CuMo-7b-zero / cumo /eval /model_vqa_mathvista.py
jiachenl
update
c3f3b0b
raw
history blame
5.84 kB
import argparse
import torch
import os
import json
from tqdm import tqdm
import shortuuid
from cumo.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
from cumo.conversation import conv_templates, SeparatorStyle
from cumo.model.builder import load_pretrained_model
from cumo.utils import disable_torch_init
from cumo.mm_utils import tokenizer_image_token, process_images, get_model_name_from_path
from datasets import load_dataset, concatenate_datasets
from cumo.eval.mmmu_utils.data_utils import load_yaml, save_json, CAT_SHORT2LONG
from PIL import Image
import math
import re
def process_single_sample(data):
return {'id': data['id'], 'question': data['question'], 'options': data['options'], 'answer': data['answer'], 'image': data['decoded_image'], 'question_type': data['question_type']}
def construct_prompt(sample):
question = sample['question']
example = ""
if sample['question_type'] == 'multiple-choice':
start_chr = 'A'
prediction_range = []
index2ans = {}
for option in options:
prediction_range.append(start_chr)
example += f"({start_chr}) {option}\n"
index2ans[start_chr] = option
start_chr = chr(ord(start_chr) + 1)
#empty_prompt_sample_structure = config['multi_choice_example_format']
#empty_prompt = empty_prompt_sample_structure.format(question, example)
empty_prompt = question + '\n' + example + '\n' + "Answer with the option's letter from the given choices directly"
res_dict = {}
res_dict['index2ans'] = index2ans
res_dict['correct_choice'] = sample['answer']
res_dict['empty_prompt'] = empty_prompt
res_dict['final_input_prompt'] = empty_prompt
elif sample['question_type'] == 'free_form':
empty_prompt = question + '\n' + "Answer the question using a single word or phrase."
res_dict = {}
res_dict['empty_prompt'] = empty_prompt
res_dict['final_input_prompt'] = empty_prompt
res_dict.update(sample)
return res_dict
def split_list(lst, n):
"""Split a list into n (roughly) equal-sized chunks"""
chunk_size = math.ceil(len(lst) / n) # integer division
return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)]
def get_chunk(lst, n, k):
chunks = split_list(lst, n)
return chunks[k]
def eval_model(args):
# Model
disable_torch_init()
model_path = os.path.expanduser(args.model_path)
model_name = get_model_name_from_path(model_path)
tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, args.model_base, model_name)
model.config.training = False
# run for each subject
dataset = load_dataset(args.data_path, split=args.split)
answers_file = os.path.expanduser(args.answers_file)
os.makedirs(os.path.dirname(answers_file), exist_ok=True)
out_samples = dict()
for ind, sample in enumerate(tqdm(dataset, total=len(dataset))):
pid = sample['pid']
qs = sample['question']
if sample['decoded_image'] is not None:
#image_file = line["image"]
#image = Image.open(os.path.join(args.image_folder, image_file))
image_tensor = process_images([sample['decoded_image'].convert('RGB')], image_processor, model.config)[0]
images = image_tensor.unsqueeze(0).half().cuda()
image_sizes = [sample['decoded_image'].size]
if getattr(model.config, 'mm_use_im_start_end', False):
qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + qs
else:
qs = DEFAULT_IMAGE_TOKEN + '\n' + qs
else:
images = None
image_sizes = None
conv = conv_templates[args.conv_mode].copy()
conv.append_message(conv.roles[0], qs)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda()
with torch.inference_mode():
output_ids = model.generate(
input_ids,
images=images,
image_sizes=image_sizes,
do_sample=True if args.temperature > 0 else False,
#temperature=args.temperature,
max_new_tokens=1024,
pad_token_id=tokenizer.eos_token_id,
use_cache=True,
)
response = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip()
sample['response'] = response
del sample['decoded_image']
out_samples[pid] = sample
save_json(answers_file, out_samples)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model-path", type=str, default="facebook/opt-350m")
parser.add_argument("--model-base", type=str, default=None)
parser.add_argument("--image-folder", type=str, default="")
parser.add_argument("--question-file", type=str, default="tables/question.json")
parser.add_argument("--answers-file", type=str, default="answer.jsonl")
parser.add_argument("--conv-mode", type=str, default="llava_v0")
parser.add_argument("--num-chunks", type=int, default=1)
parser.add_argument("--chunk-idx", type=int, default=0)
parser.add_argument("--temperature", type=float, default=0.2)
parser.add_argument('--data_path', type=str, default="AI4Math/MathVista") # hf dataset path.
parser.add_argument('--split', type=str, default='testmini')
parser.add_argument("--answer-prompter", action="store_true")
parser.add_argument("--single-pred-prompt", action="store_true")
args = parser.parse_args()
eval_model(args)