|
import pickle |
|
import streamlit as st |
|
import requests |
|
import numpy as np |
|
import pandas as pd |
|
|
|
def fetch_poster(movie_id): |
|
url = "https://api.themoviedb.org/3/movie/{}?api_key=8265bd1679663a7ea12ac168da84d2e8&language=en-US".format(movie_id) |
|
data = requests.get(url) |
|
data = data.json() |
|
poster_path = data['poster_path'] |
|
full_path = "https://image.tmdb.org/t/p/w500/" + poster_path |
|
return full_path |
|
|
|
def recommend(movie): |
|
index = movies[movies['title'] == movie].index[0] |
|
distances = sorted(list(enumerate(similarity[index])), reverse=True, key=lambda x: x[1]) |
|
recommended_movie_names = [] |
|
recommended_movie_posters = [] |
|
for i in distances[1:6]: |
|
|
|
movie_id = movies.iloc[i[0]].movie_id |
|
recommended_movie_posters.append(fetch_poster(movie_id)) |
|
recommended_movie_names.append(movies.iloc[i[0]].title) |
|
|
|
return recommended_movie_names,recommended_movie_posters |
|
|
|
|
|
st.header('Movie Recommender System') |
|
movies = pd.read_pickle('movie_list.pkl') |
|
similarity = pd.read_pickle('similarity.pkl') |
|
|
|
movie_list = movies['title'].values |
|
selected_movie = st.selectbox( |
|
"Type or select a movie from the dropdown", |
|
movie_list |
|
) |
|
|
|
if st.button('Show Recommendation'): |
|
recommended_movie_names,recommended_movie_posters = recommend(selected_movie) |
|
col1, col2, col3, col4, col5 = st.columns(5) |
|
with col1: |
|
st.text(recommended_movie_names[0]) |
|
st.image(recommended_movie_posters[0]) |
|
with col2: |
|
st.text(recommended_movie_names[1]) |
|
st.image(recommended_movie_posters[1]) |
|
|
|
with col3: |
|
st.text(recommended_movie_names[2]) |
|
st.image(recommended_movie_posters[2]) |
|
with col4: |
|
st.text(recommended_movie_names[3]) |
|
st.image(recommended_movie_posters[3]) |
|
with col5: |
|
st.text(recommended_movie_names[4]) |
|
st.image(recommended_movie_posters[4]) |
|
|
|
|
|
|
|
|
|
|