import streamlit as st import google.generativeai as genai import ast import time import re import os from typing import List, Tuple, Optional def extract_python_code(text: str) -> Optional[str]: pattern = r"```python\n(.*?)```" match = re.search(pattern, text, re.DOTALL) return match.group(1).strip() if match else None def configure_genai(): secret_key = os.getenv("SECRET_KEY") if not secret_key: st.error("API key not found. Please set the SECRET_KEY environment variable.") st.stop() genai.configure(api_key=secret_key) def parse_gemini_response(response_text: str) -> Tuple[str, str]: try: # First, try to parse as a single list parsed = ast.literal_eval(response_text) if isinstance(parsed, list) and len(parsed) == 2: return parsed[0], parsed[1] # If that fails, look for multiple lists matches = re.findall(r'\[.*?\]', response_text) if len(matches) >= 2: first_list = ast.literal_eval(matches[0]) second_list = ast.literal_eval(matches[1]) return first_list[0], second_list[0] # If no valid format is found, raise an exception raise ValueError("Unexpected response format") except Exception as e: return "Error", f"Failed to parse response: {str(e)}" def get_gemini_response(input_text: str) -> Tuple[str, str]: prompt = """You are a fact checker. Given a text, respond with: 1. 'true', 'false', or 'unsure' (if you are unsure or knowledge cutoff) 2. Evidence in support or 'knowledge cutoff' Respond in this exact format: ['true/false/unsure', 'evidence or knowledge cutoff'] Example input: 'Google was founded in 1998' Example output: ['true', 'Google was indeed founded in September 1998 by Larry Page and Sergey Brin'] Now give a response in the exact described format for the following text: """ model = genai.GenerativeModel('gemini-1.5-pro') try: response = model.generate_content(prompt + input_text) result, evidence = parse_gemini_response(response.text) return result, evidence except Exception as e: return "Error", f"Failed to get or parse the model's response: {str(e)}" def break_down_text(text: str) -> List[str]: prompt = """Break down the following text into a list of individual factual statements that can be independently verified. Return only a Python list of strings. Example input: "The Eiffel Tower, built in 1889, is 324 meters tall and located in Paris, France." Example output: ["The Eiffel Tower was built in 1889", "The Eiffel Tower is 324 meters tall", "The Eiffel Tower is located in Paris, France"] Now break down the following text: """ model = genai.GenerativeModel('gemini-1.5-pro') response = model.generate_content(prompt + text) code = extract_python_code(response.text) try: return ast.literal_eval(code) if code else [] except (ValueError, SyntaxError): st.error(f"Failed to parse the breakdown response: {response.text}") return [] def main(): st.title("Fact Checker") configure_genai() text = st.text_area('Paste the text to fact check (preferably about facts before 2021)', height=150) if st.button("Check Facts"): if not text: st.warning("Please enter some text to fact-check.") return statements = break_down_text(text) if not statements: st.error("Failed to break down the text into checkable statements. Please try rephrasing your input.") return st.subheader("Fact Checking Results:") for statement in statements: with st.expander(statement): with st.spinner('Checking...'): result, evidence = get_gemini_response(statement) if result.lower() == "true": st.success(f"Likely True: {evidence}") elif result.lower() == "false": st.error(f"Likely False: {evidence}") elif result.lower() == "unsure": st.warning(f"Uncertain: {evidence}") else: st.error(f"Error in fact-checking: {evidence}") time.sleep(3) # Delay to avoid rate limiting if __name__ == "__main__": main()