shikharyashmaurya
commited on
Commit
•
aff9f53
1
Parent(s):
0c808cd
Upload 2 files
Browse files
app.py
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
|
3 |
+
# new_data = pd.DataFrame({
|
4 |
+
# 'gender':0,
|
5 |
+
# 'ssc_p':55.0,
|
6 |
+
# 'ssc_b':0,
|
7 |
+
# 'hsc_p':75.0,
|
8 |
+
# 'hsc_b':0,
|
9 |
+
# 'hsc_s':1,
|
10 |
+
# 'degree_p':65.0,
|
11 |
+
# 'degree_t':2,
|
12 |
+
# 'workex':0,
|
13 |
+
# 'etest_p':55.0,
|
14 |
+
# 'specialisation':1,
|
15 |
+
# 'mba_p':58.8,
|
16 |
+
# },index=[0])
|
17 |
+
|
18 |
+
import joblib
|
19 |
+
|
20 |
+
model = joblib.load('model_campus_placement')
|
21 |
+
|
22 |
+
# p=model.predict(new_data)
|
23 |
+
# prob=model.predict_proba(new_data)
|
24 |
+
|
25 |
+
# if p[0]==1:
|
26 |
+
# print('Placed')
|
27 |
+
# print(f"You will be placed with probability of {prob[0][1]:.2f}")
|
28 |
+
# else:
|
29 |
+
# print("Not-placed")
|
30 |
+
|
31 |
+
import streamlit as st
|
32 |
+
|
33 |
+
st.title('Campus-Placement-Prediction-Using-Machine-Learning')
|
34 |
+
|
35 |
+
gender=st.number_input('gender',value=0)
|
36 |
+
ssc_p=st.number_input('ssc_p',value=0)
|
37 |
+
ssc_b=st.number_input('ssc_b',value=0)
|
38 |
+
hsc_p=st.number_input('hsc_p',value=0)
|
39 |
+
hsc_b=st.number_input('hsc_b',value=0)
|
40 |
+
hsc_s=st.number_input('hsc_s',value=0)
|
41 |
+
degree_p=st.number_input('degree_p',value=0)
|
42 |
+
degree_t=st.number_input('degree_t',value=0)
|
43 |
+
workex=st.number_input('workex',value=0)
|
44 |
+
etest_p=st.number_input('etest_p',value=0)
|
45 |
+
specialisation=st.number_input('specialisation',value=0)
|
46 |
+
mba_p=st.number_input('mba_p',value=0)
|
47 |
+
|
48 |
+
if st.button('submit'):
|
49 |
+
|
50 |
+
new_data = pd.DataFrame({
|
51 |
+
'gender':gender,
|
52 |
+
'ssc_p':ssc_p,
|
53 |
+
'ssc_b':ssc_b,
|
54 |
+
'hsc_p':hsc_p,
|
55 |
+
'hsc_b':hsc_b,
|
56 |
+
'hsc_s':hsc_s,
|
57 |
+
'degree_p':degree_p,
|
58 |
+
'degree_t':degree_t,
|
59 |
+
'workex':workex,
|
60 |
+
'etest_p':etest_p,
|
61 |
+
'specialisation':specialisation,
|
62 |
+
'mba_p':mba_p,
|
63 |
+
},index=[0])
|
64 |
+
|
65 |
+
p=model.predict(new_data)
|
66 |
+
prob=model.predict_proba(new_data)
|
67 |
+
|
68 |
+
|
69 |
+
if p[0]==1:
|
70 |
+
# print('Placed')
|
71 |
+
st.write('Placed')
|
72 |
+
# print(f"You will be placed with probability of {prob[0][1]:.2f}")
|
73 |
+
st.write(f"You will be placed with probability of {prob[0][1]:.2f}")
|
74 |
+
|
75 |
+
else:
|
76 |
+
# print("Not-placed")
|
77 |
+
st.write('Not-placed')
|
78 |
+
|
79 |
+
|
80 |
+
|
81 |
+
|
82 |
+
|
83 |
+
|
84 |
+
|
85 |
+
|
86 |
+
|
87 |
+
|
88 |
+
|
model.py
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
data = pd.read_csv('D:\Downloads\Campus-Placement-Prediction-Using-Machine-Learning-main\Campus-Placement-Prediction-Using-Machine-Learning-main\Placement_Data_Full_Class (1).csv')
|
3 |
+
import warnings
|
4 |
+
warnings.filterwarnings('ignore')
|