds, target, mask_valid):
element_wise_loss = abs(preds - target)
element_wise_loss[~mask_valid] = 0
return element_wise_loss.sum() / mask_valid.sum()
def compute_scale_and_shift(prediction, target, mask):
# system matrix: A = [[a_00, a_01], [a_10, a_11]]
a_00 = torch.sum(mask * prediction * prediction, (1, 2))
a_01 = torch.sum(mask * prediction, (1, 2))
a_11 = torch.sum(mask, (1, 2))
# right hand side: b = [b_0, b_1]
b_0 = torch.sum(mask * prediction * target, (1, 2))
b_1 = torch.sum(mask * target, (1, 2))
# solution: x = A^-1 . b = [[a_11, -a_01], [-a_10, a_00]] / (a_00 * a_11 - a_01 * a_10) . b
x_0 = torch.zeros_like(b_0)
x_1 = torch.zeros_like(b_1)
det = a_00 * a_11 - a_01 * a_01
valid = det.nonzero()
x_0[valid] = (a_11[valid] * b_0[valid] - a_01[valid] * b_1[valid]) / (det[valid] + 1e-6)
x_1[valid] = (-a_01[valid] * b_0[valid] + a_00[valid] * b_1[valid]) / (det[valid] + 1e-6)
return x_0, x_1
def masked_shift_and_scale(depth_preds, depth_gt, mask_valid):
depth_preds_nan = depth_preds.clone()
depth_gt_nan = depth_gt.clone()
depth_preds_nan[~mask_valid] = np.nan
depth_gt_nan[~mask_valid] = np.nan
mask_diff = mask_valid.view(mask_valid.size()[:2] + (-1,)).sum(-1, keepdims=True) + 1
t_gt = depth_gt_nan.view(depth_gt_nan.size()[:2] + (-1,)).nanmedian(-1, keepdims=True)[0].unsqueeze(-1)
t_gt[torch.isnan(t_gt)] = 0
diff_gt = torch.abs(depth_gt - t_gt)
diff_gt[~mask_valid] = 0
s_gt = (diff_gt.view(diff_gt.size()[:2] + (-1,)).sum(-1, keepdims=True) / mask_diff).unsqueeze(-1)
depth_gt_aligned = (depth_gt - t_gt) / (s_gt + 1e-6)
t_pred = depth_preds_nan.view(depth_preds_nan.size()[:2] + (-1,)).nanmedian(-1, keepdims=True)[0].unsqueeze(-1)
t_pred[torch.isnan(t_pred)] = 0
diff_pred = torch.abs(depth_preds - t_pred)
diff_pred[~mask_valid] = 0
s_pred = (diff_pred.view(diff_pred.size()[:2] + (-1,)).sum(-1, keepdims=True) / mask_diff).unsqueeze(-1)
depth_pred_aligned = (depth_preds - t_pred) / (s_pred + 1e-6)
return depth_pred_aligned, depth_gt_aligned
def reduction_batch_based(image_loss, M):
# average of all valid pixels of the batch
# avoid division by 0 (if sum(M) = sum(sum(mask)) = 0: sum(image_loss) = 0)
divisor = torch.sum(M)
if divisor == 0:
return 0
else:
return torch.sum(image_loss) / divisor
def reduction_image_based(image_loss, M):
# mean of average of valid pixels of an image
# avoid division by 0 (if M = sum(mask) = 0: image_loss = 0)
valid = M.nonzero()
image_loss[valid] = image_loss[valid] / M[valid]
return torch.mean(image_loss)
def gradient_loss(prediction, target, mask, reduction=reduction_batch_based):
M = torch.sum(mask, (1, 2))
diff = prediction - target
diff = torch.mul(mask, diff)
grad_x = torch.abs(diff[:, :, 1:] - diff[:, :, :-1])
mask_x = torch.mul(mask[:, :, 1:], mask[:, :, :-1])
grad_x = torch.mul(mask_x, grad_x)
grad_y = torch.abs(diff[:, 1:, :] - diff[:, :-1, :])
mask_y = torch.mul(mask[:, 1:, :], mask[:, :-1, :])
grad_y = torch.mul(mask_y, grad_y)
image_loss = torch.sum(grad_x, (1, 2)) + torch.sum(grad_y, (1, 2))
return reduction(image_loss, M)
class SSIMAE(nn.Module):
def __init__(self):
super().__init__()
def forward(self, depth_preds, depth_gt, mask_valid):
depth_pred_aligned, depth_gt_aligned = masked_shift_and_scale(depth_preds, depth_gt, mask_valid)
ssi_mae_loss = masked_l1_loss(depth_pred_aligned, depth_gt_aligned, mask_valid)
return ssi_mae_loss
class GradientMatchingTerm(nn.Module):
def __init__(self, scales=4, reduction='batch-based'):
super().__init__()
if reduction == 'batch-based':
self.__reduction = reduction_batch_based
else:
self.__reduction = reduction_image_based
self.__scales = scales
def forward(self, prediction, target, mask):
total = 0
for scale in range(self.__scales):
step = pow(2, scale)
total += gradient_loss(prediction[:, ::step, ::step], target[:, ::step, ::step],
mask[:, ::step, ::step], reduction=self.__reduction)
return total
class MidasLoss(nn.Module):
def __init__(self, alpha=0.1, scales=4, reduction='image-based'):
super().__init__()
self.__ssi_mae_loss = SSIMAE()
self.__gradient_matching_term = GradientMatchingTerm(scales=scales, reduction=reduction)
self.__alpha = alpha
self.__prediction_ssi = None
def forward(self, prediction, target, mask):
prediction_inverse = 1 / (prediction.squeeze(1)+1e-6)
target_inverse = 1 / (target.squeeze(1)+1e-6)
ssi_loss = self.__ssi_mae_loss(prediction, target, mask)
scale, shift = compute_scale_and_shift(prediction_inverse, target_inverse, mask.squeeze(1))
self.__prediction_ssi = scale.view(-1, 1, 1) * prediction_inverse + shift.view(-1, 1, 1)
reg_loss = self.__gradient_matching_term(self.__prediction_ssi, target_inverse, mask.squeeze(1))
if self.__alpha > 0:
total = ssi_loss + self.__alpha * reg_loss
return total, ssi_loss, reg_loss