import subprocess subprocess.run('sh setup.sh', shell=True) print("Installed the dependencies!") from typing import Tuple import dnnlib from PIL import Image import numpy as np import torch import legacy import paddlehub as hub import cv2 u2net = hub.Module(name='U2Net') # gradio app imports import gradio as gr from torchvision.transforms import ToTensor, ToPILImage image_to_tensor = ToTensor() tensor_to_image = ToPILImage() device = torch.device("cuda" if torch.cuda.is_available() else "cpu") class_idx = None truncation_psi = 0.1 def create_model(network_pkl): print('Loading networks from "%s"...' % network_pkl) with dnnlib.util.open_url(network_pkl) as f: G = legacy.load_network_pkl(f)['G_ema'] # type: ignore G = G.eval().to(device) netG_params = sum(p.numel() for p in G.parameters()) print("Generator Params: {} M".format(netG_params/1e6)) return G def fcf_inpaint(G, org_img, erased_img, mask): label = torch.zeros([1, G.c_dim], device=device) if G.c_dim != 0: if class_idx is None: ValueError("class_idx can't be None.") label[:, class_idx] = 1 else: if class_idx is not None: print ('warn: --class=lbl ignored when running on an unconditional network') pred_img = G(img=torch.cat([0.5 - mask, erased_img], dim=1), c=label, truncation_psi=truncation_psi, noise_mode='const') comp_img = mask.to(device) * pred_img + (1 - mask).to(device) * org_img.to(device) return comp_img def show_images(img): """ Display a batch of images inline. """ return Image.fromarray(img) def denorm(img): img = np.asarray(img[0].cpu(), dtype=np.float32).transpose(1, 2, 0) img = (img +1) * 127.5 img = np.rint(img).clip(0, 255).astype(np.uint8) return img def pil_to_numpy(pil_img: Image) -> Tuple[torch.Tensor, torch.Tensor]: img = np.array(pil_img) return torch.from_numpy(img)[None].permute(0, 3, 1, 2).float() / 127.5 - 1 def inpaint(input_img, mask, option): width, height = input_img.size if option == "Automatic": result = u2net.Segmentation( images=[cv2.cvtColor(np.array(input_img), cv2.COLOR_RGB2BGR)], paths=None, batch_size=1, input_size=320, output_dir='output', visualization=True) mask = Image.fromarray(result[0]['mask']) else: mask = mask.resize((width,height)) mask = mask.convert('L') if width != 512 or height != 512: input_img = input_img.resize((512, 512)) mask = mask.resize((512, 512)) if option == 'Manual': mask = (np.array(mask) - np.array(input_img.convert('L'))) > 0. mask = mask * 1. kernel = np.ones((5, 5), np.uint8) mask = cv2.dilate(mask, kernel) mask = mask * 255. mask = np.array(mask) / 255. mask_tensor = torch.from_numpy(mask).to(torch.float32) mask_tensor = mask_tensor.unsqueeze(0) mask_tensor = mask_tensor.unsqueeze(0).to(device) rgb = input_img.convert('RGB') rgb = np.array(rgb) rgb = rgb.transpose(2,0,1) rgb = torch.from_numpy(rgb.astype(np.float32)).unsqueeze(0) rgb = (rgb.to(torch.float32) / 127.5 - 1).to(device) rgb_erased = rgb.clone() rgb_erased = rgb_erased * (1 - mask_tensor) # erase rgb rgb_erased = rgb_erased.to(torch.float32) model = create_model("models/places_512.pkl") comp_img = fcf_inpaint(G=model, org_img=rgb.to(torch.float32), erased_img=rgb_erased.to(torch.float32), mask=mask_tensor.to(torch.float32)) rgb_erased = denorm(rgb_erased) comp_img = denorm(comp_img) return show_images(rgb_erased), show_images(comp_img) gradio_inputs = [gr.inputs.Image(type='pil', tool=None, label="Image"), # gr.inputs.Image(type='pil',source="canvas", label="Mask", invert_colors=True), gr.inputs.Image(type='pil', tool="editor", label="Mask"), gr.inputs.Radio(choices=["Automatic", "Manual"], type="value", default="Manual", label="Masking Choice") ] gradio_outputs = [gr.outputs.Image(label='Image with Hole'), gr.outputs.Image(label='Inpainted Image')] examples = [['test_512/person512.png', 'test_512/person512.png', 'Automatic'], ['test_512/a_org.png', 'test_512/a_overlay.png', 'Manual'], ['test_512/b_org.png', 'test_512/b_overlay.png', 'Manual'], ['test_512/c_org.png', 'test_512/c_overlay.png', 'Manual'], ['test_512/d_org.png', 'test_512/d_overlay.png', 'Manual'], ['test_512/e_org.png', 'test_512/e_overlay.png', 'Manual'], ['test_512/f_org.png', 'test_512/f_overlay.png', 'Manual'], ['test_512/g_org.png', 'test_512/g_overlay.png', 'Manual'], ['test_512/h_org.png', 'test_512/h_overlay.png', 'Manual'], ['test_512/i_org.png', 'test_512/i_overlay.png', 'Manual']] title = "FcF-Inpainting" description = "
\
[Note: Queue time may take upto 20 seconds! The image and mask are resized to 512x512 before inpainting.] To use FcF-Inpainting:
\
(1) Upload an Image to both input boxes (Image and Mask) below.
\
(2a) Manual Option: Draw a mask (hole) using the brush (click on the edit button in the top right of the Mask View and select draw option).
\
(2b) Automatic Option: This option will generate a mask using a pretrained U2Net model.
\
(3) Click on Submit and witness the MAGIC! 🪄 ✨ ✨
Keys to Better Image Inpainting: Structure and Texture Go Hand in Hand | Github Repo
" css = ".image-preview {height: 32rem; width: auto;} .output-image {height: 32rem; width: auto;} .panel-buttons { display: flex; flex-direction: row;}" iface = gr.Interface(fn=inpaint, inputs=gradio_inputs, outputs=gradio_outputs, css=css, layout="vertical", theme="dark-huggingface", examples_per_page=5, thumbnail="fcf_gan.png", allow_flagging="never", examples=examples, title=title, description=description, article=article) iface.launch(enable_queue=True, share=True, server_name="0.0.0.0")