File size: 3,082 Bytes
00cdf6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import streamlit as st
import os
from PIL import Image
import tempfile

import google.generativeai as genai
secret_key = os.getenv("SECRET_KEY")

genai.configure(api_key=secret_key)
model2=genai.GenerativeModel('gemini-pro')

st.title('Mental Health')
video_url1= 'https://youtu.be/NQcYZplTXnQ?si=egutHE1H9YwQNk_I'
st.header("Video Demo")
st.video(video_url1)

from transformers import pipeline
classifier = pipeline("text-classification")
input1 = st.text_input('Enter text here:', '')


if input1:
    outputs1 = classifier(input1)
    st.write('You entered:', input1)
    st.write('Emotion:', outputs1[0]['label'])
    st.write('Confidence in Emotion:', outputs1[0]['score'])
    
if 'chat' not in st.session_state:
    st.session_state.chat=model2.start_chat(history=[])
    
def role_to_streamlit(role):
    if role=='model':
        return 'assistant'
    else:
        return role
        
for message in st.session_state.chat.history:
    with st.chat_message(role_to_streamlit(message.role)):
        st.markdown(message.parts[0].text)

if prompt2 := st.chat_input('Write your problem'):
    st.chat_message('user').markdown(prompt2)
    response2=st.session_state.chat.send_message(prompt2)
    with st.chat_message('assistant'):
        st.markdown(response2.text)

def get_gemini_response(input,image):
    model = genai.GenerativeModel('gemini-pro-vision')
    if input!="":
       response = model.generate_content([input,image])
    else:
       response = model.generate_content(image)
    return response.text

input3='Tell me about the emotion shown in the image'

uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
image=""   
if uploaded_file is not None:
    image = Image.open(uploaded_file)
    st.image(image, caption="Uploaded Image.", use_column_width=True)
submit=st.button("Tell me about the emotion in image")
if submit:
    response=get_gemini_response(input3,image)
    st.subheader("The Response is")
    st.write(response)


audio_prompt="""you are audio emotion detector.You will be taking the audio
and finding the emotion in audio. Please provide the emotion of the audio given here:  """

audio_text=st.text_input("What do you want to know about the audio:")

if audio_text:

    audio_prompt=""".You will be analyse the audio and provide the answers of the question given here:  """+text


audio_file = st.file_uploader("Upload an audio file", type=["mp3", "wav", "ogg"])

def generate_gemini_content(prompt,audio_file):

    with tempfile.NamedTemporaryFile(suffix='.wav', delete=False) as tmp_file:
        tmp_file.write(audio_file.getvalue())
        tmp_file.close()  # close the file

        model = genai.GenerativeModel("models/gemini-1.5-pro-latest")
        your_file = genai.upload_file(tmp_file.name)
        response = model.generate_content([prompt, your_file])
        return response.text

    os.remove(tmp_file.name)

if st.button("Answer or summary"):

    if audio_file:
        summary=generate_gemini_content(prompt,audio_file)
        st.markdown("## Summary:")
        st.write(summary)