Spaces:
Runtime error
Runtime error
from enum import Enum, unique | |
import matplotlib as mpl | |
import matplotlib.colors as mplc | |
import matplotlib.figure as mplfigure | |
import numpy as np | |
from matplotlib.backends.backend_agg import FigureCanvasAgg | |
import random | |
import colorsys | |
import pycocotools.mask as mask_util | |
import cv2 | |
_SMALL_OBJECT_AREA_THRESH = 1000 | |
_LARGE_MASK_AREA_THRESH = 120000 | |
_OFF_WHITE = (1.0, 1.0, 240.0 / 255) | |
_BLACK = (0, 0, 0) | |
_RED = (1.0, 0, 0) | |
_KEYPOINT_THRESHOLD = 0.05 | |
# fmt: off | |
# RGB: | |
_COLORS = np.array( | |
[ | |
0.000, 0.447, 0.741, | |
0.850, 0.325, 0.098, | |
0.929, 0.694, 0.125, | |
0.494, 0.184, 0.556, | |
0.466, 0.674, 0.188, | |
0.301, 0.745, 0.933, | |
0.635, 0.078, 0.184, | |
0.300, 0.300, 0.300, | |
0.600, 0.600, 0.600, | |
1.000, 0.000, 0.000, | |
1.000, 0.500, 0.000, | |
0.749, 0.749, 0.000, | |
0.000, 1.000, 0.000, | |
0.000, 0.000, 1.000, | |
0.667, 0.000, 1.000, | |
0.333, 0.333, 0.000, | |
0.333, 0.667, 0.000, | |
0.333, 1.000, 0.000, | |
0.667, 0.333, 0.000, | |
0.667, 0.667, 0.000, | |
0.667, 1.000, 0.000, | |
1.000, 0.333, 0.000, | |
1.000, 0.667, 0.000, | |
1.000, 1.000, 0.000, | |
0.000, 0.333, 0.500, | |
0.000, 0.667, 0.500, | |
0.000, 1.000, 0.500, | |
0.333, 0.000, 0.500, | |
0.333, 0.333, 0.500, | |
0.333, 0.667, 0.500, | |
0.333, 1.000, 0.500, | |
0.667, 0.000, 0.500, | |
0.667, 0.333, 0.500, | |
0.667, 0.667, 0.500, | |
0.667, 1.000, 0.500, | |
1.000, 0.000, 0.500, | |
1.000, 0.333, 0.500, | |
1.000, 0.667, 0.500, | |
1.000, 1.000, 0.500, | |
0.000, 0.333, 1.000, | |
0.000, 0.667, 1.000, | |
0.000, 1.000, 1.000, | |
0.333, 0.000, 1.000, | |
0.333, 0.333, 1.000, | |
0.333, 0.667, 1.000, | |
0.333, 1.000, 1.000, | |
0.667, 0.000, 1.000, | |
0.667, 0.333, 1.000, | |
0.667, 0.667, 1.000, | |
0.667, 1.000, 1.000, | |
1.000, 0.000, 1.000, | |
1.000, 0.333, 1.000, | |
1.000, 0.667, 1.000, | |
0.333, 0.000, 0.000, | |
0.500, 0.000, 0.000, | |
0.667, 0.000, 0.000, | |
0.833, 0.000, 0.000, | |
1.000, 0.000, 0.000, | |
0.000, 0.167, 0.000, | |
0.000, 0.333, 0.000, | |
0.000, 0.500, 0.000, | |
0.000, 0.667, 0.000, | |
0.000, 0.833, 0.000, | |
0.000, 1.000, 0.000, | |
0.000, 0.000, 0.167, | |
0.000, 0.000, 0.333, | |
0.000, 0.000, 0.500, | |
0.000, 0.000, 0.667, | |
0.000, 0.000, 0.833, | |
0.000, 0.000, 1.000, | |
0.000, 0.000, 0.000, | |
0.143, 0.143, 0.143, | |
0.857, 0.857, 0.857, | |
1.000, 1.000, 1.000 | |
] | |
).astype(np.float32).reshape(-1, 3) | |
# fmt: on | |
def random_colors(N, rgb=False, maximum=255): | |
""" | |
Args: | |
N (int): number of unique colors needed | |
rgb (bool): whether to return RGB colors or BGR colors. | |
maximum (int): either 255 or 1 | |
Returns: | |
ndarray: a list of random_color | |
""" | |
indices = random.sample(range(len(_COLORS)), N) | |
ret = [_COLORS[i] * maximum for i in indices] | |
if not rgb: | |
ret = [x[::-1] for x in ret] | |
return ret | |
class ColorMode(Enum): | |
""" | |
Enum of different color modes to use for instance visualizations. | |
""" | |
IMAGE = 0 | |
""" | |
Picks a random color for every instance and overlay segmentations with low opacity. | |
""" | |
SEGMENTATION = 1 | |
""" | |
Let instances of the same category have similar colors | |
(from metadata.thing_colors), and overlay them with | |
high opacity. This provides more attention on the quality of segmentation. | |
""" | |
IMAGE_BW = 2 | |
""" | |
Same as IMAGE, but convert all areas without masks to gray-scale. | |
Only available for drawing per-instance mask predictions. | |
""" | |
class GenericMask: | |
""" | |
Attribute: | |
polygons (list[ndarray]): list[ndarray]: polygons for this mask. | |
Each ndarray has format [x, y, x, y, ...] | |
mask (ndarray): a binary mask | |
""" | |
def __init__(self, mask_or_polygons, height, width): | |
self._mask = self._polygons = self._has_holes = None | |
self.height = height | |
self.width = width | |
m = mask_or_polygons | |
if isinstance(m, dict): | |
# RLEs | |
assert "counts" in m and "size" in m | |
if isinstance(m["counts"], list): # uncompressed RLEs | |
h, w = m["size"] | |
assert h == height and w == width | |
m = mask_util.frPyObjects(m, h, w) | |
self._mask = mask_util.decode(m)[:, :] | |
return | |
if isinstance(m, list): # list[ndarray] | |
self._polygons = [np.asarray(x).reshape(-1) for x in m] | |
return | |
if isinstance(m, np.ndarray): # assumed to be a binary mask | |
assert m.shape[1] != 2, m.shape | |
assert m.shape == ( | |
height, | |
width, | |
), f"mask shape: {m.shape}, target dims: {height}, {width}" | |
self._mask = m.astype("uint8") | |
return | |
raise ValueError("GenericMask cannot handle object {} of type '{}'".format(m, type(m))) | |
def mask(self): | |
if self._mask is None: | |
self._mask = self.polygons_to_mask(self._polygons) | |
return self._mask | |
def polygons(self): | |
if self._polygons is None: | |
self._polygons, self._has_holes = self.mask_to_polygons(self._mask) | |
return self._polygons | |
def has_holes(self): | |
if self._has_holes is None: | |
if self._mask is not None: | |
self._polygons, self._has_holes = self.mask_to_polygons(self._mask) | |
else: | |
self._has_holes = False # if original format is polygon, does not have holes | |
return self._has_holes | |
def mask_to_polygons(self, mask): | |
# cv2.RETR_CCOMP flag retrieves all the contours and arranges them to a 2-level | |
# hierarchy. External contours (boundary) of the object are placed in hierarchy-1. | |
# Internal contours (holes) are placed in hierarchy-2. | |
# cv2.CHAIN_APPROX_NONE flag gets vertices of polygons from contours. | |
mask = np.ascontiguousarray(mask) # some versions of cv2 does not support incontiguous arr | |
res = cv2.findContours(mask.astype("uint8"), cv2.RETR_CCOMP, cv2.CHAIN_APPROX_NONE) | |
hierarchy = res[-1] | |
if hierarchy is None: # empty mask | |
return [], False | |
has_holes = (hierarchy.reshape(-1, 4)[:, 3] >= 0).sum() > 0 | |
res = res[-2] | |
res = [x.flatten() for x in res] | |
# These coordinates from OpenCV are integers in range [0, W-1 or H-1]. | |
# We add 0.5 to turn them into real-value coordinate space. A better solution | |
# would be to first +0.5 and then dilate the returned polygon by 0.5. | |
res = [x + 0.5 for x in res if len(x) >= 6] | |
return res, has_holes | |
def polygons_to_mask(self, polygons): | |
rle = mask_util.frPyObjects(polygons, self.height, self.width) | |
rle = mask_util.merge(rle) | |
return mask_util.decode(rle)[:, :] | |
def area(self): | |
return self.mask.sum() | |
def bbox(self): | |
p = mask_util.frPyObjects(self.polygons, self.height, self.width) | |
p = mask_util.merge(p) | |
bbox = mask_util.toBbox(p) | |
bbox[2] += bbox[0] | |
bbox[3] += bbox[1] | |
return bbox | |
class VisImage: | |
def __init__(self, img, scale=1.0): | |
""" | |
Args: | |
img (ndarray): an RGB image of shape (H, W, 3) in range [0, 255]. | |
scale (float): scale the input image | |
""" | |
self.img = img | |
self.scale = scale | |
self.width, self.height = img.shape[1], img.shape[0] | |
self._setup_figure(img) | |
def _setup_figure(self, img): | |
""" | |
Args: | |
Same as in :meth:`__init__()`. | |
Returns: | |
fig (matplotlib.pyplot.figure): top level container for all the image plot elements. | |
ax (matplotlib.pyplot.Axes): contains figure elements and sets the coordinate system. | |
""" | |
fig = mplfigure.Figure(frameon=False) | |
self.dpi = fig.get_dpi() | |
# add a small 1e-2 to avoid precision lost due to matplotlib's truncation | |
# (https://github.com/matplotlib/matplotlib/issues/15363) | |
fig.set_size_inches( | |
(self.width * self.scale + 1e-2) / self.dpi, | |
(self.height * self.scale + 1e-2) / self.dpi, | |
) | |
self.canvas = FigureCanvasAgg(fig) | |
# self.canvas = mpl.backends.backend_cairo.FigureCanvasCairo(fig) | |
ax = fig.add_axes([0.0, 0.0, 1.0, 1.0]) | |
ax.axis("off") | |
self.fig = fig | |
self.ax = ax | |
self.reset_image(img) | |
def reset_image(self, img): | |
""" | |
Args: | |
img: same as in __init__ | |
""" | |
img = img.astype("uint8") | |
self.ax.imshow(img, extent=(0, self.width, self.height, 0), interpolation="nearest") | |
def save(self, filepath): | |
""" | |
Args: | |
filepath (str): a string that contains the absolute path, including the file name, where | |
the visualized image will be saved. | |
""" | |
self.fig.savefig(filepath) | |
def get_image(self): | |
""" | |
Returns: | |
ndarray: | |
the visualized image of shape (H, W, 3) (RGB) in uint8 type. | |
The shape is scaled w.r.t the input image using the given `scale` argument. | |
""" | |
canvas = self.canvas | |
s, (width, height) = canvas.print_to_buffer() | |
# buf = io.BytesIO() # works for cairo backend | |
# canvas.print_rgba(buf) | |
# width, height = self.width, self.height | |
# s = buf.getvalue() | |
buffer = np.frombuffer(s, dtype="uint8") | |
img_rgba = buffer.reshape(height, width, 4) | |
rgb, alpha = np.split(img_rgba, [3], axis=2) | |
return rgb.astype("uint8") | |
class Visualizer: | |
def __init__(self, img_rgb, metadata=None, scale=1.0, instance_mode=ColorMode.IMAGE): | |
""" | |
Monoarti Visualizer | |
Args: | |
img_rgb: a numpy array of shape (H, W, C), where H and W correspond to | |
the height and width of the image respectively. C is the number of | |
color channels. The image is required to be in RGB format since that | |
is a requirement of the Matplotlib library. The image is also expected | |
to be in the range [0, 255]. | |
metadata (Metadata): dataset metadata (e.g. class names and colors) | |
instance_mode (ColorMode): defines one of the pre-defined style for drawing | |
instances on an image. | |
""" | |
self.img = np.asarray(img_rgb).clip(0, 255).astype(np.uint8) | |
#if metadata is None: | |
# metadata = MetadataCatalog.get("__nonexist__") | |
#self.metadata = metadata | |
self.output = VisImage(self.img, scale=scale) | |
#self.cpu_device = torch.device("cpu") | |
# too small texts are useless, therefore clamp to 9 | |
self._default_font_size = max( | |
np.sqrt(self.output.height * self.output.width) // 90, 10 // scale | |
) | |
self._default_font_size = self._default_font_size * 2 | |
self._instance_mode = instance_mode | |
self.keypoint_threshold = 0.05 | |
def overlay_instances( | |
self, | |
instances, | |
assigned_colors=None, | |
alpha=0.5, | |
): | |
if assigned_colors is None: | |
assigned_colors = random_colors(len(instances), maximum=1) | |
for idx, bbox in enumerate(instances): | |
is_fixture = bbox['move'] == 'fixture' | |
if bbox['rigid'] == 'yes': | |
if bbox['kinematic'] == 'freeform': | |
text = '_'.join([bbox['move'][:3] + 'hand', 'rigid', 'free']) | |
elif bbox['kinematic'] == 'rotation': | |
text = '_'.join([bbox['move'][:3] + 'hand', 'rigid', 'rot', bbox['pull_or_push']]) | |
elif bbox['kinematic'] == 'translation': | |
text = '_'.join([bbox['move'][:3] + 'hand', 'rigid', 'trans', bbox['pull_or_push']]) | |
else: | |
raise ValueError | |
elif bbox['rigid'] == 'no': | |
text = '_'.join([bbox['move'][:3] + 'hand', 'nonrigid']) | |
else: | |
#text = 'object' | |
text = '' | |
if is_fixture: | |
text = '' | |
text_pos = None | |
if bbox['bbox'] is not None and not is_fixture: | |
text_box = bbox['bbox'] | |
x0, y0, x1, y1 = text_box | |
text_pos = (x0, y0) | |
instance_area = (y1 - y0) * (x1 - x0) | |
if ( | |
instance_area < _SMALL_OBJECT_AREA_THRESH * self.output.scale | |
or y1 - y0 < 40 * self.output.scale | |
): | |
if y1 >= self.output.height - 5: | |
text_pos = (x1, y0) | |
else: | |
text_pos = (x0, y1) | |
height_ratio = (y1 - y0) / np.sqrt(self.output.height * self.output.width) | |
font_size = ( | |
np.clip((height_ratio - 0.02) / 0.08 + 1, 1.2, 2) | |
* 0.5 | |
* self._default_font_size | |
) | |
self.draw_box(bbox['bbox'], edge_color=assigned_colors[idx], alpha=alpha) | |
if text_pos is None: | |
text_pos = bbox['keypoint'] | |
if len(text) > 0: | |
# adjust color | |
font_size = self._default_font_size | |
lighter_color = self._change_color_brightness(assigned_colors[idx], brightness_factor=0.7) | |
self.draw_text(text, text_pos, color=lighter_color, horizontal_alignment='left', font_size=font_size) | |
if bbox['keypoint'] is not None: | |
self.draw_circle(bbox['keypoint'], color=assigned_colors[idx]) | |
if bbox['affordance'] is not None and not is_fixture: | |
self.draw_regular_polygon(bbox['affordance'], color=assigned_colors[idx], num_vertices=3) | |
if bbox['axis'][0] > -1e-3 and not is_fixture: | |
try: | |
line_x = [ | |
int(bbox['axis'][0] * self.output.width), | |
int(bbox['axis'][2] * self.output.width), | |
] | |
line_y = [ | |
int(bbox['axis'][1] * self.output.height), | |
int(bbox['axis'][3] * self.output.height), | |
] | |
self.draw_line(line_x, line_y, color=assigned_colors[idx]) | |
except OverflowError: | |
print("overflow {}".format(bbox['axis'])) | |
pass | |
#axis_colors = np.array([[31, 73, 125], ]) / 255.0 | |
#self.draw_arrow(line_x, line_y, color=axis_colors[idx]) | |
if bbox['mask'] is not None and not is_fixture: | |
self.draw_binary_mask(bbox['mask'], color=assigned_colors[idx], edge_color=_OFF_WHITE, alpha=alpha) | |
return self.output | |
def overlay_annotations( | |
self, | |
bboxes, | |
assigned_colors=None, | |
): | |
if assigned_colors is None: | |
assigned_colors = random_colors(len(bboxes), maximum=1) | |
for idx, bbox in enumerate(bboxes): | |
if bbox['rigid'] == 'yes': | |
if bbox['kinematic'] == 'freeform': | |
text = '_'.join([bbox['move'][:3], 'rigid', 'free']) | |
elif bbox['kinematic'] == 'rotation': | |
text = '_'.join([bbox['move'][:3], 'rigid', 'rot', bbox['pull_or_push']]) | |
elif bbox['kinematic'] == 'translation': | |
text = '_'.join([bbox['move'][:3], 'rigid', 'trans', bbox['pull_or_push']]) | |
else: | |
raise ValueError | |
else: | |
text = '_'.join([bbox['move'][:3], 'nonrigid']) | |
text_box = bbox['bbox'] | |
x0, y0, x1, y1 = text_box | |
text_pos = (x0, y0) | |
instance_area = (y1 - y0) * (x1 - x0) | |
#_SMALL_OBJECT_AREA_THRESH = 1000 | |
if ( | |
instance_area < _SMALL_OBJECT_AREA_THRESH * self.output.scale | |
or y1 - y0 < 40 * self.output.scale | |
): | |
if y1 >= self.output.height - 5: | |
text_pos = (x1, y0) | |
else: | |
text_pos = (x0, y1) | |
height_ratio = (y1 - y0) / np.sqrt(self.output.height * self.output.width) | |
font_size = ( | |
np.clip((height_ratio - 0.02) / 0.08 + 1, 1.2, 2) | |
* 0.5 | |
* self._default_font_size | |
) | |
# adjust color | |
lighter_color = self._change_color_brightness(assigned_colors[idx], brightness_factor=0.7) | |
self.draw_text(text, text_pos, color=lighter_color, horizontal_alignment='left', font_size=font_size) | |
self.draw_box(bbox['bbox'], edge_color=assigned_colors[idx]) | |
self.draw_circle(bbox['keypoint'], color=assigned_colors[idx]) | |
self.draw_regular_polygon(bbox['affordance'], color=assigned_colors[idx], num_vertices=3) | |
return self.output | |
def overlay_instances_old( | |
self, | |
*, | |
boxes=None, | |
labels=None, | |
masks=None, | |
keypoints=None, | |
assigned_colors=None, | |
alpha=0.5, | |
): | |
""" | |
Args: | |
boxes (Boxes, RotatedBoxes or ndarray): either a :class:`Boxes`, | |
or an Nx4 numpy array of XYXY_ABS format for the N objects in a single image, | |
or a :class:`RotatedBoxes`, | |
or an Nx5 numpy array of (x_center, y_center, width, height, angle_degrees) format | |
for the N objects in a single image, | |
labels (list[str]): the text to be displayed for each instance. | |
masks (masks-like object): Supported types are: | |
* :class:`detectron2.structures.PolygonMasks`, | |
:class:`detectron2.structures.BitMasks`. | |
* list[list[ndarray]]: contains the segmentation masks for all objects in one image. | |
The first level of the list corresponds to individual instances. The second | |
level to all the polygon that compose the instance, and the third level | |
to the polygon coordinates. The third level should have the format of | |
[x0, y0, x1, y1, ..., xn, yn] (n >= 3). | |
* list[ndarray]: each ndarray is a binary mask of shape (H, W). | |
* list[dict]: each dict is a COCO-style RLE. | |
keypoints (Keypoint or array like): an array-like object of shape (N, K, 3), | |
where the N is the number of instances and K is the number of keypoints. | |
The last dimension corresponds to (x, y, visibility or score). | |
assigned_colors (list[matplotlib.colors]): a list of colors, where each color | |
corresponds to each mask or box in the image. Refer to 'matplotlib.colors' | |
for full list of formats that the colors are accepted in. | |
Returns: | |
output (VisImage): image object with visualizations. | |
""" | |
num_instances = 0 | |
if boxes is not None: | |
boxes = self._convert_boxes(boxes) | |
num_instances = len(boxes) | |
if masks is not None: | |
masks = self._convert_masks(masks) | |
if num_instances: | |
assert len(masks) == num_instances | |
else: | |
num_instances = len(masks) | |
if keypoints is not None: | |
if num_instances: | |
assert len(keypoints) == num_instances | |
else: | |
num_instances = len(keypoints) | |
keypoints = self._convert_keypoints(keypoints) | |
if labels is not None: | |
assert len(labels) == num_instances | |
if assigned_colors is None: | |
assigned_colors = [random_color(rgb=True, maximum=1) for _ in range(num_instances)] | |
if num_instances == 0: | |
return self.output | |
if boxes is not None and boxes.shape[1] == 5: | |
return self.overlay_rotated_instances( | |
boxes=boxes, labels=labels, assigned_colors=assigned_colors | |
) | |
# Display in largest to smallest order to reduce occlusion. | |
areas = None | |
if boxes is not None: | |
areas = np.prod(boxes[:, 2:] - boxes[:, :2], axis=1) | |
elif masks is not None: | |
areas = np.asarray([x.area() for x in masks]) | |
if areas is not None: | |
sorted_idxs = np.argsort(-areas).tolist() | |
# Re-order overlapped instances in descending order. | |
boxes = boxes[sorted_idxs] if boxes is not None else None | |
labels = [labels[k] for k in sorted_idxs] if labels is not None else None | |
masks = [masks[idx] for idx in sorted_idxs] if masks is not None else None | |
assigned_colors = [assigned_colors[idx] for idx in sorted_idxs] | |
keypoints = keypoints[sorted_idxs] if keypoints is not None else None | |
for i in range(num_instances): | |
color = assigned_colors[i] | |
if boxes is not None: | |
self.draw_box(boxes[i], edge_color=color) | |
# if masks is not None: | |
# for segment in masks[i].polygons: | |
# self.draw_polygon(segment.reshape(-1, 2), color, alpha=alpha) | |
if labels is not None: | |
# first get a box | |
if boxes is not None: | |
x0, y0, x1, y1 = boxes[i] | |
text_pos = (x0, y0) # if drawing boxes, put text on the box corner. | |
horiz_align = "left" | |
elif masks is not None: | |
# skip small mask without polygon | |
if len(masks[i].polygons) == 0: | |
continue | |
x0, y0, x1, y1 = masks[i].bbox() | |
# draw text in the center (defined by median) when box is not drawn | |
# median is less sensitive to outliers. | |
text_pos = np.median(masks[i].mask.nonzero(), axis=1)[::-1] | |
horiz_align = "center" | |
else: | |
continue # drawing the box confidence for keypoints isn't very useful. | |
# for small objects, draw text at the side to avoid occlusion | |
instance_area = (y1 - y0) * (x1 - x0) | |
if ( | |
instance_area < _SMALL_OBJECT_AREA_THRESH * self.output.scale | |
or y1 - y0 < 40 * self.output.scale | |
): | |
if y1 >= self.output.height - 5: | |
text_pos = (x1, y0) | |
else: | |
text_pos = (x0, y1) | |
height_ratio = (y1 - y0) / np.sqrt(self.output.height * self.output.width) | |
lighter_color = self._change_color_brightness(color, brightness_factor=0.7) | |
font_size = ( | |
np.clip((height_ratio - 0.02) / 0.08 + 1, 1.2, 2) | |
* 0.5 | |
* self._default_font_size | |
) | |
self.draw_text( | |
labels[i], | |
text_pos, | |
color=lighter_color, | |
horizontal_alignment=horiz_align, | |
font_size=font_size, | |
) | |
return self.output | |
def draw_arrow(self, x_data, y_data, color, linestyle="-", linewidth=None): | |
if linewidth is None: | |
linewidth = self._default_font_size / 3 | |
linewidth = max(linewidth, 1) | |
self.output.ax.arrow( | |
x=x_data[0], | |
y=y_data[0], | |
dx=(x_data[1] - x_data[0]) * 1.0, | |
dy=(y_data[1] - y_data[0]) * 1.0, | |
width=linewidth * self.output.scale, | |
head_width=linewidth * self.output.scale * 5.0, | |
length_includes_head=True, | |
color=color, | |
overhang=0.5, | |
linestyle=linestyle, | |
) | |
return self.output | |
def draw_box(self, box_coord, alpha=0.5, edge_color="g", line_style="-"): | |
""" | |
Args: | |
box_coord (tuple): a tuple containing x0, y0, x1, y1 coordinates, where x0 and y0 | |
are the coordinates of the image's top left corner. x1 and y1 are the | |
coordinates of the image's bottom right corner. | |
alpha (float): blending efficient. Smaller values lead to more transparent masks. | |
edge_color: color of the outline of the box. Refer to `matplotlib.colors` | |
for full list of formats that are accepted. | |
line_style (string): the string to use to create the outline of the boxes. | |
Returns: | |
output (VisImage): image object with box drawn. | |
""" | |
x0, y0, x1, y1 = box_coord | |
width = x1 - x0 | |
height = y1 - y0 | |
linewidth = max(self._default_font_size / 4, 1) | |
self.output.ax.add_patch( | |
mpl.patches.Rectangle( | |
(x0, y0), | |
width, | |
height, | |
fill=False, | |
edgecolor=edge_color, | |
linewidth=linewidth * self.output.scale, | |
alpha=alpha, | |
linestyle=line_style, | |
) | |
) | |
return self.output | |
def draw_circle(self, circle_coord, color, radius=3): | |
""" | |
Args: | |
circle_coord (list(int) or tuple(int)): contains the x and y coordinates | |
of the center of the circle. | |
color: color of the polygon. Refer to `matplotlib.colors` for a full list of | |
formats that are accepted. | |
radius (int): radius of the circle. | |
Returns: | |
output (VisImage): image object with box drawn. | |
""" | |
x, y = circle_coord | |
self.output.ax.add_patch( | |
mpl.patches.Circle(circle_coord, radius=radius, fill=True, color=color) | |
) | |
return self.output | |
def draw_regular_polygon(self, polygon_coord, color, radius=3, num_vertices=5): | |
""" | |
Args: | |
polygon_coord (list(int) or tuple(int)): contains the x and y coordinates | |
of the center of the polygon. | |
color: color of the polygon. Refer to `matplotlib.colors` for a full list of | |
formats that are accepted. | |
radius (int): radius of the polygon. | |
num_vertices (int): number of vertices of the polygon. | |
Returns: | |
output (VisImage): image object with box drawn. | |
""" | |
self.output.ax.add_patch( | |
mpl.patches.RegularPolygon(polygon_coord, num_vertices, radius=radius, fill=True, color=color) | |
) | |
return self.output | |
def draw_polygon(self, segment, color, edge_color=None, alpha=0.5): | |
""" | |
Args: | |
segment: numpy array of shape Nx2, containing all the points in the polygon. | |
color: color of the polygon. Refer to `matplotlib.colors` for a full list of | |
formats that are accepted. | |
edge_color: color of the polygon edges. Refer to `matplotlib.colors` for a | |
full list of formats that are accepted. If not provided, a darker shade | |
of the polygon color will be used instead. | |
alpha (float): blending efficient. Smaller values lead to more transparent masks. | |
Returns: | |
output (VisImage): image object with polygon drawn. | |
""" | |
if edge_color is None: | |
# make edge color darker than the polygon color | |
if alpha > 0.8: | |
edge_color = self._change_color_brightness(color, brightness_factor=-0.7) | |
else: | |
edge_color = color | |
edge_color = mplc.to_rgb(edge_color) + (1,) | |
polygon = mpl.patches.Polygon( | |
segment, | |
fill=True, | |
facecolor=mplc.to_rgb(color) + (alpha,), | |
edgecolor=edge_color, | |
linewidth=max(self._default_font_size // 15 * self.output.scale, 1), | |
) | |
self.output.ax.add_patch(polygon) | |
return self.output | |
def draw_text( | |
self, | |
text, | |
position, | |
*, | |
font_size=None, | |
color="g", | |
horizontal_alignment="center", | |
rotation=0, | |
): | |
""" | |
Args: | |
text (str): class label | |
position (tuple): a tuple of the x and y coordinates to place text on image. | |
font_size (int, optional): font of the text. If not provided, a font size | |
proportional to the image width is calculated and used. | |
color: color of the text. Refer to `matplotlib.colors` for full list | |
of formats that are accepted. | |
horizontal_alignment (str): see `matplotlib.text.Text` | |
rotation: rotation angle in degrees CCW | |
Returns: | |
output (VisImage): image object with text drawn. | |
""" | |
if not font_size: | |
font_size = self._default_font_size | |
# since the text background is dark, we don't want the text to be dark | |
color = np.maximum(list(mplc.to_rgb(color)), 0.2) | |
color[np.argmax(color)] = max(0.8, np.max(color)) | |
x, y = position | |
self.output.ax.text( | |
x, | |
y, | |
text, | |
size=font_size * self.output.scale, | |
family="sans-serif", | |
bbox={"facecolor": "black", "alpha": 0.8, "pad": 0.7, "edgecolor": "none"}, | |
verticalalignment="top", | |
horizontalalignment=horizontal_alignment, | |
color=color, | |
zorder=10, | |
rotation=rotation, | |
) | |
return self.output | |
def draw_line(self, x_data, y_data, color, linestyle="-", linewidth=None): | |
""" | |
Args: | |
x_data (list[int]): a list containing x values of all the points being drawn. | |
Length of list should match the length of y_data. | |
y_data (list[int]): a list containing y values of all the points being drawn. | |
Length of list should match the length of x_data. | |
color: color of the line. Refer to `matplotlib.colors` for a full list of | |
formats that are accepted. | |
linestyle: style of the line. Refer to `matplotlib.lines.Line2D` | |
for a full list of formats that are accepted. | |
linewidth (float or None): width of the line. When it's None, | |
a default value will be computed and used. | |
Returns: | |
output (VisImage): image object with line drawn. | |
""" | |
if linewidth is None: | |
linewidth = self._default_font_size / 3 | |
linewidth = max(linewidth, 1) | |
self.output.ax.add_line( | |
mpl.lines.Line2D( | |
x_data, | |
y_data, | |
linewidth=linewidth * self.output.scale, | |
color=color, | |
linestyle=linestyle, | |
) | |
) | |
return self.output | |
def draw_binary_mask( | |
self, binary_mask, color=None, *, edge_color=None, text=None, alpha=0.5, area_threshold=10 | |
): | |
""" | |
Args: | |
binary_mask (ndarray): numpy array of shape (H, W), where H is the image height and | |
W is the image width. Each value in the array is either a 0 or 1 value of uint8 | |
type. | |
color: color of the mask. Refer to `matplotlib.colors` for a full list of | |
formats that are accepted. If None, will pick a random color. | |
edge_color: color of the polygon edges. Refer to `matplotlib.colors` for a | |
full list of formats that are accepted. | |
text (str): if None, will be drawn on the object | |
alpha (float): blending efficient. Smaller values lead to more transparent masks. | |
area_threshold (float): a connected component smaller than this area will not be shown. | |
Returns: | |
output (VisImage): image object with mask drawn. | |
""" | |
if color is None: | |
color = random_color(rgb=True, maximum=1) | |
color = mplc.to_rgb(color) | |
has_valid_segment = False | |
binary_mask = binary_mask.astype("uint8") # opencv needs uint8 | |
mask = GenericMask(binary_mask, self.output.height, self.output.width) | |
shape2d = (binary_mask.shape[0], binary_mask.shape[1]) | |
if not mask.has_holes: | |
# draw polygons for regular masks | |
for segment in mask.polygons: | |
area = mask_util.area(mask_util.frPyObjects([segment], shape2d[0], shape2d[1])) | |
if area < (area_threshold or 0): | |
continue | |
has_valid_segment = True | |
segment = segment.reshape(-1, 2) | |
self.draw_polygon(segment, color=color, edge_color=edge_color, alpha=alpha) | |
else: | |
# TODO: Use Path/PathPatch to draw vector graphics: | |
# https://stackoverflow.com/questions/8919719/how-to-plot-a-complex-polygon | |
rgba = np.zeros(shape2d + (4,), dtype="float32") | |
rgba[:, :, :3] = color | |
rgba[:, :, 3] = (mask.mask == 1).astype("float32") * alpha | |
has_valid_segment = True | |
self.output.ax.imshow(rgba, extent=(0, self.output.width, self.output.height, 0)) | |
if text is not None and has_valid_segment: | |
lighter_color = self._change_color_brightness(color, brightness_factor=0.7) | |
self._draw_text_in_mask(binary_mask, text, lighter_color) | |
return self.output | |
""" | |
Internal methods | |
""" | |
def _change_color_brightness(self, color, brightness_factor): | |
""" | |
Depending on the brightness_factor, gives a lighter or darker color i.e. a color with | |
less or more saturation than the original color. | |
Args: | |
color: color of the polygon. Refer to `matplotlib.colors` for a full list of | |
formats that are accepted. | |
brightness_factor (float): a value in [-1.0, 1.0] range. A lightness factor of | |
0 will correspond to no change, a factor in [-1.0, 0) range will result in | |
a darker color and a factor in (0, 1.0] range will result in a lighter color. | |
Returns: | |
modified_color (tuple[double]): a tuple containing the RGB values of the | |
modified color. Each value in the tuple is in the [0.0, 1.0] range. | |
""" | |
assert brightness_factor >= -1.0 and brightness_factor <= 1.0 | |
color = mplc.to_rgb(color) | |
polygon_color = colorsys.rgb_to_hls(*mplc.to_rgb(color)) | |
modified_lightness = polygon_color[1] + (brightness_factor * polygon_color[1]) | |
modified_lightness = 0.0 if modified_lightness < 0.0 else modified_lightness | |
modified_lightness = 1.0 if modified_lightness > 1.0 else modified_lightness | |
modified_color = colorsys.hls_to_rgb(polygon_color[0], modified_lightness, polygon_color[2]) | |
return modified_color | |