Spaces:
Runtime error
Runtime error
import cv2 | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
def gaussian2D(shape, sigma=1): | |
m, n = [(ss - 1.) / 2. for ss in shape] | |
y, x = np.ogrid[-m:m+1,-n:n+1] | |
h = np.exp(-(x * x + y * y) / (2 * sigma * sigma)) | |
h[h < np.finfo(h.dtype).eps * h.max()] = 0 | |
return h | |
def draw_gaussian(heatmap, center, radius, k=1): | |
diameter = 2 * radius + 1 | |
gaussian = gaussian2D((diameter, diameter), sigma=diameter / 6) | |
x, y = center | |
height, width = heatmap.shape[0:2] | |
left, right = min(x, radius), min(width - x, radius + 1) | |
top, bottom = min(y, radius), min(height - y, radius + 1) | |
masked_heatmap = heatmap[y - top:y + bottom, x - left:x + right] | |
masked_gaussian = gaussian[radius - top:radius + bottom, radius - left:radius + right] | |
np.maximum(masked_heatmap, masked_gaussian * k, out=masked_heatmap) | |
def gaussian_radius(det_size, min_overlap): | |
height, width = det_size | |
a1 = 1 | |
b1 = (height + width) | |
c1 = width * height * (1 - min_overlap) / (1 + min_overlap) | |
sq1 = np.sqrt(b1 ** 2 - 4 * a1 * c1) | |
r1 = (b1 - sq1) / (2 * a1) | |
a2 = 4 | |
b2 = 2 * (height + width) | |
c2 = (1 - min_overlap) * width * height | |
sq2 = np.sqrt(b2 ** 2 - 4 * a2 * c2) | |
r2 = (b2 - sq2) / (2 * a2) | |
a3 = 4 * min_overlap | |
b3 = -2 * min_overlap * (height + width) | |
c3 = (min_overlap - 1) * width * height | |
sq3 = np.sqrt(b3 ** 2 - 4 * a3 * c3) | |
r3 = (b3 + sq3) / (2 * a3) | |
return min(r1, r2, r3) | |
def compute_kl_divergence(src_aff, tgt_aff): | |
""" | |
Compute kl divergence of two affordance map. | |
See https://github.com/Tushar-N/interaction-hotspots/blob/master/utils/evaluation.py | |
""" | |
eps = 1e-12 | |
# normalize affordance map so that it sums to 1 | |
src_aff_norm = src_aff / (src_aff.sum(dim=-1).sum(dim=-1).unsqueeze(-1).unsqueeze(-1) + eps) | |
tgt_aff_norm = tgt_aff / (tgt_aff.sum(dim=-1).sum(dim=-1).unsqueeze(-1).unsqueeze(-1) + eps) | |
kld = F.kl_div(src_aff_norm.log(), tgt_aff_norm, reduction='none') | |
kld = kld.sum(dim=-1).sum(dim=-1) | |
# sometimes kld is inf | |
kld = kld[~torch.isinf(kld)] | |
return kld | |
def compute_sim(src_aff, tgt_aff): | |
""" | |
Compute histogram intersection of two affordance map. | |
See https://github.com/Tushar-N/interaction-hotspots/blob/master/utils/evaluation.py | |
""" | |
eps = 1e-12 | |
# normalize affordance map so that it sums to 1 | |
src_aff_norm = src_aff / (src_aff.sum(dim=-1).sum(dim=-1).unsqueeze(-1).unsqueeze(-1) + eps) | |
tgt_aff_norm = tgt_aff / (tgt_aff.sum(dim=-1).sum(dim=-1).unsqueeze(-1).unsqueeze(-1) + eps) | |
intersection = torch.minimum(src_aff_norm, tgt_aff_norm) | |
intersection = intersection.sum(dim=-1).sum(dim=-1) | |
return intersection |