FcF-Inpainting / app.py
praeclarumjj3's picture
Add mask drawing
9e43b47
raw
history blame
6.55 kB
import subprocess
subprocess.run('sh setup.sh', shell=True)
print("Installed the dependencies!")
from typing import Tuple
import dnnlib
from PIL import Image
import numpy as np
import torch
import legacy
import paddlehub as hub
import cv2
u2net = hub.Module(name='U2Net')
# gradio app imports
import gradio as gr
from torchvision.transforms import ToTensor, ToPILImage
image_to_tensor = ToTensor()
tensor_to_image = ToPILImage()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
class_idx = None
truncation_psi = 0.1
def create_model(network_pkl):
print('Loading networks from "%s"...' % network_pkl)
with dnnlib.util.open_url(network_pkl) as f:
G = legacy.load_network_pkl(f)['G_ema'] # type: ignore
G = G.eval().to(device)
netG_params = sum(p.numel() for p in G.parameters())
print("Generator Params: {} M".format(netG_params/1e6))
return G
def fcf_inpaint(G, org_img, erased_img, mask):
label = torch.zeros([1, G.c_dim], device=device)
if G.c_dim != 0:
if class_idx is None:
ValueError("class_idx can't be None.")
label[:, class_idx] = 1
else:
if class_idx is not None:
print ('warn: --class=lbl ignored when running on an unconditional network')
pred_img = G(img=torch.cat([0.5 - mask, erased_img], dim=1), c=label, truncation_psi=truncation_psi, noise_mode='const')
comp_img = mask.to(device) * pred_img + (1 - mask).to(device) * org_img.to(device)
return comp_img
def show_images(img):
""" Display a batch of images inline. """
return Image.fromarray(img)
def denorm(img):
img = np.asarray(img[0].cpu(), dtype=np.float32).transpose(1, 2, 0)
img = (img +1) * 127.5
img = np.rint(img).clip(0, 255).astype(np.uint8)
return img
def pil_to_numpy(pil_img: Image) -> Tuple[torch.Tensor, torch.Tensor]:
img = np.array(pil_img)
return torch.from_numpy(img)[None].permute(0, 3, 1, 2).float() / 127.5 - 1
def inpaint(input_img, mask, option):
width, height = input_img.size
if option == "Automatic":
result = u2net.Segmentation(
images=[cv2.cvtColor(np.array(input_img), cv2.COLOR_RGB2BGR)],
paths=None,
batch_size=1,
input_size=320,
output_dir='output',
visualization=True)
mask = Image.fromarray(result[0]['mask'])
else:
mask = mask.resize((width,height))
mask = mask.convert('L')
if width != 512 or height != 512:
input_img = input_img.resize((512, 512))
mask = mask.resize((512, 512))
if option == 'Manual':
mask = (np.array(mask) - np.array(input_img.convert('L'))) > 0.
mask = mask * 1.
kernel = np.ones((5, 5), np.uint8)
mask = cv2.dilate(mask, kernel)
mask = mask * 255.
mask = np.array(mask) / 255.
mask_tensor = torch.from_numpy(mask).to(torch.float32)
mask_tensor = mask_tensor.unsqueeze(0)
mask_tensor = mask_tensor.unsqueeze(0).to(device)
rgb = input_img.convert('RGB')
rgb = np.array(rgb)
rgb = rgb.transpose(2,0,1)
rgb = torch.from_numpy(rgb.astype(np.float32)).unsqueeze(0)
rgb = (rgb.to(torch.float32) / 127.5 - 1).to(device)
rgb_erased = rgb.clone()
rgb_erased = rgb_erased * (1 - mask_tensor) # erase rgb
rgb_erased = rgb_erased.to(torch.float32)
model = create_model("models/places_512.pkl")
comp_img = fcf_inpaint(G=model, org_img=rgb.to(torch.float32), erased_img=rgb_erased.to(torch.float32), mask=mask_tensor.to(torch.float32))
rgb_erased = denorm(rgb_erased)
comp_img = denorm(comp_img)
return show_images(rgb_erased), show_images(comp_img)
gradio_inputs = [gr.inputs.Image(type='pil',
tool=None,
label="Input Image"),
# gr.inputs.Image(type='pil',source="canvas", label="Mask", invert_colors=True),
gr.inputs.Image(type='pil',
tool="editor",
label="Mask"),
gr.inputs.Radio(choices=["Automatic", "Manual"], type="value", default="Manual", label="Masking Choice")
]
gradio_outputs = [gr.outputs.Image(label='Image with Hole'),
gr.outputs.Image(label='Inpainted Image')]
examples = [['test_512/person512.png', 'test_512/person512.png', 'Automatic'],
['test_512/a_org.png', 'test_512/a_overlay.png', 'Manual'],
['test_512/b_org.png', 'test_512/b_overlay.png', 'Manual'],
['test_512/c_org.png', 'test_512/c_overlay.png', 'Manual'],
['test_512/d_org.png', 'test_512/d_overlay.png', 'Manual'],
['test_512/e_org.png', 'test_512/e_overlay.png', 'Manual'],
['test_512/f_org.png', 'test_512/f_overlay.png', 'Manual'],
['test_512/g_org.png', 'test_512/g_overlay.png', 'Manual'],
['test_512/h_org.png', 'test_512/h_overlay.png', 'Manual'],
['test_512/i_org.png', 'test_512/i_overlay.png', 'Manual']]
title = "FcF-Inpainting"
description = "[Note: Queue time may take upto 20 seconds! The image and mask are resized to 512x512 before inpainting.] To use FcF-Inpainting: \n \
(1) Upload an Image; \n \
(2a) Draw (Manual) a Mask using the brush (click on the edit option in the top right of the Mask View) \n \
(2b) You can also generate a mask using U2Net by selecting the Automatic option; \n \
(3) Click on Submit and witness the MAGIC! 🪄 ✨ ✨"
article = "<p style='text-align: center'><a href='https://github.com/SHI-Labs/FcF-Inpainting' target='_blank'> Keys to Better Image Inpainting: Structure and Texture Go Hand in Hand</a> | <a href='https://github.com/SHI-Labs/FcF-Inpainting' target='_blank'>Github Repo</a></p>"
css = ".image-preview {height: 32rem; width: auto;} .output-image {height: 32rem; width: auto;} .panel-buttons { display: flex; flex-direction: row;}"
iface = gr.Interface(fn=inpaint, inputs=gradio_inputs,
outputs=gradio_outputs,
css=css,
layout="vertical",
examples_per_page=5,
thumbnail="fcf_gan.png",
allow_flagging="never",
examples=examples, title=title,
description=description, article=article)
iface.launch(enable_queue=True,
share=True, server_name="0.0.0.0")