File size: 6,972 Bytes
35e5468
 
 
 
 
9eae6e7
 
 
 
 
 
 
bd11a0f
9eae6e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e43b47
 
 
5e41805
 
9e43b47
 
 
 
 
 
 
 
9eae6e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4530503
 
9eae6e7
4530503
9eae6e7
4530503
9eae6e7
 
 
659310d
9e43b47
 
 
 
9eae6e7
 
 
 
 
 
9e43b47
 
 
 
 
 
 
 
 
 
9eae6e7
 
659310d
 
 
 
 
 
 
 
 
9eae6e7
 
 
 
 
 
 
659310d
9eae6e7
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import subprocess
subprocess.run('sh setup.sh', shell=True)

print("Installed the dependencies!")

from typing import Tuple
import dnnlib
from PIL import Image
import numpy as np
import torch
import legacy
import paddlehub as hub
import cv2

u2net = hub.Module(name='U2Net')

# gradio app imports
import gradio as gr
from torchvision.transforms import ToTensor, ToPILImage
image_to_tensor = ToTensor()
tensor_to_image = ToPILImage()

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
class_idx = None
truncation_psi = 0.1

def create_model(network_pkl):
    print('Loading networks from "%s"...' % network_pkl)
    with dnnlib.util.open_url(network_pkl) as f:
        G = legacy.load_network_pkl(f)['G_ema'] # type: ignore
    
    G = G.eval().to(device)
    netG_params = sum(p.numel() for p in G.parameters())
    print("Generator Params: {} M".format(netG_params/1e6))
    return G

def fcf_inpaint(G, org_img, erased_img, mask):
    label = torch.zeros([1, G.c_dim], device=device)
    if G.c_dim != 0:
        if class_idx is None:
            ValueError("class_idx can't be None.")
        label[:, class_idx] = 1
    else:
        if class_idx is not None:
            print ('warn: --class=lbl ignored when running on an unconditional network')
    
    pred_img = G(img=torch.cat([0.5 - mask, erased_img], dim=1), c=label, truncation_psi=truncation_psi, noise_mode='const')
    comp_img = mask.to(device) * pred_img + (1 - mask).to(device) * org_img.to(device)
    return comp_img

def show_images(img):
    """ Display a batch of images inline. """
    return Image.fromarray(img)

def denorm(img):
    img = np.asarray(img[0].cpu(), dtype=np.float32).transpose(1, 2, 0)
    img = (img +1) * 127.5
    img = np.rint(img).clip(0, 255).astype(np.uint8)
    return img

def pil_to_numpy(pil_img: Image) -> Tuple[torch.Tensor, torch.Tensor]:
    img = np.array(pil_img)
    return torch.from_numpy(img)[None].permute(0, 3, 1, 2).float() / 127.5 - 1

def inpaint(input_img, mask, option):
    width, height = input_img.size

    if option == "Automatic":
        result = u2net.Segmentation(
                images=[cv2.cvtColor(np.array(input_img), cv2.COLOR_RGB2BGR)],
                paths=None,
                batch_size=1,
                input_size=320,
                output_dir='output',
                visualization=True)
        mask = Image.fromarray(result[0]['mask'])
    else:
        mask = mask.resize((width,height))
    mask = mask.convert('L')

    if width != 512 or height != 512:
        input_img = input_img.resize((512, 512))
        mask = mask.resize((512, 512))
    
    
    if option == 'Manual':
        mask = (np.array(mask) - np.array(input_img.convert('L'))) > 0.
        mask = mask * 1.
        kernel = np.ones((5, 5), np.uint8)
        mask = cv2.dilate(mask, kernel) 
        mask = mask * 255.

    mask = np.array(mask) / 255.
    mask_tensor = torch.from_numpy(mask).to(torch.float32)
    mask_tensor = mask_tensor.unsqueeze(0)
    mask_tensor = mask_tensor.unsqueeze(0).to(device)

    rgb = input_img.convert('RGB')
    rgb = np.array(rgb)
    rgb = rgb.transpose(2,0,1)
    rgb = torch.from_numpy(rgb.astype(np.float32)).unsqueeze(0)
    rgb = (rgb.to(torch.float32) / 127.5 - 1).to(device)
    rgb_erased = rgb.clone()
    rgb_erased = rgb_erased * (1 - mask_tensor) # erase rgb
    rgb_erased = rgb_erased.to(torch.float32)
    
    model = create_model("models/places_512.pkl")
    comp_img = fcf_inpaint(G=model, org_img=rgb.to(torch.float32), erased_img=rgb_erased.to(torch.float32), mask=mask_tensor.to(torch.float32))
    rgb_erased = denorm(rgb_erased)
    comp_img = denorm(comp_img)

    return show_images(rgb_erased), show_images(comp_img)

gradio_inputs = [gr.inputs.Image(type='pil',
                                 tool=None,
                                 label="Image"),
                # gr.inputs.Image(type='pil',source="canvas", label="Mask", invert_colors=True),
                gr.inputs.Image(type='pil',
                                 tool="editor",
                                 label="Mask"),
                gr.inputs.Radio(choices=["Automatic", "Manual"], type="value", default="Manual", label="Masking Choice")
                ]

gradio_outputs = [gr.outputs.Image(label='Image with Hole'),
                 gr.outputs.Image(label='Inpainted Image')]

examples = [['test_512/person512.png', 'test_512/person512.png', 'Automatic'],
            ['test_512/a_org.png', 'test_512/a_overlay.png', 'Manual'],
            ['test_512/b_org.png', 'test_512/b_overlay.png', 'Manual'],
            ['test_512/c_org.png', 'test_512/c_overlay.png', 'Manual'],
            ['test_512/d_org.png', 'test_512/d_overlay.png', 'Manual'],
            ['test_512/e_org.png', 'test_512/e_overlay.png', 'Manual'],
            ['test_512/f_org.png', 'test_512/f_overlay.png', 'Manual'],
            ['test_512/g_org.png', 'test_512/g_overlay.png', 'Manual'],
            ['test_512/h_org.png', 'test_512/h_overlay.png', 'Manual'],
            ['test_512/i_org.png', 'test_512/i_overlay.png', 'Manual']]

title = "FcF-Inpainting"

description = "<p style='color:royalblue; font-weight: w300;'>  \
                [Note: Queue time may take upto 20 seconds! The image and mask are resized to 512x512 before inpainting.] To use FcF-Inpainting: <br> \
                (1) <span style='color:#E0B941;'>Upload </span> an Image to <span style='color:#E0B941;'>both</span> input boxes (Image and Mask) below. <br>  \
                (2a) <span style='color:#E0B941;'>Manual Option:</span> Draw a mask (hole) using the brush (click on the edit button in the top right of the Mask View and select draw option). <br>  \
                (2b) <span style='color:#E0B941;'>Automatic Option:</span> This option will generate a mask using a pretrained U2Net model. <br>  \
                (3) Click on Submit and witness the MAGIC! 🪄 ✨ ✨</p>"

article = "<p style='color: #E0B941; text-align: center'><a style='color: #E0B941;' href='https://github.com/SHI-Labs/FcF-Inpainting' target='_blank'> Keys to Better Image Inpainting: Structure and Texture Go Hand in Hand</a> | <a style='color: #E0B941;' href='https://github.com/SHI-Labs/FcF-Inpainting' target='_blank'>Github Repo</a></p>"

css = ".image-preview {height: 32rem; width: auto;} .output-image {height: 32rem; width: auto;} .panel-buttons { display: flex; flex-direction: row;}"

iface = gr.Interface(fn=inpaint, inputs=gradio_inputs,
                     outputs=gradio_outputs,
                     css=css,
                     layout="vertical",
                     theme="dark-huggingface",
                     examples_per_page=5,
                     thumbnail="fcf_gan.png",
                     allow_flagging="never",
                     examples=examples, title=title,
                     description=description, article=article)
iface.launch(enable_queue=True,
                     share=True, server_name="0.0.0.0")