Spaces:
Runtime error
Runtime error
import logging | |
import numpy as np | |
import itertools | |
from typing import Dict, List, Optional, Tuple | |
import torch | |
import torch.nn.functional as F | |
from torch import nn | |
from detectron2.config import configurable | |
from detectron2.data.detection_utils import convert_image_to_rgb | |
from detectron2.layers import move_device_like, batched_nms | |
from detectron2.structures import ImageList, Boxes, Instances, BitMasks, ROIMasks | |
from detectron2.modeling.backbone import Backbone, build_backbone | |
from detectron2.modeling.proposal_generator import build_proposal_generator | |
from detectron2.config import get_cfg | |
import clip | |
from vlpart.text_encoder import build_text_encoder | |
from vlpart.swintransformer import build_swinbase_fpn_backbone | |
from vlpart.vlpart_roi_heads import build_vlpart_roi_heads | |
def build_vlpart(checkpoint=None): | |
cfg = get_cfg() | |
cfg.merge_from_list(['MODEL.RPN.IN_FEATURES', ["p2", "p3", "p4", "p5", "p6"], | |
'MODEL.ROI_HEADS.IN_FEATURES', ["p2", "p3", "p4", "p5"], | |
'MODEL.ROI_BOX_CASCADE_HEAD.IOUS', [0.5, 0.6, 0.7], | |
'MODEL.ROI_BOX_HEAD.CLS_AGNOSTIC_BBOX_REG', True, | |
'MODEL.ROI_BOX_HEAD.NAME', "FastRCNNConvFCHead", | |
'MODEL.ROI_BOX_HEAD.POOLER_RESOLUTION', 7, | |
'MODEL.ROI_BOX_HEAD.NUM_FC', 2, | |
'MODEL.ANCHOR_GENERATOR.SIZES', [[32], [64], [128], [256], [512]], | |
'MODEL.ANCHOR_GENERATOR.ASPECT_RATIOS', [[0.5, 1.0, 2.0]], | |
]) | |
backbone = build_swinbase_fpn_backbone() | |
vlpart = VLPart( | |
backbone=backbone, | |
proposal_generator=build_proposal_generator(cfg, backbone.output_shape()), | |
roi_heads=build_vlpart_roi_heads(cfg, backbone.output_shape()), | |
) | |
vlpart.eval() | |
if checkpoint is not None: | |
with open(checkpoint, "rb") as f: | |
state_dict = torch.load(f) | |
vlpart.load_state_dict(state_dict['model'], strict=False) | |
return vlpart | |
class VLPart(nn.Module): | |
def __init__( | |
self, | |
backbone: Backbone, | |
proposal_generator: nn.Module, | |
roi_heads: nn.Module, | |
): | |
super().__init__() | |
self.backbone = backbone | |
self.proposal_generator = proposal_generator | |
self.roi_heads = roi_heads | |
self.text_encoder = build_text_encoder(pretrain=True, visual_type='RN50') | |
self.register_buffer("pixel_mean", | |
torch.tensor([123.675, 116.280, 103.530]).view(-1, 1, 1), False) | |
self.register_buffer("pixel_std", | |
torch.tensor([58.395, 57.120, 57.375]).view(-1, 1, 1), False) | |
def device(self): | |
return self.pixel_mean.device | |
def _move_to_current_device(self, x): | |
return move_device_like(x, self.pixel_mean) | |
def get_text_embeddings(self, vocabulary, prefix_prompt='a '): | |
vocabulary = vocabulary.split('.') | |
texts = [prefix_prompt + x.lower().replace(':', ' ') for x in vocabulary] | |
texts_aug = texts + ['background'] | |
emb = self.text_encoder(texts_aug).permute(1, 0) | |
emb = F.normalize(emb, p=2, dim=0) | |
return emb | |
def inference( | |
self, | |
batched_inputs: List[Dict[str, torch.Tensor]], | |
do_postprocess: bool = True, | |
text_prompt: str = 'dog', | |
): | |
assert not self.training | |
images = self.preprocess_image(batched_inputs) | |
features = self.backbone(images.tensor) | |
proposals, _ = self.proposal_generator(images, features) | |
text_embed = self.get_text_embeddings(text_prompt) | |
results, _ = self.roi_heads(images, features, proposals, text_embed) | |
if do_postprocess: | |
assert not torch.jit.is_scripting(), "Scripting is not supported for postprocess." | |
max_shape = images.tensor.shape[2:] | |
return VLPart._postprocess(results, batched_inputs, images.image_sizes, max_shape) | |
else: | |
return results | |
def preprocess_image(self, batched_inputs: List[Dict[str, torch.Tensor]]): | |
""" | |
Normalize, pad and batch the input images. | |
""" | |
original_images = [self._move_to_current_device(x["image"]) for x in batched_inputs] | |
images = [(x - self.pixel_mean) / self.pixel_std for x in original_images] | |
images = ImageList.from_tensors( | |
images, | |
self.backbone.size_divisibility, | |
padding_constraints=self.backbone.padding_constraints, | |
) | |
return images | |
def _postprocess(instances, batched_inputs: List[Dict[str, torch.Tensor]], image_sizes, max_shape): | |
""" | |
Rescale the output instances to the target size. | |
""" | |
# note: private function; subject to changes | |
processed_results = [] | |
for results_per_image, input_per_image, image_size in zip( | |
instances, batched_inputs, image_sizes | |
): | |
height = input_per_image.get("height", image_size[0]) | |
width = input_per_image.get("width", image_size[1]) | |
r = custom_detector_postprocess(results_per_image, height, width, max_shape) | |
processed_results.append({"instances": r}) | |
return processed_results | |
def custom_detector_postprocess( | |
results: Instances, output_height: int, output_width: int, | |
max_shape, mask_threshold: float = 0.5 | |
): | |
""" | |
detector_postprocess with support on global_masks | |
""" | |
if isinstance(output_width, torch.Tensor): | |
# This shape might (but not necessarily) be tensors during tracing. | |
# Converts integer tensors to float temporaries to ensure true | |
# division is performed when computing scale_x and scale_y. | |
output_width_tmp = output_width.float() | |
output_height_tmp = output_height.float() | |
new_size = torch.stack([output_height, output_width]) | |
else: | |
new_size = (output_height, output_width) | |
output_width_tmp = output_width | |
output_height_tmp = output_height | |
scale_x, scale_y = ( | |
output_width_tmp / results.image_size[1], | |
output_height_tmp / results.image_size[0], | |
) | |
resized_h, resized_w = results.image_size | |
results = Instances(new_size, **results.get_fields()) | |
if results.has("pred_boxes"): | |
output_boxes = results.pred_boxes | |
else: | |
output_boxes = None | |
assert output_boxes is not None, "Predictions must contain boxes!" | |
output_boxes.scale(scale_x, scale_y) | |
output_boxes.clip(results.image_size) | |
results = results[output_boxes.nonempty()] | |
if results.has("pred_masks"): | |
if isinstance(results.pred_masks, ROIMasks): | |
roi_masks = results.pred_masks | |
else: | |
# pred_masks is a tensor of shape (N, 1, M, M) | |
roi_masks = ROIMasks(results.pred_masks[:, 0, :, :]) | |
results.pred_masks = roi_masks.to_bitmasks( | |
results.pred_boxes, output_height, output_width, mask_threshold | |
).tensor # TODO return ROIMasks/BitMask object in the future | |
return results | |