File size: 20,049 Bytes
6e445f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
# ------------------------------------------------------------------------------
# Reference: https://github.com/facebookresearch/Mask2Former/blob/main/mask2former/data/datasets/register_ade20k_panoptic.py
# Modified by Jitesh Jain (https://github.com/praeclarumjj3)
# ------------------------------------------------------------------------------

import json
import os

from detectron2.data import DatasetCatalog, MetadataCatalog
from detectron2.utils.file_io import PathManager

ADE20K_150_CATEGORIES = [
    {"color": [120, 120, 120], "id": 0, "isthing": 0, "name": "wall"},
    {"color": [180, 120, 120], "id": 1, "isthing": 0, "name": "building"},
    {"color": [6, 230, 230], "id": 2, "isthing": 0, "name": "sky"},
    {"color": [80, 50, 50], "id": 3, "isthing": 0, "name": "floor"},
    {"color": [4, 200, 3], "id": 4, "isthing": 0, "name": "tree"},
    {"color": [120, 120, 80], "id": 5, "isthing": 0, "name": "ceiling"},
    {"color": [140, 140, 140], "id": 6, "isthing": 0, "name": "road, route"},
    {"color": [204, 5, 255], "id": 7, "isthing": 1, "name": "bed"},
    {"color": [230, 230, 230], "id": 8, "isthing": 1, "name": "window "},
    {"color": [4, 250, 7], "id": 9, "isthing": 0, "name": "grass"},
    {"color": [224, 5, 255], "id": 10, "isthing": 1, "name": "cabinet"},
    {"color": [235, 255, 7], "id": 11, "isthing": 0, "name": "sidewalk, pavement"},
    {"color": [150, 5, 61], "id": 12, "isthing": 1, "name": "person"},
    {"color": [120, 120, 70], "id": 13, "isthing": 0, "name": "earth, ground"},
    {"color": [8, 255, 51], "id": 14, "isthing": 1, "name": "door"},
    {"color": [255, 6, 82], "id": 15, "isthing": 1, "name": "table"},
    {"color": [143, 255, 140], "id": 16, "isthing": 0, "name": "mountain, mount"},
    {"color": [204, 255, 4], "id": 17, "isthing": 0, "name": "plant"},
    {"color": [255, 51, 7], "id": 18, "isthing": 1, "name": "curtain"},
    {"color": [204, 70, 3], "id": 19, "isthing": 1, "name": "chair"},
    {"color": [0, 102, 200], "id": 20, "isthing": 1, "name": "car"},
    {"color": [61, 230, 250], "id": 21, "isthing": 0, "name": "water"},
    {"color": [255, 6, 51], "id": 22, "isthing": 1, "name": "painting, picture"},
    {"color": [11, 102, 255], "id": 23, "isthing": 1, "name": "sofa"},
    {"color": [255, 7, 71], "id": 24, "isthing": 1, "name": "shelf"},
    {"color": [255, 9, 224], "id": 25, "isthing": 0, "name": "house"},
    {"color": [9, 7, 230], "id": 26, "isthing": 0, "name": "sea"},
    {"color": [220, 220, 220], "id": 27, "isthing": 1, "name": "mirror"},
    {"color": [255, 9, 92], "id": 28, "isthing": 0, "name": "rug"},
    {"color": [112, 9, 255], "id": 29, "isthing": 0, "name": "field"},
    {"color": [8, 255, 214], "id": 30, "isthing": 1, "name": "armchair"},
    {"color": [7, 255, 224], "id": 31, "isthing": 1, "name": "seat"},
    {"color": [255, 184, 6], "id": 32, "isthing": 1, "name": "fence"},
    {"color": [10, 255, 71], "id": 33, "isthing": 1, "name": "desk"},
    {"color": [255, 41, 10], "id": 34, "isthing": 0, "name": "rock, stone"},
    {"color": [7, 255, 255], "id": 35, "isthing": 1, "name": "wardrobe, closet, press"},
    {"color": [224, 255, 8], "id": 36, "isthing": 1, "name": "lamp"},
    {"color": [102, 8, 255], "id": 37, "isthing": 1, "name": "tub"},
    {"color": [255, 61, 6], "id": 38, "isthing": 1, "name": "rail"},
    {"color": [255, 194, 7], "id": 39, "isthing": 1, "name": "cushion"},
    {"color": [255, 122, 8], "id": 40, "isthing": 0, "name": "base, pedestal, stand"},
    {"color": [0, 255, 20], "id": 41, "isthing": 1, "name": "box"},
    {"color": [255, 8, 41], "id": 42, "isthing": 1, "name": "column, pillar"},
    {"color": [255, 5, 153], "id": 43, "isthing": 1, "name": "signboard, sign"},
    {
        "color": [6, 51, 255],
        "id": 44,
        "isthing": 1,
        "name": "chest of drawers, chest, bureau, dresser",
    },
    {"color": [235, 12, 255], "id": 45, "isthing": 1, "name": "counter"},
    {"color": [160, 150, 20], "id": 46, "isthing": 0, "name": "sand"},
    {"color": [0, 163, 255], "id": 47, "isthing": 1, "name": "sink"},
    {"color": [140, 140, 140], "id": 48, "isthing": 0, "name": "skyscraper"},
    {"color": [250, 10, 15], "id": 49, "isthing": 1, "name": "fireplace"},
    {"color": [20, 255, 0], "id": 50, "isthing": 1, "name": "refrigerator, icebox"},
    {"color": [31, 255, 0], "id": 51, "isthing": 0, "name": "grandstand, covered stand"},
    {"color": [255, 31, 0], "id": 52, "isthing": 0, "name": "path"},
    {"color": [255, 224, 0], "id": 53, "isthing": 1, "name": "stairs"},
    {"color": [153, 255, 0], "id": 54, "isthing": 0, "name": "runway"},
    {"color": [0, 0, 255], "id": 55, "isthing": 1, "name": "case, display case, showcase, vitrine"},
    {
        "color": [255, 71, 0],
        "id": 56,
        "isthing": 1,
        "name": "pool table, billiard table, snooker table",
    },
    {"color": [0, 235, 255], "id": 57, "isthing": 1, "name": "pillow"},
    {"color": [0, 173, 255], "id": 58, "isthing": 1, "name": "screen door, screen"},
    {"color": [31, 0, 255], "id": 59, "isthing": 0, "name": "stairway, staircase"},
    {"color": [11, 200, 200], "id": 60, "isthing": 0, "name": "river"},
    {"color": [255, 82, 0], "id": 61, "isthing": 0, "name": "bridge, span"},
    {"color": [0, 255, 245], "id": 62, "isthing": 1, "name": "bookcase"},
    {"color": [0, 61, 255], "id": 63, "isthing": 0, "name": "blind, screen"},
    {"color": [0, 255, 112], "id": 64, "isthing": 1, "name": "coffee table"},
    {
        "color": [0, 255, 133],
        "id": 65,
        "isthing": 1,
        "name": "toilet, can, commode, crapper, pot, potty, stool, throne",
    },
    {"color": [255, 0, 0], "id": 66, "isthing": 1, "name": "flower"},
    {"color": [255, 163, 0], "id": 67, "isthing": 1, "name": "book"},
    {"color": [255, 102, 0], "id": 68, "isthing": 0, "name": "hill"},
    {"color": [194, 255, 0], "id": 69, "isthing": 1, "name": "bench"},
    {"color": [0, 143, 255], "id": 70, "isthing": 1, "name": "countertop"},
    {"color": [51, 255, 0], "id": 71, "isthing": 1, "name": "stove"},
    {"color": [0, 82, 255], "id": 72, "isthing": 1, "name": "palm, palm tree"},
    {"color": [0, 255, 41], "id": 73, "isthing": 1, "name": "kitchen island"},
    {"color": [0, 255, 173], "id": 74, "isthing": 1, "name": "computer"},
    {"color": [10, 0, 255], "id": 75, "isthing": 1, "name": "swivel chair"},
    {"color": [173, 255, 0], "id": 76, "isthing": 1, "name": "boat"},
    {"color": [0, 255, 153], "id": 77, "isthing": 0, "name": "bar"},
    {"color": [255, 92, 0], "id": 78, "isthing": 1, "name": "arcade machine"},
    {"color": [255, 0, 255], "id": 79, "isthing": 0, "name": "hovel, hut, hutch, shack, shanty"},
    {"color": [255, 0, 245], "id": 80, "isthing": 1, "name": "bus"},
    {"color": [255, 0, 102], "id": 81, "isthing": 1, "name": "towel"},
    {"color": [255, 173, 0], "id": 82, "isthing": 1, "name": "light"},
    {"color": [255, 0, 20], "id": 83, "isthing": 1, "name": "truck"},
    {"color": [255, 184, 184], "id": 84, "isthing": 0, "name": "tower"},
    {"color": [0, 31, 255], "id": 85, "isthing": 1, "name": "chandelier"},
    {"color": [0, 255, 61], "id": 86, "isthing": 1, "name": "awning, sunshade, sunblind"},
    {"color": [0, 71, 255], "id": 87, "isthing": 1, "name": "street lamp"},
    {"color": [255, 0, 204], "id": 88, "isthing": 1, "name": "booth"},
    {"color": [0, 255, 194], "id": 89, "isthing": 1, "name": "tv"},
    {"color": [0, 255, 82], "id": 90, "isthing": 1, "name": "plane"},
    {"color": [0, 10, 255], "id": 91, "isthing": 0, "name": "dirt track"},
    {"color": [0, 112, 255], "id": 92, "isthing": 1, "name": "clothes"},
    {"color": [51, 0, 255], "id": 93, "isthing": 1, "name": "pole"},
    {"color": [0, 194, 255], "id": 94, "isthing": 0, "name": "land, ground, soil"},
    {
        "color": [0, 122, 255],
        "id": 95,
        "isthing": 1,
        "name": "bannister, banister, balustrade, balusters, handrail",
    },
    {
        "color": [0, 255, 163],
        "id": 96,
        "isthing": 0,
        "name": "escalator, moving staircase, moving stairway",
    },
    {
        "color": [255, 153, 0],
        "id": 97,
        "isthing": 1,
        "name": "ottoman, pouf, pouffe, puff, hassock",
    },
    {"color": [0, 255, 10], "id": 98, "isthing": 1, "name": "bottle"},
    {"color": [255, 112, 0], "id": 99, "isthing": 0, "name": "buffet, counter, sideboard"},
    {
        "color": [143, 255, 0],
        "id": 100,
        "isthing": 0,
        "name": "poster, posting, placard, notice, bill, card",
    },
    {"color": [82, 0, 255], "id": 101, "isthing": 0, "name": "stage"},
    {"color": [163, 255, 0], "id": 102, "isthing": 1, "name": "van"},
    {"color": [255, 235, 0], "id": 103, "isthing": 1, "name": "ship"},
    {"color": [8, 184, 170], "id": 104, "isthing": 1, "name": "fountain"},
    {
        "color": [133, 0, 255],
        "id": 105,
        "isthing": 0,
        "name": "conveyer belt, conveyor belt, conveyer, conveyor, transporter",
    },
    {"color": [0, 255, 92], "id": 106, "isthing": 0, "name": "canopy"},
    {
        "color": [184, 0, 255],
        "id": 107,
        "isthing": 1,
        "name": "washer, automatic washer, washing machine",
    },
    {"color": [255, 0, 31], "id": 108, "isthing": 1, "name": "plaything, toy"},
    {"color": [0, 184, 255], "id": 109, "isthing": 0, "name": "pool"},
    {"color": [0, 214, 255], "id": 110, "isthing": 1, "name": "stool"},
    {"color": [255, 0, 112], "id": 111, "isthing": 1, "name": "barrel, cask"},
    {"color": [92, 255, 0], "id": 112, "isthing": 1, "name": "basket, handbasket"},
    {"color": [0, 224, 255], "id": 113, "isthing": 0, "name": "falls"},
    {"color": [112, 224, 255], "id": 114, "isthing": 0, "name": "tent"},
    {"color": [70, 184, 160], "id": 115, "isthing": 1, "name": "bag"},
    {"color": [163, 0, 255], "id": 116, "isthing": 1, "name": "minibike, motorbike"},
    {"color": [153, 0, 255], "id": 117, "isthing": 0, "name": "cradle"},
    {"color": [71, 255, 0], "id": 118, "isthing": 1, "name": "oven"},
    {"color": [255, 0, 163], "id": 119, "isthing": 1, "name": "ball"},
    {"color": [255, 204, 0], "id": 120, "isthing": 1, "name": "food, solid food"},
    {"color": [255, 0, 143], "id": 121, "isthing": 1, "name": "step, stair"},
    {"color": [0, 255, 235], "id": 122, "isthing": 0, "name": "tank, storage tank"},
    {"color": [133, 255, 0], "id": 123, "isthing": 1, "name": "trade name"},
    {"color": [255, 0, 235], "id": 124, "isthing": 1, "name": "microwave"},
    {"color": [245, 0, 255], "id": 125, "isthing": 1, "name": "pot"},
    {"color": [255, 0, 122], "id": 126, "isthing": 1, "name": "animal"},
    {"color": [255, 245, 0], "id": 127, "isthing": 1, "name": "bicycle"},
    {"color": [10, 190, 212], "id": 128, "isthing": 0, "name": "lake"},
    {"color": [214, 255, 0], "id": 129, "isthing": 1, "name": "dishwasher"},
    {"color": [0, 204, 255], "id": 130, "isthing": 1, "name": "screen"},
    {"color": [20, 0, 255], "id": 131, "isthing": 0, "name": "blanket, cover"},
    {"color": [255, 255, 0], "id": 132, "isthing": 1, "name": "sculpture"},
    {"color": [0, 153, 255], "id": 133, "isthing": 1, "name": "hood, exhaust hood"},
    {"color": [0, 41, 255], "id": 134, "isthing": 1, "name": "sconce"},
    {"color": [0, 255, 204], "id": 135, "isthing": 1, "name": "vase"},
    {"color": [41, 0, 255], "id": 136, "isthing": 1, "name": "traffic light"},
    {"color": [41, 255, 0], "id": 137, "isthing": 1, "name": "tray"},
    {"color": [173, 0, 255], "id": 138, "isthing": 1, "name": "trash can"},
    {"color": [0, 245, 255], "id": 139, "isthing": 1, "name": "fan"},
    {"color": [71, 0, 255], "id": 140, "isthing": 0, "name": "pier"},
    {"color": [122, 0, 255], "id": 141, "isthing": 0, "name": "crt screen"},
    {"color": [0, 255, 184], "id": 142, "isthing": 1, "name": "plate"},
    {"color": [0, 92, 255], "id": 143, "isthing": 1, "name": "monitor"},
    {"color": [184, 255, 0], "id": 144, "isthing": 1, "name": "bulletin board"},
    {"color": [0, 133, 255], "id": 145, "isthing": 0, "name": "shower"},
    {"color": [255, 214, 0], "id": 146, "isthing": 1, "name": "radiator"},
    {"color": [25, 194, 194], "id": 147, "isthing": 1, "name": "glass, drinking glass"},
    {"color": [102, 255, 0], "id": 148, "isthing": 1, "name": "clock"},
    {"color": [92, 0, 255], "id": 149, "isthing": 1, "name": "flag"},
]

ADE20k_COLORS = [k["color"] for k in ADE20K_150_CATEGORIES]

MetadataCatalog.get("ade20k_sem_seg_train").set(
    stuff_colors=ADE20k_COLORS[:],
)

MetadataCatalog.get("ade20k_sem_seg_val").set(
    stuff_colors=ADE20k_COLORS[:],
)


def load_ade20k_panoptic_json(json_file, image_dir, gt_dir, semseg_dir, meta):
    """
    Args:
        image_dir (str): path to the raw dataset. e.g., "~/coco/train2017".
        gt_dir (str): path to the raw annotations. e.g., "~/coco/panoptic_train2017".
        json_file (str): path to the json file. e.g., "~/coco/annotations/panoptic_train2017.json".
    Returns:
        list[dict]: a list of dicts in Detectron2 standard format. (See
        `Using Custom Datasets </tutorials/datasets.html>`_ )
    """

    def _convert_category_id(segment_info, meta):
        if segment_info["category_id"] in meta["thing_dataset_id_to_contiguous_id"]:
            segment_info["category_id"] = meta["thing_dataset_id_to_contiguous_id"][
                segment_info["category_id"]
            ]
            segment_info["isthing"] = True
        else:
            segment_info["category_id"] = meta["stuff_dataset_id_to_contiguous_id"][
                segment_info["category_id"]
            ]
            segment_info["isthing"] = False
        return segment_info

    with PathManager.open(json_file) as f:
        json_info = json.load(f)

    ret = []
    for ann in json_info["annotations"]:
        image_id = ann["image_id"]
        # TODO: currently we assume image and label has the same filename but
        # different extension, and images have extension ".jpg" for COCO. Need
        # to make image extension a user-provided argument if we extend this
        # function to support other COCO-like datasets.
        image_file = os.path.join(image_dir, os.path.splitext(ann["file_name"])[0] + ".jpg")
        label_file = os.path.join(gt_dir, ann["file_name"])
        sem_label_file = os.path.join(semseg_dir, ann["file_name"])
        segments_info = [_convert_category_id(x, meta) for x in ann["segments_info"]]
        ret.append(
            {
                "file_name": image_file,
                "image_id": image_id,
                "pan_seg_file_name": label_file,
                "sem_seg_file_name": sem_label_file,
                "segments_info": segments_info,
            }
        )
    assert len(ret), f"No images found in {image_dir}!"
    assert PathManager.isfile(ret[0]["file_name"]), ret[0]["file_name"]
    assert PathManager.isfile(ret[0]["pan_seg_file_name"]), ret[0]["pan_seg_file_name"]
    assert PathManager.isfile(ret[0]["sem_seg_file_name"]), ret[0]["sem_seg_file_name"]
    return ret


def register_ade20k_panoptic(
    name, metadata, image_root, panoptic_root, semantic_root, panoptic_json, instances_json=None,
):
    """
    Register a "standard" version of ADE20k panoptic segmentation dataset named `name`.
    The dictionaries in this registered dataset follows detectron2's standard format.
    Hence it's called "standard".
    Args:
        name (str): the name that identifies a dataset,
            e.g. "ade20k_panoptic_train"
        metadata (dict): extra metadata associated with this dataset.
        image_root (str): directory which contains all the images
        panoptic_root (str): directory which contains panoptic annotation images in COCO format
        panoptic_json (str): path to the json panoptic annotation file in COCO format
        sem_seg_root (none): not used, to be consistent with
            `register_coco_panoptic_separated`.
        instances_json (str): path to the json instance annotation file
    """
    panoptic_name = name
    DatasetCatalog.register(
        panoptic_name,
        lambda: load_ade20k_panoptic_json(
            panoptic_json, image_root, panoptic_root, semantic_root, metadata
        ),
    )
    MetadataCatalog.get(panoptic_name).set(
        panoptic_root=panoptic_root,
        image_root=image_root,
        panoptic_json=panoptic_json,
        json_file=instances_json,
        evaluator_type="ade20k_panoptic_seg",
        ignore_label=255,
        label_divisor=1000,
        **metadata,
    )


_PREDEFINED_SPLITS_ADE20K_PANOPTIC = {
    "ade20k_panoptic_train": (
        "ADEChallengeData2016/images/training",
        "ADEChallengeData2016/ade20k_panoptic_train",
        "ADEChallengeData2016/ade20k_panoptic_train.json",
        "ADEChallengeData2016/annotations_detectron2/training",
        "ADEChallengeData2016/ade20k_instance_train.json",
    ),
    "ade20k_panoptic_val": (
        "ADEChallengeData2016/images/validation",
        "ADEChallengeData2016/ade20k_panoptic_val",
        "ADEChallengeData2016/ade20k_panoptic_val.json",
        "ADEChallengeData2016/annotations_detectron2/validation",
        "ADEChallengeData2016/ade20k_instance_val.json",
    ),
}


def get_metadata():
    meta = {}
    # The following metadata maps contiguous id from [0, #thing categories +
    # #stuff categories) to their names and colors. We have to replica of the
    # same name and color under "thing_*" and "stuff_*" because the current
    # visualization function in D2 handles thing and class classes differently
    # due to some heuristic used in Panoptic FPN. We keep the same naming to
    # enable reusing existing visualization functions.
    thing_classes = [k["name"] for k in ADE20K_150_CATEGORIES if k["isthing"] == 1]
    thing_colors = [k["color"] for k in ADE20K_150_CATEGORIES if k["isthing"] == 1]
    stuff_classes = [k["name"] for k in ADE20K_150_CATEGORIES]
    stuff_colors = [k["color"] for k in ADE20K_150_CATEGORIES]

    meta["thing_classes"] = thing_classes
    meta["thing_colors"] = thing_colors
    meta["stuff_classes"] = stuff_classes
    meta["stuff_colors"] = stuff_colors

    # Convert category id for training:
    #   category id: like semantic segmentation, it is the class id for each
    #   pixel. Since there are some classes not used in evaluation, the category
    #   id is not always contiguous and thus we have two set of category ids:
    #       - original category id: category id in the original dataset, mainly
    #           used for evaluation.
    #       - contiguous category id: [0, #classes), in order to train the linear
    #           softmax classifier.
    thing_dataset_id_to_contiguous_id = {}
    stuff_dataset_id_to_contiguous_id = {}

    for i, cat in enumerate(ADE20K_150_CATEGORIES):
        if cat["isthing"]:
            thing_dataset_id_to_contiguous_id[cat["id"]] = i
        # else:
        #     stuff_dataset_id_to_contiguous_id[cat["id"]] = i

        # in order to use sem_seg evaluator
        stuff_dataset_id_to_contiguous_id[cat["id"]] = i

    meta["thing_dataset_id_to_contiguous_id"] = thing_dataset_id_to_contiguous_id
    meta["stuff_dataset_id_to_contiguous_id"] = stuff_dataset_id_to_contiguous_id

    return meta


def register_all_ade20k_panoptic(root):
    metadata = get_metadata()
    for (
        prefix,
        (image_root, panoptic_root, panoptic_json, semantic_root, instance_json),
    ) in _PREDEFINED_SPLITS_ADE20K_PANOPTIC.items():
        # The "standard" version of COCO panoptic segmentation dataset,
        # e.g. used by Panoptic-DeepLab
        register_ade20k_panoptic(
            prefix,
            metadata,
            os.path.join(root, image_root),
            os.path.join(root, panoptic_root),
            os.path.join(root, semantic_root),
            os.path.join(root, panoptic_json),
            os.path.join(root, instance_json),
        )


_root = os.getenv("DETECTRON2_DATASETS", "datasets")
register_all_ade20k_panoptic(_root)