{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "wl3FpBgqtZ6u"
},
"source": [
"# **Utils**"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "GsYjBsG4Jc_z"
},
"outputs": [],
"source": [
"!pip install fuzzywuzzy\n",
"!pip install python-Levenshtein\n",
"!pip install torchmetrics\n",
"!pip install nltk"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"id": "GWsNQXOQJVcI"
},
"outputs": [],
"source": [
"import os\n",
"from statistics import mean\n",
"import pandas as pd\n",
"from fuzzywuzzy import fuzz\n",
"import Levenshtein\n",
"from IPython.display import display"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {
"id": "xc9fDE9MJLgP"
},
"outputs": [],
"source": [
"def calculate_fuzzy_score(reference_text, output_text):\n",
" fuzzy_score = fuzz.token_sort_ratio(reference_text, output_text)\n",
" return fuzzy_score"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {
"id": "OmRWPXfti2Oz"
},
"outputs": [],
"source": [
"def calculate_cer(reference_text, output_text):\n",
" distance = Levenshtein.distance(reference_text, output_text)\n",
" total_characters = len(reference_text)\n",
" cer = distance / total_characters if total_characters > 0 else float('inf')\n",
" return cer"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {
"id": "33FgDK8Vi7Yd"
},
"outputs": [],
"source": [
"def calculate_wer(reference_text, output_text):\n",
" reference_words = reference_text.split()\n",
" output_words = output_text.split()\n",
" distance = Levenshtein.distance(' '.join(reference_words), ' '.join(output_words))\n",
" total_words = len(reference_words)\n",
" wer = distance / total_words if total_words > 0 else float('inf')\n",
" return wer"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {
"id": "Ik74uvonttmS"
},
"outputs": [],
"source": [
"import nltk\n",
"from nltk.translate.bleu_score import sentence_bleu\n",
"\n",
"def calculate_bleu(reference_text, output_text):\n",
" reference_tokens = [reference_text.split()]\n",
" output_tokens = output_text.split()\n",
" bleu_score = sentence_bleu(reference_tokens, output_tokens)\n",
" return bleu_score"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {
"id": "eTl4ZLNgt-el"
},
"outputs": [],
"source": [
"def calculate_jaccard_index(reference_text, output_text):\n",
" reference_set = set(reference_text)\n",
" output_set = set(output_text)\n",
" intersection = len(reference_set & output_set)\n",
" union = len(reference_set | output_set)\n",
" jaccard_index = intersection / union if union > 0 else 0\n",
" return jaccard_index"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {
"id": "VkIi5KCGvu42"
},
"outputs": [],
"source": [
"from sklearn.feature_extraction.text import CountVectorizer\n",
"from sklearn.metrics.pairwise import cosine_similarity\n",
"\n",
"def calculate_cosine_similarity(text1, text2):\n",
" vectorizer = CountVectorizer().fit_transform([text1, text2])\n",
" vectors = vectorizer.toarray()\n",
" cos_sim = cosine_similarity(vectors)[0][1]\n",
"\n",
" return cos_sim"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {
"id": "80okNADtm9BJ"
},
"outputs": [],
"source": [
"def print_file_contents(file_path):\n",
" try:\n",
" with open(file_path, 'r', encoding='utf-8') as file:\n",
" contents = file.read()\n",
" print(contents)\n",
" except FileNotFoundError:\n",
" print(f\"Error: The file '{file_path}' was not found.\")\n",
" except Exception as e:\n",
" print(f\"Error: An unexpected error occurred - {e}\")"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {
"id": "qa6tfr3ov6lh"
},
"outputs": [],
"source": [
"def read_file(file_path):\n",
" try:\n",
" with open(file_path, 'r', encoding='utf-8') as file:\n",
" content = file.read()\n",
" return content\n",
" except FileNotFoundError:\n",
" print(f\"Error: The file '{file_path}' was not found.\")\n",
" return None\n",
" except Exception as e:\n",
" print(f\"Error: An unexpected error occurred - {e}\")\n",
" return None"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "UfXhf7e7r9U7"
},
"outputs": [],
"source": [
"starting_font = 12\n",
"increment_font = 4"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {
"id": "yhq59NQbmXWA"
},
"outputs": [],
"source": [
"def evaluate_ocr_models(num_docs):\n",
" ocr_models = {\n",
" \"gemini_pro\": extract_text_gemini,\n",
" \"gemini_flash\": extract_text_gemini,\n",
" \"opus\": extract_text_opus,\n",
" \"sonnet\": extract_text_sonnet,\n",
" \"haiku\": extract_text_haiku,\n",
" \"gpt4_turbo\": extract_text_gpt,\n",
" \"gpt4o\": extract_text_gpt,\n",
" \"vision\": extract_text_vision,\n",
" # \"marker\": None\n",
" }\n",
"\n",
" evaluation_metrics = {\n",
" \"Fuzzy Score\": calculate_fuzzy_score,\n",
" \"CER\": calculate_cer,\n",
" \"WER\": calculate_wer,\n",
" \"BLEU\": calculate_bleu,\n",
" \"Jaccard Index\": calculate_jaccard_index,\n",
" \"Cosine Similarity\": calculate_cosine_similarity\n",
" }\n",
"\n",
" results = {metric: {model: 0 for model in ocr_models} for metric in evaluation_metrics.keys()}\n",
"\n",
" for model in ocr_models:\n",
" for metric in evaluation_metrics:\n",
" model_metrics = []\n",
" for docs in range(num_docs):\n",
" if model == \"marker\" and os.path.exists(f\"/content/{model}_output_{docs}.md\"):\n",
" score = evaluation_metrics[metric](read_file(f\"/content/reference_{docs}.txt\"), read_file(f\"/content/{model}_output_{docs}.md\"))\n",
" elif os.path.exists(f\"/content/{model}_font_output_{starting_font + docs * increment_font}.txt\"):\n",
" score = evaluation_metrics[metric](read_file(f\"/content/font-reference.txt\"), read_file(f\"/content/{model}_font_output_{starting_font + docs * increment_font}.txt\"))\n",
" else:\n",
" continue\n",
" model_metrics.append(score)\n",
"\n",
" for docs in range(1, 7):\n",
" if model == \"marker\" and os.path.exists(f\"/content/{model}_output_{docs}.md\"):\n",
" score = evaluation_metrics[metric](read_file(f\"/content/reference_{docs}.txt\"), read_file(f\"/content/{model}_output_{docs}.md\"))\n",
" elif os.path.exists(f\"/content/{model}_output_{docs}.txt\"):\n",
" score = evaluation_metrics[metric](read_file(f\"/content/reference_{docs}.txt\"), read_file(f\"/content/{model}_output_{docs}.txt\"))\n",
" else:\n",
" continue\n",
" model_metrics.append(score)\n",
"\n",
" results[metric][model] = mean(model_metrics)\n",
" scores_df = pd.DataFrame(results)\n",
" scores_df.index.name = 'Models'\n",
" return scores_df"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {
"id": "LW806l1dsw5d"
},
"outputs": [],
"source": [
"import pandas as pd\n",
"import os\n",
"\n",
"def evaluate_ocr_models_for_different_languages():\n",
" ocr_models = {\n",
" # \"gemini_flash\": extract_text_gemini,\n",
" # \"opus\": extract_text_opus,\n",
" # \"sonnet\": extract_text_sonnet,\n",
" # \"haiku\": extract_text_haiku,\n",
" # \"gpt4_turbo\": extract_text_gpt,\n",
" # \"gpt4o\": extract_text_gpt,\n",
" \"vision\": extract_text_vision,\n",
" # \"tesseract\": extract_text_tesseract,\n",
" }\n",
"\n",
" evaluation_metrics = {\n",
" \"Fuzzy Score\": calculate_fuzzy_score,\n",
" \"CER\": calculate_cer,\n",
" \"WER\": calculate_wer,\n",
" # \"BLEU\": calculate_bleu,\n",
" \"Jaccard Index\": calculate_jaccard_index,\n",
" \"Cosine Similarity\": calculate_cosine_similarity\n",
" }\n",
"\n",
" results = {model: {metric: [] for metric in evaluation_metrics} for model in ocr_models}\n",
"\n",
" for model in ocr_models:\n",
" for language in languages:\n",
" model_output_path = f\"/content/{model}_{language}_output.txt\"\n",
" reference_path = f\"/content/{language}_reference.txt\"\n",
"\n",
" if os.path.exists(model_output_path):\n",
" for metric in evaluation_metrics:\n",
" score = evaluation_metrics[metric](read_file(reference_path), read_file(model_output_path))\n",
" results[model][metric].append(score)\n",
" else:\n",
" print(reference_path)\n",
" for metric in evaluation_metrics:\n",
" print(model_output_path)\n",
" results[model][metric].append(None)\n",
"\n",
" models_dfs = {}\n",
" for model, metrics_scores in results.items():\n",
" df = pd.DataFrame(metrics_scores)\n",
" df.index = [language for language in languages]\n",
" df.index.name = 'Languages'\n",
" models_dfs[model] = df\n",
"\n",
" return models_dfs"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 1000
},
"id": "XXzL1iPNCemd",
"outputId": "b244ef17-5988-4847-90f9-078ce9ed0285"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Model: opus\n"
]
},
{
"data": {
"application/vnd.google.colaboratory.intrinsic+json": {
"summary": "{\n \"name\": \"df\",\n \"rows\": 18,\n \"fields\": [\n {\n \"column\": \"Languages\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 18,\n \"samples\": [\n \"arabic\",\n \"bengali\",\n \"greek\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Fuzzy Score\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 21,\n \"min\": 28,\n \"max\": 99,\n \"num_unique_values\": 15,\n \"samples\": [\n 90,\n 28,\n 76\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"CER\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.29423382595625325,\n \"min\": 0.007773985589685248,\n \"max\": 0.8049417436721575,\n \"num_unique_values\": 18,\n \"samples\": [\n 0.3767572633552015,\n 0.6662768031189084,\n 0.04246440844378989\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"WER\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 3.799784066203956,\n \"min\": 0.026106696935300794,\n \"max\": 12.82857142857143,\n \"num_unique_values\": 18,\n \"samples\": [\n 2.3532934131736525,\n 4.792613636363637,\n 0.2553542009884679\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Jaccard Index\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.1722359278462858,\n \"min\": 0.4127906976744186,\n \"max\": 0.9814814814814815,\n \"num_unique_values\": 18,\n \"samples\": [\n 0.8627450980392157,\n 0.8153846153846154,\n 0.9710144927536232\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Cosine Similarity\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.30157125562544634,\n \"min\": 0.08928163578007509,\n \"max\": 0.9994166695838832,\n \"num_unique_values\": 18,\n \"samples\": [\n 0.875069029090396,\n 0.5306427852649345,\n 0.9927171409278328\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}",
"type": "dataframe",
"variable_name": "df"
},
"text/html": [
"\n",
"
\n",
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Fuzzy Score | \n",
" CER | \n",
" WER | \n",
" Jaccard Index | \n",
" Cosine Similarity | \n",
"
\n",
" \n",
" Languages | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" arabic | \n",
" 76 | \n",
" 0.376757 | \n",
" 2.353293 | \n",
" 0.862745 | \n",
" 0.875069 | \n",
"
\n",
" \n",
" bengali | \n",
" 74 | \n",
" 0.666277 | \n",
" 4.792614 | \n",
" 0.815385 | \n",
" 0.530643 | \n",
"
\n",
" \n",
" chinese | \n",
" 62 | \n",
" 0.353923 | \n",
" 9.975610 | \n",
" 0.573086 | \n",
" 0.398227 | \n",
"
\n",
" \n",
" cyrillic | \n",
" 95 | \n",
" 0.040299 | \n",
" 0.242165 | \n",
" 0.963636 | \n",
" 0.987005 | \n",
"
\n",
" \n",
" dutch | \n",
" 94 | \n",
" 0.048046 | \n",
" 0.280783 | \n",
" 0.942857 | \n",
" 0.992913 | \n",
"
\n",
" \n",
" english | \n",
" 97 | \n",
" 0.045094 | \n",
" 0.216625 | \n",
" 0.954545 | \n",
" 0.997309 | \n",
"
\n",
" \n",
" french | \n",
" 99 | \n",
" 0.007774 | \n",
" 0.026107 | \n",
" 0.979592 | \n",
" 0.999417 | \n",
"
\n",
" \n",
" german | \n",
" 96 | \n",
" 0.049643 | \n",
" 0.311236 | \n",
" 0.981481 | \n",
" 0.994753 | \n",
"
\n",
" \n",
" greek | \n",
" 96 | \n",
" 0.042464 | \n",
" 0.255354 | \n",
" 0.971014 | \n",
" 0.992717 | \n",
"
\n",
" \n",
" hebrew | \n",
" 44 | \n",
" 0.804942 | \n",
" 4.868712 | \n",
" 0.555556 | \n",
" 0.292718 | \n",
"
\n",
" \n",
" hindi | \n",
" 90 | \n",
" 0.250994 | \n",
" 1.209375 | \n",
" 0.876923 | \n",
" 0.975469 | \n",
"
\n",
" \n",
" japanese | \n",
" 92 | \n",
" 0.103740 | \n",
" 7.592593 | \n",
" 0.910798 | \n",
" 0.915534 | \n",
"
\n",
" \n",
" korean | \n",
" 28 | \n",
" 0.804641 | \n",
" 3.336268 | \n",
" 0.412791 | \n",
" 0.089282 | \n",
"
\n",
" \n",
" latin | \n",
" 97 | \n",
" 0.027611 | \n",
" 0.177043 | \n",
" 0.962963 | \n",
" 0.985059 | \n",
"
\n",
" \n",
" spanish | \n",
" 99 | \n",
" 0.019810 | \n",
" 0.092405 | \n",
" 0.937500 | \n",
" 0.996633 | \n",
"
\n",
" \n",
" thai | \n",
" 67 | \n",
" 0.463868 | \n",
" 12.828571 | \n",
" 0.678571 | \n",
" 0.659937 | \n",
"
\n",
" \n",
" urdu | \n",
" 49 | \n",
" 0.714204 | \n",
" 3.275132 | \n",
" 0.883721 | \n",
" 0.391585 | \n",
"
\n",
" \n",
" vietnamese | \n",
" 84 | \n",
" 0.132894 | \n",
" 0.561207 | \n",
" 0.960396 | \n",
" 0.949777 | \n",
"
\n",
" \n",
"
\n",
"
\n",
"
\n",
"
\n"
],
"text/plain": [
" Fuzzy Score CER WER Jaccard Index Cosine Similarity\n",
"Languages \n",
"arabic 76 0.376757 2.353293 0.862745 0.875069\n",
"bengali 74 0.666277 4.792614 0.815385 0.530643\n",
"chinese 62 0.353923 9.975610 0.573086 0.398227\n",
"cyrillic 95 0.040299 0.242165 0.963636 0.987005\n",
"dutch 94 0.048046 0.280783 0.942857 0.992913\n",
"english 97 0.045094 0.216625 0.954545 0.997309\n",
"french 99 0.007774 0.026107 0.979592 0.999417\n",
"german 96 0.049643 0.311236 0.981481 0.994753\n",
"greek 96 0.042464 0.255354 0.971014 0.992717\n",
"hebrew 44 0.804942 4.868712 0.555556 0.292718\n",
"hindi 90 0.250994 1.209375 0.876923 0.975469\n",
"japanese 92 0.103740 7.592593 0.910798 0.915534\n",
"korean 28 0.804641 3.336268 0.412791 0.089282\n",
"latin 97 0.027611 0.177043 0.962963 0.985059\n",
"spanish 99 0.019810 0.092405 0.937500 0.996633\n",
"thai 67 0.463868 12.828571 0.678571 0.659937\n",
"urdu 49 0.714204 3.275132 0.883721 0.391585\n",
"vietnamese 84 0.132894 0.561207 0.960396 0.949777"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"Model: sonnet\n"
]
},
{
"data": {
"application/vnd.google.colaboratory.intrinsic+json": {
"summary": "{\n \"name\": \"df\",\n \"rows\": 18,\n \"fields\": [\n {\n \"column\": \"Languages\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 18,\n \"samples\": [\n \"arabic\",\n \"bengali\",\n \"greek\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Fuzzy Score\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 23,\n \"min\": 23,\n \"max\": 99,\n \"num_unique_values\": 16,\n \"samples\": [\n 65,\n 67,\n 98\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"CER\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.3227746192270715,\n \"min\": 0.022942737959802808,\n \"max\": 0.8464106844741235,\n \"num_unique_values\": 18,\n \"samples\": [\n 0.49609497032177446,\n 0.7703703703703704,\n 0.10898379970544919\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"WER\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 8.061524934035456,\n \"min\": 0.11464245175936436,\n \"max\": 24.121951219512194,\n \"num_unique_values\": 18,\n \"samples\": [\n 3.12375249500998,\n 5.488636363636363,\n 0.6869851729818781\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Jaccard Index\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.21471218402735157,\n \"min\": 0.18821603927986907,\n \"max\": 0.9636363636363636,\n \"num_unique_values\": 18,\n \"samples\": [\n 0.6805555555555556,\n 0.5977011494252874,\n 0.7528089887640449\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Cosine Similarity\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.340623867114622,\n \"min\": 0.03106848830006,\n \"max\": 0.9988109929760138,\n \"num_unique_values\": 18,\n \"samples\": [\n 0.7658988355718965,\n 0.3788357860891555,\n 0.9797664355295872\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}",
"type": "dataframe",
"variable_name": "df"
},
"text/html": [
"\n",
" \n",
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Fuzzy Score | \n",
" CER | \n",
" WER | \n",
" Jaccard Index | \n",
" Cosine Similarity | \n",
"
\n",
" \n",
" Languages | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" arabic | \n",
" 65 | \n",
" 0.496095 | \n",
" 3.123752 | \n",
" 0.680556 | \n",
" 0.765899 | \n",
"
\n",
" \n",
" bengali | \n",
" 67 | \n",
" 0.770370 | \n",
" 5.488636 | \n",
" 0.597701 | \n",
" 0.378836 | \n",
"
\n",
" \n",
" chinese | \n",
" 23 | \n",
" 0.846411 | \n",
" 24.121951 | \n",
" 0.188216 | \n",
" 0.031068 | \n",
"
\n",
" \n",
" cyrillic | \n",
" 90 | \n",
" 0.117815 | \n",
" 0.710826 | \n",
" 0.698630 | \n",
" 0.963953 | \n",
"
\n",
" \n",
" dutch | \n",
" 91 | \n",
" 0.110134 | \n",
" 0.715765 | \n",
" 0.957746 | \n",
" 0.991618 | \n",
"
\n",
" \n",
" english | \n",
" 98 | \n",
" 0.037843 | \n",
" 0.162469 | \n",
" 0.954545 | \n",
" 0.996665 | \n",
"
\n",
" \n",
" french | \n",
" 99 | \n",
" 0.022943 | \n",
" 0.114642 | \n",
" 0.941176 | \n",
" 0.998811 | \n",
"
\n",
" \n",
" german | \n",
" 94 | \n",
" 0.104686 | \n",
" 0.668539 | \n",
" 0.963636 | \n",
" 0.989543 | \n",
"
\n",
" \n",
" greek | \n",
" 92 | \n",
" 0.108984 | \n",
" 0.686985 | \n",
" 0.752809 | \n",
" 0.979766 | \n",
"
\n",
" \n",
" hebrew | \n",
" 51 | \n",
" 0.826436 | \n",
" 4.969325 | \n",
" 0.556962 | \n",
" 0.319149 | \n",
"
\n",
" \n",
" hindi | \n",
" 77 | \n",
" 0.579168 | \n",
" 2.823958 | \n",
" 0.694118 | \n",
" 0.806080 | \n",
"
\n",
" \n",
" japanese | \n",
" 67 | \n",
" 0.302760 | \n",
" 24.111111 | \n",
" 0.676647 | \n",
" 0.657504 | \n",
"
\n",
" \n",
" korean | \n",
" 28 | \n",
" 0.801266 | \n",
" 3.288732 | \n",
" 0.397183 | \n",
" 0.033994 | \n",
"
\n",
" \n",
" latin | \n",
" 95 | \n",
" 0.050274 | \n",
" 0.317121 | \n",
" 0.962963 | \n",
" 0.978361 | \n",
"
\n",
" \n",
" spanish | \n",
" 98 | \n",
" 0.027187 | \n",
" 0.143038 | \n",
" 0.877551 | \n",
" 0.997151 | \n",
"
\n",
" \n",
" thai | \n",
" 55 | \n",
" 0.660560 | \n",
" 18.328571 | \n",
" 0.747475 | \n",
" 0.388898 | \n",
"
\n",
" \n",
" urdu | \n",
" 52 | \n",
" 0.695227 | \n",
" 3.174603 | \n",
" 0.569231 | \n",
" 0.550558 | \n",
"
\n",
" \n",
" vietnamese | \n",
" 79 | \n",
" 0.243123 | \n",
" 1.062931 | \n",
" 0.872727 | \n",
" 0.893903 | \n",
"
\n",
" \n",
"
\n",
"
\n",
"
\n",
"
\n"
],
"text/plain": [
" Fuzzy Score CER WER Jaccard Index Cosine Similarity\n",
"Languages \n",
"arabic 65 0.496095 3.123752 0.680556 0.765899\n",
"bengali 67 0.770370 5.488636 0.597701 0.378836\n",
"chinese 23 0.846411 24.121951 0.188216 0.031068\n",
"cyrillic 90 0.117815 0.710826 0.698630 0.963953\n",
"dutch 91 0.110134 0.715765 0.957746 0.991618\n",
"english 98 0.037843 0.162469 0.954545 0.996665\n",
"french 99 0.022943 0.114642 0.941176 0.998811\n",
"german 94 0.104686 0.668539 0.963636 0.989543\n",
"greek 92 0.108984 0.686985 0.752809 0.979766\n",
"hebrew 51 0.826436 4.969325 0.556962 0.319149\n",
"hindi 77 0.579168 2.823958 0.694118 0.806080\n",
"japanese 67 0.302760 24.111111 0.676647 0.657504\n",
"korean 28 0.801266 3.288732 0.397183 0.033994\n",
"latin 95 0.050274 0.317121 0.962963 0.978361\n",
"spanish 98 0.027187 0.143038 0.877551 0.997151\n",
"thai 55 0.660560 18.328571 0.747475 0.388898\n",
"urdu 52 0.695227 3.174603 0.569231 0.550558\n",
"vietnamese 79 0.243123 1.062931 0.872727 0.893903"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"Model: haiku\n"
]
},
{
"data": {
"application/vnd.google.colaboratory.intrinsic+json": {
"summary": "{\n \"name\": \"df\",\n \"rows\": 18,\n \"fields\": [\n {\n \"column\": \"Languages\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 18,\n \"samples\": [\n \"arabic\",\n \"bengali\",\n \"greek\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Fuzzy Score\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 34,\n \"min\": 8,\n \"max\": 99,\n \"num_unique_values\": 16,\n \"samples\": [\n 36,\n 45,\n 99\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"CER\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.3595556787059576,\n \"min\": 0.023113528212100613,\n \"max\": 0.9941569282136895,\n \"num_unique_values\": 18,\n \"samples\": [\n 0.7647610121836926,\n 0.8066276803118908,\n 0.7292587137947962\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"WER\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 15.710004299638811,\n \"min\": 0.1070528967254408,\n \"max\": 63.370370370370374,\n \"num_unique_values\": 18,\n \"samples\": [\n 4.874251497005988,\n 5.786931818181818,\n 4.85831960461285\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Jaccard Index\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.3191530126934353,\n \"min\": 0.013888888888888888,\n \"max\": 0.9571428571428572,\n \"num_unique_values\": 18,\n \"samples\": [\n 0.4659090909090909,\n 0.5730337078651685,\n 0.3582089552238806\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Cosine Similarity\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.43168443386351163,\n \"min\": 0.0,\n \"max\": 0.9983834336252877,\n \"num_unique_values\": 17,\n \"samples\": [\n 0.30342133556900935,\n 0.2608202926447102,\n 0.9983834336252877\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}",
"type": "dataframe",
"variable_name": "df"
},
"text/html": [
"\n",
" \n",
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Fuzzy Score | \n",
" CER | \n",
" WER | \n",
" Jaccard Index | \n",
" Cosine Similarity | \n",
"
\n",
" \n",
" Languages | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" arabic | \n",
" 36 | \n",
" 0.764761 | \n",
" 4.874251 | \n",
" 0.465909 | \n",
" 0.303421 | \n",
"
\n",
" \n",
" bengali | \n",
" 45 | \n",
" 0.806628 | \n",
" 5.786932 | \n",
" 0.573034 | \n",
" 0.260820 | \n",
"
\n",
" \n",
" chinese | \n",
" 14 | \n",
" 0.994157 | \n",
" 28.804878 | \n",
" 0.193059 | \n",
" 0.044445 | \n",
"
\n",
" \n",
" cyrillic | \n",
" 62 | \n",
" 0.489099 | \n",
" 3.149573 | \n",
" 0.566265 | \n",
" 0.800964 | \n",
"
\n",
" \n",
" dutch | \n",
" 91 | \n",
" 0.138048 | \n",
" 0.892980 | \n",
" 0.957143 | \n",
" 0.991231 | \n",
"
\n",
" \n",
" english | \n",
" 99 | \n",
" 0.023114 | \n",
" 0.107053 | \n",
" 0.933333 | \n",
" 0.998383 | \n",
"
\n",
" \n",
" french | \n",
" 82 | \n",
" 0.286500 | \n",
" 1.700341 | \n",
" 0.807018 | \n",
" 0.976977 | \n",
"
\n",
" \n",
" german | \n",
" 93 | \n",
" 0.104860 | \n",
" 0.670787 | \n",
" 0.946429 | \n",
" 0.990169 | \n",
"
\n",
" \n",
" greek | \n",
" 24 | \n",
" 0.729259 | \n",
" 4.858320 | \n",
" 0.358209 | \n",
" 0.248820 | \n",
"
\n",
" \n",
" hebrew | \n",
" 36 | \n",
" 0.786260 | \n",
" 4.754601 | \n",
" 0.537500 | \n",
" 0.159440 | \n",
"
\n",
" \n",
" hindi | \n",
" 8 | \n",
" 0.954821 | \n",
" 4.756250 | \n",
" 0.032258 | \n",
" 0.000000 | \n",
"
\n",
" \n",
" japanese | \n",
" 30 | \n",
" 0.789403 | \n",
" 63.370370 | \n",
" 0.349680 | \n",
" 0.123645 | \n",
"
\n",
" \n",
" korean | \n",
" 20 | \n",
" 0.846414 | \n",
" 3.521127 | \n",
" 0.280443 | \n",
" 0.027006 | \n",
"
\n",
" \n",
" latin | \n",
" 97 | \n",
" 0.039073 | \n",
" 0.256809 | \n",
" 0.894737 | \n",
" 0.982940 | \n",
"
\n",
" \n",
" spanish | \n",
" 98 | \n",
" 0.044046 | \n",
" 0.243038 | \n",
" 0.860000 | \n",
" 0.995875 | \n",
"
\n",
" \n",
" thai | \n",
" 28 | \n",
" 0.857252 | \n",
" 23.671429 | \n",
" 0.611111 | \n",
" 0.153045 | \n",
"
\n",
" \n",
" urdu | \n",
" 8 | \n",
" 0.951121 | \n",
" 4.375661 | \n",
" 0.013889 | \n",
" 0.000000 | \n",
"
\n",
" \n",
" vietnamese | \n",
" 79 | \n",
" 0.496900 | \n",
" 2.204310 | \n",
" 0.932039 | \n",
" 0.915511 | \n",
"
\n",
" \n",
"
\n",
"
\n",
"
\n",
"
\n"
],
"text/plain": [
" Fuzzy Score CER WER Jaccard Index Cosine Similarity\n",
"Languages \n",
"arabic 36 0.764761 4.874251 0.465909 0.303421\n",
"bengali 45 0.806628 5.786932 0.573034 0.260820\n",
"chinese 14 0.994157 28.804878 0.193059 0.044445\n",
"cyrillic 62 0.489099 3.149573 0.566265 0.800964\n",
"dutch 91 0.138048 0.892980 0.957143 0.991231\n",
"english 99 0.023114 0.107053 0.933333 0.998383\n",
"french 82 0.286500 1.700341 0.807018 0.976977\n",
"german 93 0.104860 0.670787 0.946429 0.990169\n",
"greek 24 0.729259 4.858320 0.358209 0.248820\n",
"hebrew 36 0.786260 4.754601 0.537500 0.159440\n",
"hindi 8 0.954821 4.756250 0.032258 0.000000\n",
"japanese 30 0.789403 63.370370 0.349680 0.123645\n",
"korean 20 0.846414 3.521127 0.280443 0.027006\n",
"latin 97 0.039073 0.256809 0.894737 0.982940\n",
"spanish 98 0.044046 0.243038 0.860000 0.995875\n",
"thai 28 0.857252 23.671429 0.611111 0.153045\n",
"urdu 8 0.951121 4.375661 0.013889 0.000000\n",
"vietnamese 79 0.496900 2.204310 0.932039 0.915511"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"Model: gpt4_turbo\n"
]
},
{
"data": {
"application/vnd.google.colaboratory.intrinsic+json": {
"summary": "{\n \"name\": \"df\",\n \"rows\": 18,\n \"fields\": [\n {\n \"column\": \"Languages\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 18,\n \"samples\": [\n \"arabic\",\n \"bengali\",\n \"greek\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Fuzzy Score\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 25,\n \"min\": 21,\n \"max\": 100,\n \"num_unique_values\": 17,\n \"samples\": [\n 55,\n 78,\n 99\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"CER\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.3877421701249285,\n \"min\": 0.0027869709109911165,\n \"max\": 1.2734177215189872,\n \"num_unique_values\": 18,\n \"samples\": [\n 0.6807247735082786,\n 0.7037037037037037,\n 0.08051055473735887\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"WER\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 10.591607212508988,\n \"min\": 0.008988764044943821,\n \"max\": 37.44444444444444,\n \"num_unique_values\": 18,\n \"samples\": [\n 4.323353293413174,\n 5.065340909090909,\n 0.5090609555189456\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Jaccard Index\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.2609830573030153,\n \"min\": 0.013071895424836602,\n \"max\": 1.0,\n \"num_unique_values\": 17,\n \"samples\": [\n 0.8333333333333334,\n 0.6265060240963856,\n 0.9333333333333333\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Cosine Similarity\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.33479822045097335,\n \"min\": 0.0,\n \"max\": 0.9999206978588416,\n \"num_unique_values\": 18,\n \"samples\": [\n 0.7219781551814013,\n 0.5410799913297344,\n 0.9886639701758357\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}",
"type": "dataframe",
"variable_name": "df"
},
"text/html": [
"\n",
" \n",
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Fuzzy Score | \n",
" CER | \n",
" WER | \n",
" Jaccard Index | \n",
" Cosine Similarity | \n",
"
\n",
" \n",
" Languages | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" arabic | \n",
" 55 | \n",
" 0.680725 | \n",
" 4.323353 | \n",
" 0.833333 | \n",
" 0.721978 | \n",
"
\n",
" \n",
" bengali | \n",
" 78 | \n",
" 0.703704 | \n",
" 5.065341 | \n",
" 0.626506 | \n",
" 0.541080 | \n",
"
\n",
" \n",
" chinese | \n",
" 23 | \n",
" 0.824708 | \n",
" 23.756098 | \n",
" 0.205575 | \n",
" 0.029604 | \n",
"
\n",
" \n",
" cyrillic | \n",
" 90 | \n",
" 0.095353 | \n",
" 0.584046 | \n",
" 0.697368 | \n",
" 0.963841 | \n",
"
\n",
" \n",
" dutch | \n",
" 96 | \n",
" 0.093724 | \n",
" 0.604143 | \n",
" 0.944444 | \n",
" 0.990596 | \n",
"
\n",
" \n",
" english | \n",
" 99 | \n",
" 0.021074 | \n",
" 0.090680 | \n",
" 0.933333 | \n",
" 0.998749 | \n",
"
\n",
" \n",
" french | \n",
" 95 | \n",
" 0.083239 | \n",
" 0.467650 | \n",
" 0.842105 | \n",
" 0.989760 | \n",
"
\n",
" \n",
" german | \n",
" 100 | \n",
" 0.002787 | \n",
" 0.008989 | \n",
" 1.000000 | \n",
" 0.999921 | \n",
"
\n",
" \n",
" greek | \n",
" 93 | \n",
" 0.080511 | \n",
" 0.509061 | \n",
" 0.930556 | \n",
" 0.988664 | \n",
"
\n",
" \n",
" hebrew | \n",
" 54 | \n",
" 0.857372 | \n",
" 5.174233 | \n",
" 0.681159 | \n",
" 0.379806 | \n",
"
\n",
" \n",
" hindi | \n",
" 72 | \n",
" 0.628320 | \n",
" 3.112500 | \n",
" 0.907692 | \n",
" 0.697304 | \n",
"
\n",
" \n",
" japanese | \n",
" 64 | \n",
" 0.461264 | \n",
" 37.444444 | \n",
" 0.644737 | \n",
" 0.550642 | \n",
"
\n",
" \n",
" korean | \n",
" 21 | \n",
" 1.273418 | \n",
" 5.221831 | \n",
" 0.013072 | \n",
" 0.000000 | \n",
"
\n",
" \n",
" latin | \n",
" 92 | \n",
" 0.191456 | \n",
" 1.387160 | \n",
" 0.896552 | \n",
" 0.927789 | \n",
"
\n",
" \n",
" spanish | \n",
" 99 | \n",
" 0.028030 | \n",
" 0.139241 | \n",
" 0.843137 | \n",
" 0.997357 | \n",
"
\n",
" \n",
" thai | \n",
" 56 | \n",
" 0.852417 | \n",
" 23.771429 | \n",
" 0.728155 | \n",
" 0.360498 | \n",
"
\n",
" \n",
" urdu | \n",
" 52 | \n",
" 0.714204 | \n",
" 3.267196 | \n",
" 0.622951 | \n",
" 0.720733 | \n",
"
\n",
" \n",
" vietnamese | \n",
" 85 | \n",
" 0.246610 | \n",
" 1.063793 | \n",
" 0.933333 | \n",
" 0.947641 | \n",
"
\n",
" \n",
"
\n",
"
\n",
"
\n",
"
\n"
],
"text/plain": [
" Fuzzy Score CER WER Jaccard Index Cosine Similarity\n",
"Languages \n",
"arabic 55 0.680725 4.323353 0.833333 0.721978\n",
"bengali 78 0.703704 5.065341 0.626506 0.541080\n",
"chinese 23 0.824708 23.756098 0.205575 0.029604\n",
"cyrillic 90 0.095353 0.584046 0.697368 0.963841\n",
"dutch 96 0.093724 0.604143 0.944444 0.990596\n",
"english 99 0.021074 0.090680 0.933333 0.998749\n",
"french 95 0.083239 0.467650 0.842105 0.989760\n",
"german 100 0.002787 0.008989 1.000000 0.999921\n",
"greek 93 0.080511 0.509061 0.930556 0.988664\n",
"hebrew 54 0.857372 5.174233 0.681159 0.379806\n",
"hindi 72 0.628320 3.112500 0.907692 0.697304\n",
"japanese 64 0.461264 37.444444 0.644737 0.550642\n",
"korean 21 1.273418 5.221831 0.013072 0.000000\n",
"latin 92 0.191456 1.387160 0.896552 0.927789\n",
"spanish 99 0.028030 0.139241 0.843137 0.997357\n",
"thai 56 0.852417 23.771429 0.728155 0.360498\n",
"urdu 52 0.714204 3.267196 0.622951 0.720733\n",
"vietnamese 85 0.246610 1.063793 0.933333 0.947641"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"Model: gpt4o\n"
]
},
{
"data": {
"application/vnd.google.colaboratory.intrinsic+json": {
"summary": "{\n \"name\": \"df\",\n \"rows\": 18,\n \"fields\": [\n {\n \"column\": \"Languages\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 18,\n \"samples\": [\n \"arabic\",\n \"bengali\",\n \"greek\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Fuzzy Score\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 12,\n \"min\": 61,\n \"max\": 100,\n \"num_unique_values\": 13,\n \"samples\": [\n 81,\n 93,\n 96\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"CER\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.2225394916433416,\n \"min\": 0.004305461137548153,\n \"max\": 0.7400805060379528,\n \"num_unique_values\": 18,\n \"samples\": [\n 0.06310527960012496,\n 0.4619883040935672,\n 0.04639175257731959\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"WER\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 2.0907817978978644,\n \"min\": 0.003778337531486146,\n \"max\": 5.957142857142857,\n \"num_unique_values\": 18,\n \"samples\": [\n 0.34530938123752497,\n 3.3238636363636362,\n 0.2355848434925865\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Jaccard Index\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.14751181897243867,\n \"min\": 0.5068119891008175,\n \"max\": 0.9782608695652174,\n \"num_unique_values\": 18,\n \"samples\": [\n 0.6712328767123288,\n 0.9016393442622951,\n 0.7282608695652174\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Cosine Similarity\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.11483698205261142,\n \"min\": 0.5965830453920575,\n \"max\": 0.9999999999999993,\n \"num_unique_values\": 18,\n \"samples\": [\n 0.9809529877631776,\n 0.8236557439357621,\n 0.9931121552504696\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}",
"type": "dataframe",
"variable_name": "df"
},
"text/html": [
"\n",
" \n",
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Fuzzy Score | \n",
" CER | \n",
" WER | \n",
" Jaccard Index | \n",
" Cosine Similarity | \n",
"
\n",
" \n",
" Languages | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" arabic | \n",
" 96 | \n",
" 0.063105 | \n",
" 0.345309 | \n",
" 0.671233 | \n",
" 0.980953 | \n",
"
\n",
" \n",
" bengali | \n",
" 86 | \n",
" 0.461988 | \n",
" 3.323864 | \n",
" 0.901639 | \n",
" 0.823656 | \n",
"
\n",
" \n",
" chinese | \n",
" 73 | \n",
" 0.194491 | \n",
" 5.365854 | \n",
" 0.759690 | \n",
" 0.596583 | \n",
"
\n",
" \n",
" cyrillic | \n",
" 97 | \n",
" 0.041621 | \n",
" 0.216524 | \n",
" 0.726027 | \n",
" 0.988776 | \n",
"
\n",
" \n",
" dutch | \n",
" 99 | \n",
" 0.030452 | \n",
" 0.177215 | \n",
" 0.906667 | \n",
" 0.998459 | \n",
"
\n",
" \n",
" english | \n",
" 100 | \n",
" 0.004305 | \n",
" 0.003778 | \n",
" 0.976744 | \n",
" 1.000000 | \n",
"
\n",
" \n",
" french | \n",
" 98 | \n",
" 0.047023 | \n",
" 0.264472 | \n",
" 0.923077 | \n",
" 0.999005 | \n",
"
\n",
" \n",
" german | \n",
" 99 | \n",
" 0.028566 | \n",
" 0.141573 | \n",
" 0.946429 | \n",
" 0.997423 | \n",
"
\n",
" \n",
" greek | \n",
" 98 | \n",
" 0.046392 | \n",
" 0.235585 | \n",
" 0.728261 | \n",
" 0.993112 | \n",
"
\n",
" \n",
" hebrew | \n",
" 68 | \n",
" 0.453194 | \n",
" 2.714110 | \n",
" 0.522727 | \n",
" 0.775091 | \n",
"
\n",
" \n",
" hindi | \n",
" 91 | \n",
" 0.348672 | \n",
" 1.659375 | \n",
" 0.797297 | \n",
" 0.956740 | \n",
"
\n",
" \n",
" japanese | \n",
" 93 | \n",
" 0.076135 | \n",
" 5.296296 | \n",
" 0.935714 | \n",
" 0.920010 | \n",
"
\n",
" \n",
" korean | \n",
" 61 | \n",
" 0.525316 | \n",
" 2.133803 | \n",
" 0.506812 | \n",
" 0.822502 | \n",
"
\n",
" \n",
" latin | \n",
" 98 | \n",
" 0.046106 | \n",
" 0.280156 | \n",
" 0.928571 | \n",
" 0.985503 | \n",
"
\n",
" \n",
" spanish | \n",
" 99 | \n",
" 0.007587 | \n",
" 0.022785 | \n",
" 0.978261 | \n",
" 0.997419 | \n",
"
\n",
" \n",
" thai | \n",
" 81 | \n",
" 0.217812 | \n",
" 5.957143 | \n",
" 0.777778 | \n",
" 0.860192 | \n",
"
\n",
" \n",
" urdu | \n",
" 70 | \n",
" 0.740081 | \n",
" 3.375661 | \n",
" 0.745098 | \n",
" 0.777132 | \n",
"
\n",
" \n",
" vietnamese | \n",
" 98 | \n",
" 0.029640 | \n",
" 0.112931 | \n",
" 0.951456 | \n",
" 0.997747 | \n",
"
\n",
" \n",
"
\n",
"
\n",
"
\n",
"
\n"
],
"text/plain": [
" Fuzzy Score CER WER Jaccard Index Cosine Similarity\n",
"Languages \n",
"arabic 96 0.063105 0.345309 0.671233 0.980953\n",
"bengali 86 0.461988 3.323864 0.901639 0.823656\n",
"chinese 73 0.194491 5.365854 0.759690 0.596583\n",
"cyrillic 97 0.041621 0.216524 0.726027 0.988776\n",
"dutch 99 0.030452 0.177215 0.906667 0.998459\n",
"english 100 0.004305 0.003778 0.976744 1.000000\n",
"french 98 0.047023 0.264472 0.923077 0.999005\n",
"german 99 0.028566 0.141573 0.946429 0.997423\n",
"greek 98 0.046392 0.235585 0.728261 0.993112\n",
"hebrew 68 0.453194 2.714110 0.522727 0.775091\n",
"hindi 91 0.348672 1.659375 0.797297 0.956740\n",
"japanese 93 0.076135 5.296296 0.935714 0.920010\n",
"korean 61 0.525316 2.133803 0.506812 0.822502\n",
"latin 98 0.046106 0.280156 0.928571 0.985503\n",
"spanish 99 0.007587 0.022785 0.978261 0.997419\n",
"thai 81 0.217812 5.957143 0.777778 0.860192\n",
"urdu 70 0.740081 3.375661 0.745098 0.777132\n",
"vietnamese 98 0.029640 0.112931 0.951456 0.997747"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"Model: vision\n"
]
},
{
"data": {
"application/vnd.google.colaboratory.intrinsic+json": {
"summary": "{\n \"name\": \"df\",\n \"rows\": 18,\n \"fields\": [\n {\n \"column\": \"Languages\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 18,\n \"samples\": [\n \"arabic\",\n \"bengali\",\n \"greek\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Fuzzy Score\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 24,\n \"min\": 25,\n \"max\": 100,\n \"num_unique_values\": 8,\n \"samples\": [\n 25,\n 75,\n 100\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"CER\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.1993613749398623,\n \"min\": 0.020288206295032234,\n \"max\": 0.6714158504007124,\n \"num_unique_values\": 18,\n \"samples\": [\n 0.030927835051546393,\n 0.0354775828460039,\n 0.03043691703485518\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"WER\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 12.85374771439189,\n \"min\": 0.075,\n \"max\": 52.96296296296296,\n \"num_unique_values\": 18,\n \"samples\": [\n 0.15568862275449102,\n 0.1534090909090909,\n 0.16803953871499178\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Jaccard Index\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.02895347975962444,\n \"min\": 0.88,\n \"max\": 0.9953917050691244,\n \"num_unique_values\": 17,\n \"samples\": [\n 0.98,\n 0.9827586206896551,\n 0.9767441860465116\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Cosine Similarity\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.3480704012555531,\n \"min\": 0.0042342482556298085,\n \"max\": 1.0000000000000036,\n \"num_unique_values\": 17,\n \"samples\": [\n 1.0000000000000036,\n 1.0000000000000018,\n 0.9999999999999993\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}",
"type": "dataframe",
"variable_name": "df"
},
"text/html": [
"\n",
" \n",
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Fuzzy Score | \n",
" CER | \n",
" WER | \n",
" Jaccard Index | \n",
" Cosine Similarity | \n",
"
\n",
" \n",
" Languages | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" arabic | \n",
" 100 | \n",
" 0.030928 | \n",
" 0.155689 | \n",
" 0.980000 | \n",
" 1.000000 | \n",
"
\n",
" \n",
" bengali | \n",
" 100 | \n",
" 0.035478 | \n",
" 0.153409 | \n",
" 0.982759 | \n",
" 1.000000 | \n",
"
\n",
" \n",
" chinese | \n",
" 25 | \n",
" 0.627713 | \n",
" 18.024390 | \n",
" 0.908832 | \n",
" 0.004234 | \n",
"
\n",
" \n",
" cyrillic | \n",
" 100 | \n",
" 0.037657 | \n",
" 0.212251 | \n",
" 0.962963 | \n",
" 0.999906 | \n",
"
\n",
" \n",
" dutch | \n",
" 100 | \n",
" 0.025207 | \n",
" 0.140391 | \n",
" 0.957746 | \n",
" 0.999881 | \n",
"
\n",
" \n",
" english | \n",
" 100 | \n",
" 0.024473 | \n",
" 0.107053 | \n",
" 0.976744 | \n",
" 1.000000 | \n",
"
\n",
" \n",
" french | \n",
" 100 | \n",
" 0.020288 | \n",
" 0.094211 | \n",
" 0.959184 | \n",
" 0.999753 | \n",
"
\n",
" \n",
" german | \n",
" 100 | \n",
" 0.041282 | \n",
" 0.225843 | \n",
" 0.981132 | \n",
" 1.000000 | \n",
"
\n",
" \n",
" greek | \n",
" 100 | \n",
" 0.030437 | \n",
" 0.168040 | \n",
" 0.985294 | \n",
" 1.000000 | \n",
"
\n",
" \n",
" hebrew | \n",
" 98 | \n",
" 0.046806 | \n",
" 0.240491 | \n",
" 0.979167 | \n",
" 0.992660 | \n",
"
\n",
" \n",
" hindi | \n",
" 99 | \n",
" 0.038486 | \n",
" 0.167708 | \n",
" 0.966667 | \n",
" 0.998818 | \n",
"
\n",
" \n",
" japanese | \n",
" 29 | \n",
" 0.671416 | \n",
" 52.962963 | \n",
" 0.949398 | \n",
" 0.031592 | \n",
"
\n",
" \n",
" korean | \n",
" 75 | \n",
" 0.173840 | \n",
" 0.686620 | \n",
" 0.995392 | \n",
" 0.448421 | \n",
"
\n",
" \n",
" latin | \n",
" 100 | \n",
" 0.027611 | \n",
" 0.169261 | \n",
" 0.981132 | \n",
" 1.000000 | \n",
"
\n",
" \n",
" spanish | \n",
" 99 | \n",
" 0.060906 | \n",
" 0.336709 | \n",
" 0.880000 | \n",
" 0.997281 | \n",
"
\n",
" \n",
" thai | \n",
" 59 | \n",
" 0.200000 | \n",
" 5.142857 | \n",
" 0.974684 | \n",
" 0.373060 | \n",
"
\n",
" \n",
" urdu | \n",
" 96 | \n",
" 0.038528 | \n",
" 0.153439 | \n",
" 0.975000 | \n",
" 0.954732 | \n",
"
\n",
" \n",
" vietnamese | \n",
" 99 | \n",
" 0.021310 | \n",
" 0.075000 | \n",
" 0.989899 | \n",
" 0.998874 | \n",
"
\n",
" \n",
"
\n",
"
\n",
"
\n",
"
\n"
],
"text/plain": [
" Fuzzy Score CER WER Jaccard Index Cosine Similarity\n",
"Languages \n",
"arabic 100 0.030928 0.155689 0.980000 1.000000\n",
"bengali 100 0.035478 0.153409 0.982759 1.000000\n",
"chinese 25 0.627713 18.024390 0.908832 0.004234\n",
"cyrillic 100 0.037657 0.212251 0.962963 0.999906\n",
"dutch 100 0.025207 0.140391 0.957746 0.999881\n",
"english 100 0.024473 0.107053 0.976744 1.000000\n",
"french 100 0.020288 0.094211 0.959184 0.999753\n",
"german 100 0.041282 0.225843 0.981132 1.000000\n",
"greek 100 0.030437 0.168040 0.985294 1.000000\n",
"hebrew 98 0.046806 0.240491 0.979167 0.992660\n",
"hindi 99 0.038486 0.167708 0.966667 0.998818\n",
"japanese 29 0.671416 52.962963 0.949398 0.031592\n",
"korean 75 0.173840 0.686620 0.995392 0.448421\n",
"latin 100 0.027611 0.169261 0.981132 1.000000\n",
"spanish 99 0.060906 0.336709 0.880000 0.997281\n",
"thai 59 0.200000 5.142857 0.974684 0.373060\n",
"urdu 96 0.038528 0.153439 0.975000 0.954732\n",
"vietnamese 99 0.021310 0.075000 0.989899 0.998874"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"Model: tesseract\n"
]
},
{
"data": {
"application/vnd.google.colaboratory.intrinsic+json": {
"summary": "{\n \"name\": \"df\",\n \"rows\": 18,\n \"fields\": [\n {\n \"column\": \"Languages\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 18,\n \"samples\": [\n \"arabic\",\n \"bengali\",\n \"greek\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Fuzzy Score\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 34,\n \"min\": 7,\n \"max\": 94,\n \"num_unique_values\": 14,\n \"samples\": [\n 24,\n 88,\n 18\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"CER\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.3945193578603726,\n \"min\": 0.045885475919605616,\n \"max\": 1.0244879786286731,\n \"num_unique_values\": 18,\n \"samples\": [\n 0.8706654170571696,\n 0.8631578947368421,\n 0.8576337751595483\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"WER\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 20.218444781185273,\n \"min\": 0.188422247446084,\n \"max\": 84.37037037037037,\n \"num_unique_values\": 18,\n \"samples\": [\n 5.500998003992016,\n 6.215909090909091,\n 5.660626029654036\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Jaccard Index\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.34968392223635286,\n \"min\": 0.014336917562724014,\n \"max\": 0.8936170212765957,\n \"num_unique_values\": 18,\n \"samples\": [\n 0.09174311926605505,\n 0.027777777777777776,\n 0.13385826771653545\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Cosine Similarity\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.4392089361824662,\n \"min\": 0.0,\n \"max\": 0.9768747457106202,\n \"num_unique_values\": 12,\n \"samples\": [\n 0.02020536020703633,\n 0.913915025058188,\n 0.0006574697271499722\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}",
"type": "dataframe",
"variable_name": "df"
},
"text/html": [
"\n",
" \n",
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Fuzzy Score | \n",
" CER | \n",
" WER | \n",
" Jaccard Index | \n",
" Cosine Similarity | \n",
"
\n",
" \n",
" Languages | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" arabic | \n",
" 18 | \n",
" 0.870665 | \n",
" 5.500998 | \n",
" 0.091743 | \n",
" 0.000657 | \n",
"
\n",
" \n",
" bengali | \n",
" 18 | \n",
" 0.863158 | \n",
" 6.215909 | \n",
" 0.027778 | \n",
" 0.000000 | \n",
"
\n",
" \n",
" chinese | \n",
" 10 | \n",
" 0.991653 | \n",
" 28.609756 | \n",
" 0.025974 | \n",
" 0.000000 | \n",
"
\n",
" \n",
" cyrillic | \n",
" 15 | \n",
" 0.881964 | \n",
" 5.547009 | \n",
" 0.051282 | \n",
" 0.000000 | \n",
"
\n",
" \n",
" dutch | \n",
" 86 | \n",
" 0.089156 | \n",
" 0.455696 | \n",
" 0.853333 | \n",
" 0.967344 | \n",
"
\n",
" \n",
" english | \n",
" 94 | \n",
" 0.052799 | \n",
" 0.225441 | \n",
" 0.893617 | \n",
" 0.976875 | \n",
"
\n",
" \n",
" french | \n",
" 93 | \n",
" 0.045885 | \n",
" 0.188422 | \n",
" 0.807692 | \n",
" 0.966458 | \n",
"
\n",
" \n",
" german | \n",
" 76 | \n",
" 0.172792 | \n",
" 1.053933 | \n",
" 0.770492 | \n",
" 0.753715 | \n",
"
\n",
" \n",
" greek | \n",
" 16 | \n",
" 0.857634 | \n",
" 5.660626 | \n",
" 0.133858 | \n",
" 0.004431 | \n",
"
\n",
" \n",
" hebrew | \n",
" 21 | \n",
" 0.857372 | \n",
" 5.159509 | \n",
" 0.178218 | \n",
" 0.004796 | \n",
"
\n",
" \n",
" hindi | \n",
" 18 | \n",
" 0.876177 | \n",
" 4.308333 | \n",
" 0.032258 | \n",
" 0.000000 | \n",
"
\n",
" \n",
" japanese | \n",
" 15 | \n",
" 1.024488 | \n",
" 84.370370 | \n",
" 0.025862 | \n",
" 0.000000 | \n",
"
\n",
" \n",
" korean | \n",
" 24 | \n",
" 0.886920 | \n",
" 3.642606 | \n",
" 0.014337 | \n",
" 0.000000 | \n",
"
\n",
" \n",
" latin | \n",
" 75 | \n",
" 0.131545 | \n",
" 0.817121 | \n",
" 0.774194 | \n",
" 0.888726 | \n",
"
\n",
" \n",
" spanish | \n",
" 88 | \n",
" 0.093151 | \n",
" 0.470886 | \n",
" 0.622951 | \n",
" 0.913915 | \n",
"
\n",
" \n",
" thai | \n",
" 7 | \n",
" 0.944020 | \n",
" 26.264286 | \n",
" 0.163934 | \n",
" 0.020205 | \n",
"
\n",
" \n",
" urdu | \n",
" 10 | \n",
" 0.939620 | \n",
" 4.293651 | \n",
" 0.022472 | \n",
" 0.000000 | \n",
"
\n",
" \n",
" vietnamese | \n",
" 56 | \n",
" 0.397714 | \n",
" 1.718103 | \n",
" 0.327586 | \n",
" 0.119540 | \n",
"
\n",
" \n",
"
\n",
"
\n",
"
\n",
"
\n"
],
"text/plain": [
" Fuzzy Score CER WER Jaccard Index Cosine Similarity\n",
"Languages \n",
"arabic 18 0.870665 5.500998 0.091743 0.000657\n",
"bengali 18 0.863158 6.215909 0.027778 0.000000\n",
"chinese 10 0.991653 28.609756 0.025974 0.000000\n",
"cyrillic 15 0.881964 5.547009 0.051282 0.000000\n",
"dutch 86 0.089156 0.455696 0.853333 0.967344\n",
"english 94 0.052799 0.225441 0.893617 0.976875\n",
"french 93 0.045885 0.188422 0.807692 0.966458\n",
"german 76 0.172792 1.053933 0.770492 0.753715\n",
"greek 16 0.857634 5.660626 0.133858 0.004431\n",
"hebrew 21 0.857372 5.159509 0.178218 0.004796\n",
"hindi 18 0.876177 4.308333 0.032258 0.000000\n",
"japanese 15 1.024488 84.370370 0.025862 0.000000\n",
"korean 24 0.886920 3.642606 0.014337 0.000000\n",
"latin 75 0.131545 0.817121 0.774194 0.888726\n",
"spanish 88 0.093151 0.470886 0.622951 0.913915\n",
"thai 7 0.944020 26.264286 0.163934 0.020205\n",
"urdu 10 0.939620 4.293651 0.022472 0.000000\n",
"vietnamese 56 0.397714 1.718103 0.327586 0.119540"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n"
]
}
],
"source": [
"evaluation_results = evaluate_ocr_models_for_different_languages()\n",
"\n",
"for model, df in evaluation_results.items():\n",
" print(f\"Model: {model}\")\n",
" display(df)\n",
" print(\"\\n\")"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {
"id": "4YwFT6BjEhwj"
},
"outputs": [],
"source": [
"import pandas as pd\n",
"import matplotlib.pyplot as plt\n",
"\n",
"def plot_languages(models_dfs, evaluation_metric):\n",
" fig, axs = plt.subplots(4, 2, figsize=(25, 20)) # Create a 3x2 grid of subplots\n",
" fig.suptitle(f'{evaluation_metric} for Different OCR Models', fontsize=16)\n",
"\n",
" models = list(models_dfs.keys())\n",
"\n",
" for i, model in enumerate(models):\n",
" row = i // 2\n",
" col = i % 2\n",
" ax = axs[row, col]\n",
"\n",
" df = models_dfs[model]\n",
"\n",
" if evaluation_metric in df.columns:\n",
" ax.bar(df.index, df[evaluation_metric], color=\"#5675a8\")\n",
" ax.set_title(model)\n",
" ax.set_xlabel('Languages')\n",
" ax.set_ylabel(evaluation_metric)\n",
"\n",
" else:\n",
" ax.text(0.5, 0.5, 'Metric Not Available', horizontalalignment='center', verticalalignment='center', transform=ax.transAxes)\n",
" ax.set_title(model)\n",
" ax.set_xlabel('Font Size')\n",
" ax.set_ylabel(evaluation_metric)\n",
"\n",
" for j in range(len(models), 6):\n",
" row = j // 2\n",
" col = j % 2\n",
" fig.delaxes(axs[row, col])\n",
"\n",
" plt.tight_layout(rect=[0, 0.03, 1, 0.95]) # Adjust layout to fit title\n",
" plt.show()\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 816
},
"id": "HfI2PsqsEmuE",
"outputId": "0e643da5-f1b0-402e-882a-6f6a17ba4209"
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAACboAAAdxCAYAAADcy7mNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd5hV5bk34N9QBAUBQaoiYImIvUUNqKgoauwYMZaAvWHsRI0FWzwSEg12TQSNkhBL1NiOJYJRCUHs3SgqUcFCsyIy+/vDjzlOBpBhBmcx3vd17eu413rXu5+19x4gz/nN+5aVSqVSAAAAAAAAAAAAoKAa1HUBAAAAAAAAAAAAsDCCbgAAAAAAAAAAABSaoBsAAAAAAAAAAACFJugGAAAAAAAAAABAoQm6AQAAAAAAAAAAUGiCbgAAAAAAAAAAABSaoBsAAAAAAAAAAACFJugGAAAAAAAAAABAoQm6AQAAAAAAAAAAUGiCbgAAAMBCde3aNWVlZQt9XHLJJXVd5ndu9uzZGT58eLbaaqu0bt06jRs3zoorrpi11lor++yzT373u9/lgw8+qOsyv3MjRozIJptskmbNmlV8P9588806q+fNN9+s8n1t2LBhWrVqlVVXXTW77rprfvWrX+Wtt95a6Dzzrp2fxx9/PDvssENat26dBg0apKysLCNHjqw4/7e//S1bbrllWrRoUTHPmDFjavEu6485c+bk2muvzU477ZSOHTtmmWWWSZs2bbLZZpvlnHPOyYcffrhI80yePDlnnHFGNt9887Rt2zaNGzdOq1atstFGG+W4447LhAkTqlwzvz/bll122XTt2jX77rtvHn300cW6pyFDhlTM17Zt28yZM2eBY9977700atSoYvyNN964WK9ZXb17967V7+XCfl4AAAAAFlejui4AAAAAWDr07Nkzq6+++nzP9ejR4zuupm5NnTo122+/fZ577rk0bNgwP/zhD9O5c+eUl5fn1Vdfza233pqbb745q622WnbZZZe6Lvc7c/fdd+fggw9O06ZN06dPn7Rp0yZJ0rx58zqu7Gv9+vWrqOXjjz/Oe++9lwcffDB33XVXzjjjjBx++OEZNmxYtep999138+Mf/zgzZ85Mr1690rVr1zRo0KDiZ+Xpp59Ov379Ul5enm233TYdO3ZMWVlZOnTosETusa507do1b731ViZNmpSuXbsu1hwvvfRSdt9997z22mtp2LBhNt9882yzzTaZPn16HnvssfzrX//Kb3/724wYMSJ77bXXAucZOnRozjzzzHz55Zdp3rx5Nttss7Rr1y4ff/xxnnvuuQwfPjzDhw/PKaeckqFDh1a5vm/fvhWfz4cffpgnnngio0ePzl/+8pdcfPHFOe644xbr/ubNd+edd6Zfv37zPX/99ddn7ty5iz0/AAAAQH0m6AYAAAAskkMPPTQDBw6s6zIKYdCgQXnuueey9tpr5+67706XLl0qnX///ffzpz/9Ke3bt6+jCuvGzTffnCQZPnx4DjvssDqupqphw4ZVCWF9/vnnGTFiRE499dRcffXVefHFF/PAAw+kSZMmlca99NJL853z/vvvz4wZM7LffvvlpptuqnL+9ttvz5w5c3L66afnggsuqLV7qW8mTZqUXr16Zdq0aenTp0/+8Ic/ZJVVVqk4//nnn+ess87KsGHD8pOf/CS33npr9thjjyrznHrqqbnooovSuHHjDBs2LIMGDaryWf7zn//ML3/5y7z66qvzreXUU09N7969K55/9tlnOfDAA3Pbbbdl8ODB2XvvvbPSSitV+x432WSTPPHEE7nuuusWGHQbMWJEmjRpkjXXXDPPPvtstV8DAAAAoD6zdSkAAABANXzxxRe54447kiS//e1vq4TckqRdu3Y57rjjsummm37X5dWpt99+O0myxhpr1HEli27ZZZfN0UcfnTFjxqRp06b5xz/+Md9Vvrp3757u3btXOf5t97w0vid14cADD8y0adOy+eab56677qoUcku+/px+/etf5+STT055eXkGDhyYjz76qNKYhx56KBdddFGSZPTo0TnppJOqhNySZPPNN8+DDz6Yk046aZFqW2655XLppZcmSb788sv87//+7+LcYtZff/1stNFG+d///d+8++67Vc7/4x//yKuvvpo99tgjK6ywwmK9BgAAAEB9JugGAAAA1JqBAwemrKwsI0eOnO/5kSNHpqysrNLKcG+++WbKysq+9TFvznlzfNvjzTffzKxZs9KiRYs0atQokydPXmDdO++8c8rKynLFFVd86z1OmzYtc+bMSfJ1oG1xTJw4MQMGDEi3bt3StGnTtG7dOuuvv35OOeWUvPXWW1XG/+tf/8o+++yTTp06ZZlllkm7du2y66675oEHHpjv/N/8HJ5//vn0798/HTt2TMOGDTNkyJCKcV999VV+//vfp3fv3mndunWaNGmSbt265aijjlro+7Wg13v44YeTJNtss03F5/DfqwAuqXupqY022ijHHntskuTiiy/OV199Ven8vPuZZ9738Oyzz06SnHPOORVjunbtmiFDhqSsrCwjRoxIkhx00EEV57+5WliSTJ8+PWeffXY22GCDLL/88lluueWy7rrr5vzzz89nn31WpdZ5cw8ZMiRvv/12DjnkkHTu3DmNGzeu8n7fcsst2XHHHdO2bdsss8wyWWmllXLAAQfkxRdfrDLvvJ/Frl27plQq5ZprrsnGG2+cZs2apWXLltlhhx0ybty4StfMex/mfW+7detW6edwzJgx3/rejx07No899liS5LLLLptvOG2e8847L+3atcvMmTNz2WWXVTp3/vnnJ0l222237Lnnngt9zbKysmy55ZbfWts8nTp1qtiKd+rUqYt83X87+OCDM3fu3Fx//fVVzl133XUVY77Nn//852y33XYVP7ddunTJwQcfvMBV6pJk8uTJOfjgg9OxY8c0bdo0a6yxRn75y1/m888//9bXq873aGHee++9HHfccfnBD36Qpk2bZrnllkvnzp2z3XbbZdiwYdWaCwAAAPj+sXUpAAAAUKeaN2+eAQMGzPfcl19+mdGjR6e8vDwNGzZMkqy++uoLHP/OO+/kwQcfTJI0bNgwLVq0yMCBA3PppZfmqquumu/Wka+//nruu+++tGjRIj/72c++td4VV1wxyy23XD777LNceumlufbaa9OgwaL/LuGvf/3rnHrqqSkvL88PfvCD7L777vn888/z73//O8OGDcvaa69dKax07bXX5sgjj0x5eXk23HDD9O7dO2+99Vbuuuuu3HXXXRkyZEhF2Oq/Pf744znyyCPTsWPHbLXVVvn888+z/PLLJ0k+/vjj7LbbbhkzZkyaN2+ejTfeOG3bts1zzz2Xq666KjfffHMeeOCBbLjhht96T7169UqS3HfffZk6dWr69u2bDh06VDq3JO+lthxwwAH59a9/nenTp+eJJ57I5ptvvsCx876HTz/9dJ555pmsv/762WCDDZJ8/R3ZYIMNMmDAgDz66KN5/fXX07Nnz6y++upJUmlluBdffDE77rhjJk+enI4dO6ZXr15p3Lhx/vWvf+XMM8/MrbfemjFjxqRly5ZVanjttdey4YYbZplllknPnj1TKpWy4oorJvk6xLj//vvnL3/5S5o0aZKNN944K620Ul599dXcdNNNue2223Lbbbdlxx13nO/9HXTQQRk1alS23HLL7LLLLnn66afzwAMP5JFHHsnYsWOz2WabVXofbrnllnz66afp169fmjdvXjHPvO/Bwtx+++1JkrXXXjsbb7zxQsc2bdo0++yzTy677LLceeedFd+XGTNm5JFHHkmSBf75UBPl5eX55JNPkqRGWxLvt99+OfnkkzNixIicdtppFcc//vjj3HzzzVlllVXSp0+f/OpXv5rv9aVSKQMHDswNN9yQRo0aZauttkq7du3y5JNPZsSIERk9enRuvfXWKp/ryy+/nK233jrvv/9+OnbsmN122y2ffvppLr744oqA6vzU9Hv0TVOmTMkmm2ySd999N6usskp23HHHNG3aNO+++26efvrpTJw4MSeffPIivpMAAADA91IJAAAAYCG6dOlSSlIaMWLEt44dMGDAQseOGDGilKQ0YMCAb52rvLy8tP/++5eSlHr16lX6/PPPFzp++vTppbXXXruUpHTyySdXHH/11VdLZWVlpXbt2pW++OKLKteddNJJpSSlY4899ltrmue4444rJSklKXXt2rV07LHHlv74xz+WXnjhhVJ5efkCr7vjjjtKSUpNmzYtjR49usr5F154ofTiiy9WPH/22WdLjRo1KpWVlZVuuOGGSmPvueee0jLLLFNKUrr//vsrnZv3OSQpnXrqqaW5c+dWea399tuvlKS0yy67lKZOnVrp3MUXX1xKUlpjjTVKX3311SK9J6VSqbT11luXkpQefvjhKueW5L0szKRJkyqunzRp0kLHzp07t6KO3//+95XOzZvjv5199tmlJKWzzz57vnMu7Gfis88+K6222mqlJKUzzjijNHv27Ipzn376aemnP/1pKUnpoIMOmu9rJikdcMAB8/1en3766aUkpc0226z0xhtvVDp38803lxo2bFhaYYUVStOnT684/s33qkuXLqVXXnml4txXX31VOvjgg0tJSjvssEOV15v358S3vcfzs+WWW873Phfk+uuvLyUpNWjQoDRnzpxSqVQqPfTQQxW1v/3229WuoVT6v894ft/f+++/v5SktMwyy5Teeeedas077/M65JBDSqVSqeJzfeSRRyrGXHvttaUkpbPOOqtUKv3fz9If//jHSnNdeeWVpSSlFVdcsfTUU09VHC8vL694nVatWpXef//9StdtuummpSSlffbZp9KfpW+99VbFd3B+974436NSaf4/L+ecc04pSenwww+v8ufkl19+WXrwwQcX8A4CAAAAfM3WpQAAAMAi+ebWi998/Pc2jLXll7/8ZW666aZ07949d9xxR5o2bbrAsV9++WX23HPPvPDCC+nfv3+GDh1acW6NNdbITjvtlPfffz8333xzpes+//zzXHfddSkrK8sxxxyzyLX9+te/zvHHH5/GjRvnzTffzKWXXpoDDzwwa6+9dtq1a5dBgwblnXfeqXLdvNWnLrjgguyzzz5Vzvfo0SNrrbVWxfPf/e53+eqrr7LnnnvmwAMPrDR2p512yuGHH15Rz/z84Ac/yPnnn19lxbmXXnopf/rTn9KpU6eMGjWqyhasxx9/fHbeeee89tpruffeexfhHfl2S+pealODBg3SunXrJMlHH320xF5nnuuvvz6vv/56dtlll5x33nlZZpllKs4tt9xyueaaa9KuXbv88Y9/zPTp06tc37p16/lu9Tlt2rRcfPHFadq0aW699dZ069at0vm99947RxxxRKZPn54bb7xxvrVdeuml+cEPflDxvGHDhhUrIo4dO7Zi+97a8MEHHyRZ9JXS5o0rLy/PtGnTKs2RLP6WwvPz4Ycf5pZbbsnAgQPToEGDXHbZZenUqVON5py3Nem8rUqT5A9/+EPKyspy0EEHLfTaedt7nnXWWRUrCCap2EZ3vfXWy4wZM3LttddWnHvssccyYcKENGvWLFdccUWlP0tXWWWVBW4ZWhvfo2+at+XrjjvuWGkb4CRp3Lhxtttuu2+dAwAAAPh+E3QDAAAAFknPnj0zYMCAKo9F2bKuuq6++upceOGFad++fe69996K8NH8lP7/Vn5jxozJVlttleuvv75KiOK4445Lklx22WWVjo8aNSrTp09Pnz59suaaay5yfY0bN87FF1+ct99+O1deeWX222+/dO/ePWVlZfnwww9z+eWXZ7311svEiRMrrpkyZUqefvrpNGjQIIcccsgivc6YMWOSpNJWpt80b55//OMfmTt3bpXze+yxR8WWr990zz33pFQqZaeddlrg9p/zAoyPP/74ItX6bZbUvdS28vLyJKnyHVoS7r777iRJ//7953u+efPm2WSTTfLVV19lwoQJVc736dNnvluaPvzww/n888/Ts2fPrLTSSvOde2Gfb6NGjeb7c92hQ4essMIKmT179ncSBFyQUqm0ROffZpttKoK8bdu2zU9+8pNMnz49999/fw477LAaz7/ddtulS5cuufnmm/PJJ5/kpZdeyj//+c9ss8026dq16wKv+89//pPXX389yfy3Z/1mUO6b25HO+9nbcccd06ZNmyrX7b777kvke/TffvjDHyZJTj311Nx2220VW8ECAAAALKpGdV0AAAAAsHQ49NBDFxhSqk133313jjnmmDRr1ix33333QoMfSXLaaaflT3/6U3r06JHbb7+9yupWSbL99ttnrbXWyvjx4zNx4sRsvPHGSZLLL788STJo0KDFqrVDhw458sgjc+SRRyb5esWiUaNG5Zxzzsm0adPys5/9LC+88EKS5O23306SdOzYcb6hkvmZtyrcf6+kNM9qq62WJPniiy/y0UcfVVnJakHv3RtvvJHk61Wk/vCHPyy0hm+ulFUTS+peatPcuXMzY8aMJFlouLK2zPscDjzwwCqr3P23+X0O3/b5PvTQQ98a2JvfvB07dkzjxo3nO75FixaZPn16vvjii4XOWx0rrrhikv9b8evbvP/++0kqr8DXtm3bSuc7d+682PX07ds3HTp0SHl5eaZMmZJHHnkkn3/+eQ444IA89thjWXXVVRd77uTrQNrAgQNzzjnnZPTo0Xn55ZeT/N9Kbwsy72eoTZs2adGixXzHzPs5+uaKkv/5z3+SLPhnr6ysLF27ds0zzzxT6XhNv0f/7cADD8wDDzyQm266Kf369UvDhg3To0eP9OrVK3vvvXe23Xbbb50DAAAA+H4TdAMAAAC+M/NWy1qQJ554Iv37909ZWVluvvnmikDaglx55ZW56KKL0rFjx9xzzz1ZYYUV5juurKwsxx57bI4++uhcdtllGTFiRMaNG5ennnoqXbt2zS677LLY9/RN7du3zwknnJCuXbtmr732yosvvpjXXnsta6yxRq3MX13LLrvsfI/P+xw22GCDrL/++gudY7PNNqv1uhbHgu6lNj3//PP58ssvkyTrrrvuEn+9eZ/Djjvu+K3bdnbp0qXKsW/7fFdfffX07NlzofN27969yrEluT3s/Gy88cZ59NFHM378+EUa/69//StJsv7666dRo6/bmxtuuGEaNGiQ8vLyTJgwoUZBt1NPPbXSlszvvvtu+vbtm+effz777bdfxo0bV+MV/w466KCce+65ueaaa/LWW2+lZcuW2WuvvWo0Z22r6ffovzVo0CA33nhjTj/99Nx999157LHH8thjj+XKK6/MlVdemV133TV//etfv5OVGwEAAIClk6AbAAAAUGuWWWaZJMnHH3883/NvvfXWAq+dNGlSdtlll3z66ae59tprs9NOOy30tf72t7/l2GOPzfLLL5+77757vkGgb/rZz36W008/PX/+858zbNiwim1MjzrqqFoP9uywww4V//3hhx9mjTXWyCqrrJIkee+99zJz5sxFWtVtpZVWyuuvv5433ngj66yzTpXz81Zcatq0abVWIJsXAurZs2eV7VyXlCV1L7XpxhtvTPL1ilnfFrKsDZ07d87LL7+cQw45JHvvvXetzpska665ZkaOHFlr8y4pu+++e373u9/lxRdfrLTi4vx88cUX+ctf/pIk2W233SqOr7DCCtlyyy0zduzYXH/99bUaGuvUqVNuvvnmrLfeehk/fnxuuummHHDAATWas0uXLtl2223z0EMPJUmOPPLIbw1zzts+9KOPPsqsWbPmu6rbvJ+jb241Ou+/33zzzQXOPb8/m5fU96hHjx7p0aNHTjnllJRKpfz973/Pfvvtl7/97W+54YYbKrZfBQAAAPhv3+2vZwIAAAD12rxAxUsvvVTlXKlUyr333jvf66ZNm5addtopU6dOzZlnnplDDz10oa8zYcKE7LvvvhUrv2244YbfWluzZs1yyCGH5IsvvsivfvWr3HLLLWnatGkOOeSQRbizyvfxbeZtU5r833vSoUOHrL/++ikvL8911123SK81b1WpBYVM5s2z5ZZbVqxstSjmhQjvvPPOWt2CcmGW1L3UlieffLIi9HfiiSd+J6tKzfsc5gW3ast2222XZZZZJmPGjKnY5nNJmxdy/eqrr6p97TbbbJPNN988SXLMMcdk9uzZCxx75pln5oMPPkiLFi1yzDHHVDr3y1/+MsnX3+u//vWvC33NUqmURx99dJFr7N69e4466qgkyZAhQxbrPv/b4YcfnjZt2qRNmzaL9OfQyiuvXLE16fx+jkqlUsXxbbbZpuL41ltvnSS57777Mm3atCrX3XnnnRVb9n7Td/E9Kisry3bbbZf99tsvSfL0008vkdcBAAAA6gdBNwAAAKDW9OnTJ0nyxz/+MS+++GLF8Tlz5uQXv/hFJkyYUOWaL774IrvttlteeeWVDBgwIOeee+5CX+ONN97ILrvsks8++yzXXHNN+vbtu8j1DRo0KA0aNMhvf/vbfPnll/npT3+aNm3aLPL1STJz5sxstNFG+eMf/5hPPvlkvvUdfPDBSZIf/ehHFSu5JcnZZ5+d5OtAzq233lrl2hdffLFSSPC4445Lo0aNcvvtt1esNjbP/fffn6uvvjpJcvLJJ1frHjbccMP069cvkydPzl577TXflZ4+/fTT3HTTTZk6dWq15l6QJXUvNfX555/nyiuvTO/evfPFF1+kd+/e31kNhx9+eLp06ZKbb745v/jFL+a7EuKUKVNy7bXXVmve9u3b59hjj82nn36aXXfdNc8991yVMbNnz86dd96Zl19+ebHr/6aVV145SfLCCy8s1vU33nhjWrVqlfHjx2eXXXbJ5MmTK53//PPPM3jw4AwbNixlZWW57rrr0rZt20pjtt9++5x00klJkn333Te//e1v5xuamzhxYvr27Zthw4ZVq8YzzjgjzZs3z+uvv57rr7++mndY1T777JMPP/wwH374YTbZZJNFumbed/O8887LM888U3G8VCrl/PPPz9NPP51WrVrlsMMOqzi35ZZbZqONNsonn3xSJUg4efLkBX7fa/t7dMMNN2TixIlVjn/88ccZM2ZMkvlv0QsAAAAwj61LAQAAgFrTs2fP7L777rnjjjuyySabpFevXll22WXz5JNPZtasWTnuuOPyu9/9rtI1N998cx577LE0aNAgc+bMycCBA+c796GHHppevXrlggsuyPvvv5+2bdtm7NixGTt27HzHDxs2LCuuuGKlY127ds1uu+2W22+/PcnXwbfF8dRTT+VnP/tZmjRpkvXXXz9dunRJqVTK5MmTM2HChJSXl6dLly5VVl3ac889c8EFF+SMM87I3nvvne7du2f99dfP559/nn//+9958cUXM2LEiKy11lpJknXXXTeXX355jjrqqBx44IG5+OKL071797z11lt5/PHHUyqVMmTIkEpbpS6qESNGZMaMGbn33nuz5pprZv3110+3bt1SKpXy5ptv5plnnsmXX36Zl156Ke3bt1+s9+mbluS9LKqTTz45zZs3T/J1kO/dd9/Nk08+mS+++CINGjTIkUcemWHDhlWsTrakNWvWLHfffXd22WWXDB06NNdcc03WW2+9rLzyyvnss8/y6quv5qWXXkq7du0qBZcWxf/8z//kvffey6hRo7LBBhtk/fXXz6qrrppGjRrlP//5T55++ul8+umnuffee9O9e/ca30u/fv3y8MMP54ADDsgOO+yQFVZYIUlyyimnZM011/zW61dbbbU8+uij2X333fPggw9m1VVXzeabb57OnTtnxowZeeyxxzJr1qw0b9481113Xfr16zffeYYNG5bWrVtnyJAhOemkkzJkyJBsttlmadeuXT755JM8++yzFcHOX/ziF9W6x7Zt2+bEE0/Mueeem/PPPz8/+9nP0rhx42rNUVNHHHFEHn/88fzxj3/MJptskq233jrt2rXLk08+mVdeeSXLLrtsRo0aVSUE+Mc//jG9e/fOn//85zzyyCPp1atXPvvss/z973/PeuutlxVXXDHjxo2r8nq1+T267bbbMmDAgHTq1CkbbLBBVlhhhUyfPj2PPfZYZs6cmXXWWafa33MAAADg+0XQDQAAAKhVo0ePzvnnn59Ro0ZlzJgxWWGFFbLddtvlvPPOyz/+8Y8q4+fOnZskKS8vz6hRoxY4b+/evdOrV6+K8R988MFCV1UaMmRIlaBbkvTt2ze33357tthii2y00UbVvb20bNky48ePz0MPPZQxY8Zk0qRJeemll/LFF19khRVWyNZbb51dd901hx9+eJo1a1bl+tNPPz3bbrtthg8fnkceeSS33XZbll9++XTu3DmDBw/OtttuW2n84YcfnvXXXz/Dhg3Lo48+mmeffTYtW7bMzjvvnOOOOy7bb799te8hSZZffvncf//9GT16dG688cZMnDgxTz/9dFq0aJGOHTtm//33z2677VaxVWJtWFL3sqjmraLXoEGDNG/ePK1bt06fPn2yxRZb5IADDqi0+t53Ze21186zzz6bq666Kn/961/z7LPPZty4cVlxxRWz8sor5+STT86ee+5Z7XkbNWqUm266KQcccEB+//vfZ/z48Xn++efTrFmzdOzYMbvuumt22223bLXVVrVyH0cddVQ+/vjj3HjjjbnnnnsqtsQ94IADFinolnz9Xrz44osZOXJkbr311jzzzDMZP358mjdvnh/84AfZeeedM2jQoCohrv92+umnZ//998/VV1+dBx98ME899VRmzpyZZs2aZdVVV83uu++eAQMGLNKWx//t5JNPzpVXXpk333wz1113XY444ohqz1ETZWVlueGGG7LTTjvlmmuuycSJE/Ppp5+mQ4cOGThwYE499dT5vt89evTIE088kbPPPjv33ntvbr/99qy88so59thjc9ZZZ2XnnXee7+vV5vfopJNOSrdu3fL444/nySefzLRp09K6dev06NEj++23Xw466KD5/pkJAAAAME9ZqVQq1XURAAAAAN+VXr165bHHHsuoUaPy05/+tK7LAQAAAABgEQi6AQAAAN8b9957b3beeeesssoq+fe///2dbzsIAAAAAMDisXUpAAAAUK999NFH+cUvfpHp06fnnnvuSZIMHTpUyA0AAAAAYCliRTcAAACgXnvzzTfTrVu3NGrUKKuuumpOOumkHH744XVdFgAAAAAA1SDoBgAAAAAAAAAAQKE1qOsCAAAAAAAAAAAAYGEE3QAAAAAAAAAAACg0QTcAAAAAAAAAAAAKTdANAAAAAAAAAACAQhN0AwAAAAAAAAAAoNAE3QAAAAAAAAAAACg0QTcAAAAAAAAAAAAKTdANAAAAAAAAAACAQhN0AwAAAAAAAAAAoNAE3QAAAAAAAAAAACg0QTcAAAAAAAAAAAAKTdANAAAAAAAAAACAQhN0AwAAAAAAAAAAoNAE3QAAAAAAAAAAACg0QTcAAAAAAAAAAAAKTdANAAAAAAAAAACAQhN0AwAAAAAAAAAAoNAE3QAAAAAAAAAAACg0QTcAAAAAAAAAAAAKTdANAAAAAAAAAACAQhN0AwAAAAAAAAAAoNAE3QAAAAAAAAAAACg0QTcAAAAAAAAAAAAKTdANAAAAAAAAAACAQhN0AwAAAAAAAAAAoNAE3QAAAAAAAAAAACg0QTcAAAAAAAAAAAAKTdANAAAAAAAAAACAQhN0AwAAAAAAAAAAoNAE3QAAAAAAAAAAACg0QTcAAAAAAAAAAAAKTdANAAAAAAAAAACAQhN0AwAAAAAAAAAAoNAE3QAAAAAAAAAAACg0QTcAAAAAAAAAAAAKTdANAAAAAAAAAACAQhN0AwAAAAAAAAAAoNAE3QAAAAAAAAAAACg0QTcAAAAAAAAAAAAKTdANAAAAAAAAAACAQhN0AwAAAAAAAAAAoNAE3QAAAAAAAAAAACg0QTcAAAAAAAAAAAAKTdANAAAAAAAAAACAQhN0AwAAAAAAAAAAoNAE3QAAAAAAAAAAACg0QTcAAAAAAAAAAAAKTdANAAAAAAAAAACAQhN0AwAAAAAAAAAAoNAE3QAAAAAAAAAAACg0QTcAAAAAAAAAAAAKTdANAAAAAAAAAACAQhN0AwAAAAAAAAAAoNAE3QAAAAAAAAAAACg0QTcAAAAAAAAAAAAKTdANAAAAAAAAAACAQhN0AwAAAAAAAAAAoNAE3QAAAAAAAAAAACg0QTcAAAAAAAAAAAAKTdANAAAAAAAAAACAQhN0AwAAAAAAAAAAoNAE3QAAAAAAAAAAACg0QTcAAAAAAAAAAAAKTdANAAAAAAAAAACAQhN0AwAAAAAAAAAAoNAE3QAAAAAAAAAAACg0QTcAAAAAAAAAAAAKTdANAAAAAAAAAACAQhN0AwAAAAAAAAAAoNAE3QAAAAAAAAAAACg0QTcAAAAAAAAAAAAKTdANAAAAAAAAAACAQhN0AwAAAAAAAAAAoNAE3QAAAAAAAAAAACg0QTcAAAAAAAAAAAAKTdANAAAAAAAAAACAQhN0AwAAAAAAAAAAoNAE3QAAAAAAAAAAACg0QTcAAAAAAAAAAAAKTdANAAAAAAAAAACAQhN0AwAAAAAAAAAAoNAE3QAAAAAAAAAAACg0QTcAAAAAAAAAAAAKTdANAAAAAAAAAACAQhN0AwAAAAAAAAAAoNAE3QAAAAAAAAAAACg0QTcAAAAAAAAAAAAKTdANAAAAAAAAAACAQhN0AwAAAAAAAAAAoNAE3QAAAAAAAAAAACg0QTcAAAAAAACAgnrxxRczZMiQvPnmm3VdCgBAnRJ0AwAAAAAAACioF198Meecc46gGwDwvSfoBgAAAAAAAAAAQKEJugEA1DNPPfVUdtppp7Ro0SLNmzfPdtttl3/+858V50eOHJmysrI88sgjOeKII9KmTZu0aNEiP/vZzzJ9+vRKc5WVlWXIkCFVXqNr164ZOHBgxfM5c+bknHPOyRprrJGmTZumTZs26dWrVx544IEldZsAAAAA8K0+/vjjHH/88enatWuaNGmSdu3aZfvtt8+TTz5ZMebmm2/OxhtvnGWXXTYrrrhiDjjggLzzzjuV5hk4cGCaN2+ed955J3vssUeaN2+etm3b5uSTT87cuXMrxr355pspKyvLsGHDcs0112S11VZLkyZNsummm2bChAlV6nv55Zez9957p3Xr1mnatGk22WST3HnnnRXnR44cmZ/85CdJkm222SZlZWUpKyvLmDFjavmdAgAovkZ1XQAAALXnhRdeyJZbbpkWLVpk8ODBady4ca6++ur07t07Y8eOzWabbVYxdtCgQWnVqlWGDBmSV155JVdeeWXeeuutjBkzJmVlZdV63SFDhuTCCy/MoYcemh/+8IeZNWtWnnjiiTz55JPZfvvta/s2AQAAAGCRHHnkkbnlllsyaNCg9OjRIx999FEeffTRvPTSS9loo40ycuTIHHTQQdl0001z4YUXZurUqfnd736Xxx57LE899VRatWpVMdfcuXPTt2/fbLbZZhk2bFgefPDB/OY3v8lqq62Wo446qtLrjho1Kh9//HGOOOKIlJWVZejQodlrr73yxhtvpHHjxkm+7uX17NkzK620Uk499dQ0a9Ysf/nLX7LHHnvk1ltvzZ577pmtttoqP//5zzN8+PCcfvrpWWuttZKk4v8CAHyflJVKpVJdFwEAQO3Yc889c8899+Sll17KqquumiR57733suaaa2bDDTfM2LFjK5p3G2+8ccaNG1fRWPv1r3+dwYMH54477shuu+2W5OsV3c4+++wqq7p17do1vXv3zsiRI5MkG2ywQVZeeeXcdddd39m9AgAAAMC3adWqVQ444IBcdtllVc7NmTMnK6+8ctq1a5cJEyakadOmSZK77747u+yyS84666ycc845Sb5e0e3666/PueeemzPPPLNijo022igNGjTIE088keTrFd26deuWNm3a5LXXXssKK6yQJLnzzjuz++67529/+1t22WWXJEmfPn3y/vvvZ8KECWnSpEmSpFQqpVevXvnggw/y6quvJkluueWW/OQnP8nDDz+c3r17L5k3CgBgKWDrUgCAemLu3Lm5//77s8cee1SE3JKkY8eO2W+//fLoo49m1qxZFccPP/zwipBbkhx11FFp1KhR7rnnnmq/dqtWrfLCCy/ktddeq9lNAAAAAEAtatWqVcaPH5933323yrknnngi77//fo4++uiKkFuS/PjHP0737t1z9913V7nmyCOPrPR8yy23zBtvvFFlXP/+/StCbvPGJakYO23atPz973/PPvvsk48//jgffvhhPvzww3z00Ufp27dvXnvttSrbpwIAfN8JugEA1BMffPBBPvvss6y55ppVzq211lopLy/P5MmTK46tscYalcY0b948HTt2zJtvvlnt1z733HMzY8aM/OAHP8i6666bU045Jc8++2y15wEAAACA2jR06NA8//zz6dy5c374wx9myJAhFWGzt956K0nm20/r3r17xfl5mjZtmrZt21Y6tsIKK2T69OlVrl9llVWqjEtSMfbf//53SqVSzjzzzLRt27bS4+yzz06SvP/++4tzywAA9Vajui4AAIClz9y5cys932qrrfL666/njjvuyP3335/f//73ufjii3PVVVfl0EMPraMqAQAAAPi+22effbLlllvmr3/9a+6///78+te/zkUXXZTbbrut2nM1bNiwxmNLpVKSpLy8PEly8sknp2/fvvMdu/rqq1ezQgCA+s2KbgAA9UTbtm2z3HLL5ZVXXqly7uWXX06DBg3SuXPnimP/vc3oJ598kvfeey9du3atOLbCCitkxowZlcZ9+eWXee+996q8RuvWrXPQQQflT3/6UyZPnpz11lsvQ4YMqdE9AQAAAEBNdezYMUcffXRuv/32TJo0KW3atMkFF1yQLl26JMl8+2mvvPJKxfklYdVVV02SNG7cOH369JnvY/nll0+SlJWVLbE6AACWJoJuAAD1RMOGDbPDDjvkjjvuqLT96NSpUzNq1Kj06tUrLVq0qDh+zTXXZM6cORXPr7zyynz11VfZaaedKo6tttpqeeSRRyq9zjXXXFNlRbePPvqo0vPmzZtn9dVXz+zZs2vj1gAAAACg2ubOnZuZM2dWOtauXbt06tQps2fPziabbJJ27drlqquuqtTHuvfee/PSSy/lxz/+8RKrrV27dundu3euvvrq+f5S6QcffFDx382aNUuSKr+QCgDwfWPrUgCAeuT888/PAw88kF69euXoo49Oo0aNcvXVV2f27NkZOnRopbFffvlltttuu+yzzz555ZVXcsUVV6RXr17ZbbfdKsYceuihOfLII9OvX79sv/32eeaZZ/K///u/WXHFFSvN1aNHj/Tu3Tsbb7xxWrdunSeeeCK33HJLBg0a9J3cNwAAAAD8t48//jgrr7xy9t5776y//vpp3rx5HnzwwUyYMCG/+c1v0rhx41x00UU56KCDsvXWW+enP/1ppk6dmt/97nfp2rVrTjjhhCVa3+WXX55evXpl3XXXzWGHHZZVV101U6dOzbhx4/Kf//wnzzzzTJJkgw02SMOGDXPRRRdl5syZadKkSbbddtu0a9duidYHAFA0gm4AAPXI2muvnX/84x857bTTcuGFF6a8vDybbbZZbrzxxmy22WaVxl522WW56aabctZZZ2XOnDn56U9/muHDh1faCuGwww7LpEmT8oc//CH33XdfttxyyzzwwAPZbrvtKs3185//PHfeeWfuv//+zJ49O126dMn555+fU0455Tu5bwAAAAD4b8stt1yOPvro3H///bnttttSXl6e1VdfPVdccUWOOuqoJMnAgQOz3HLL5X/+53/yi1/8Is2aNcuee+6Ziy66KK1atVqi9fXo0SNPPPFEzjnnnIwcOTIfffRR2rVrlw033DBnnXVWxbgOHTrkqquuyoUXXphDDjkkc+fOzcMPPyzoBgB875SVSqVSXRcBAMB3Z+TIkTnooIMyYcKEbLLJJnVdDgAAAAAAAMC3alDXBQAAAAAAAAAAAMDCCLoBAAAAAAAAAABQaIJuAAAAAAAAAAAAFFpZqVQq1XURAAAAAAAAAAAAsCBWdAMAAAAAAAAAAKDQBN0AAAAAAAAAAAAotEZ1XUARlJeX5913383yyy+fsrKyui4HAAAAgIIolUr5+OOP06lTpzRo4HdGv0lPDQAAAID5WVI9NUG3JO+++246d+5c12UAAAAAUFCTJ0/OyiuvXNdlFIqeGgAAAAALU9s9NUG3JMsvv3ySr9/cFi1a1HE1AAAAABTFrFmz0rlz54r+Ef9HTw0AAACA+VlSPTVBt6Ria4UWLVpoygEAAABQha05q9JTAwAAAGBharunVnuboAIAAAAAAAAAAMASIOgGAAAAAAAAAABAoQm6AQAAAAAAAAAAUGiCbgAAAAAAAAAAABSaoBsAAAAAAAAAAACFJugGAAAAAAAAAABAoQm6AQAAAAAAAAAAUGh1GnR75JFHsuuuu6ZTp04pKyvL7bffXul8qVTKWWedlY4dO2bZZZdNnz598tprr1UaM23atOy///5p0aJFWrVqlUMOOSSffPLJd3gXAAAAAPDd0VMDAAAA4PuoToNun376adZff/1cfvnl8z0/dOjQDB8+PFdddVXGjx+fZs2apW/fvvniiy8qxuy///554YUX8sADD+Suu+7KI488ksMPP/y7ugUAAAAA+E7pqQEAAADwfVRWKpVKdV1EkpSVleWvf/1r9thjjyRf/+Zpp06dctJJJ+Xkk09OksycOTPt27fPyJEjs+++++all15Kjx49MmHChGyyySZJkvvuuy8777xz/vOf/6RTp06L9NqzZs1Ky5YtM3PmzLRo0WKJ3B8AAAAAS5+i94301AAAAAAomiXVN6rTFd0WZtKkSZkyZUr69OlTcaxly5bZbLPNMm7cuCTJuHHj0qpVq4qGXJL06dMnDRo0yPjx4xc49+zZszNr1qxKDwAAAABY2umpAQAAAFBfFTboNmXKlCRJ+/btKx1v3759xbkpU6akXbt2lc43atQorVu3rhgzPxdeeGFatmxZ8ejcuXMtVw8AAAAA3z09NQAAAADqq8IG3Zak0047LTNnzqx4TJ48ua5LAgAAAIBC01MDAAAAoC4VNujWoUOHJMnUqVMrHZ86dWrFuQ4dOuT999+vdP6rr77KtGnTKsbMT5MmTdKiRYtKDwAAAABY2umpAQAAAFBfFTbo1q1bt3To0CEPPfRQxbFZs2Zl/Pjx2WKLLZIkW2yxRWbMmJGJEydWjPn73/+e8vLybLbZZt95zQAAAABQl/TUAAAAAKivGtXli3/yySf597//XfF80qRJefrpp9O6deusssoqOf7443P++ednjTXWSLdu3XLmmWemU6dO2WOPPZIka621VnbcccccdthhueqqqzJnzpwMGjQo++67bzp16lRHdwUAVfUfPLquS6iR0UP713UJALBIlua/c/19CywqPTUAvi+W5n/fJ/6NDwAAta1Og25PPPFEttlmm4rnJ554YpJkwIABGTlyZAYPHpxPP/00hx9+eGbMmJFevXrlvvvuS9OmTSuuuemmmzJo0KBst912adCgQfr165fhw4d/5/cCAAAAAN8FPTUAAAAAvo/KSqVSqa6LqGuzZs1Ky5YtM3PmzLRo0aKuywGgHvLbpwDw3Via/8719y0Uk77RgnlvAFjSluZ/3yf+jQ8AwPfXkuob1emKbgAAAAAAACy6pTn8JfgFAMXk3xfA0qJBXRcAAAAAAAAAAAAACyPoBgAAAAAAAAAAQKEJugEAAAAAAAAAAFBojeq6AAC+v/oPHl3XJSy20UP713UJALBIlua/bxN/5wIAAAAAAF+zohsAAAAAAAAAAACFJugGAAAAAAAAAABAodm6FACodUvzNnnV3SJvab7XxJaAAAAAAAAAwNLBim4AAAAAAAAAAAAUmqAbAAAAAAAAAAAAhSboBgAAAAAAAAAAQKE1qusCABam/+DRdV1CjYwe2r+uSwAAAAAAAACqwf+PEqCYrOgGAAAAAAAAAABAoQm6AQAAAAAAAAAAUGi2LgUoEMsgAwAAAAB8Py3N/WG9YQAAvgtWdAMAAAAAAAAAAKDQBN0AAAAAAAAAAAAoNEE3AAAAAAAAAAAACk3QDQAAAAAAAAAAgEITdAMAAAAAAAAAAKDQBN0AAAAAAAAAAAAoNEE3AAAAAAAAAAAACq1RXRcAAADUvf6DR9d1CTUyemj/ui4BAAAAWET6EAAALA4rugEAAAAAAAAAAFBogm4AAAAAAAAAAAAUmq1LAQAAAACApZYtEAEAAL4frOgGAAAAAAAAAABAoQm6AQAAAAAAAAAAUGiCbgAAAAAAAAAAABRao7ouAAAAiqj/4NF1XUKNjB7av65LAAAA6oj/PQMAAEB9ZEU3AAAAAAAAAAAACk3QDQAAAAAAAAAAgEITdAMAAAAAAAAAAKDQBN0AAAAAAAAAAAAoNEE3AAAAAAAAAAAACk3QDQAAAAAAAAAAgEITdAMAAAAAAAAAAKDQBN0AAAAAAAAAAAAoNEE3AAAAAAAAAAAACk3QDQAAAAAAAAAAgEITdAMAAAAAAAAAAKDQBN0AAAAAAAAAAAAoNEE3AAAAAAAAAAAACk3QDQAAAAAAAAAAgEITdAMAAAAAAAAAAKDQBN0AAAAAAAAAAAAoNEE3AAAAAAAAAAAACk3QDQAAAAAAAAAAgEITdAMAAAAAAAAAAKDQBN0AAAAAAAAAAAAotEZ1XQAAAAAA/6f/4NF1XUKNjB7av65LAAAAAADqISu6AQAAAAAAAAAAUGiCbgAAAAAAAAAAABSaoBsAAAAAAAAAAACFJugGAAAAAAAAAABAoQm6AQAAAAAAAAAAUGiCbgAAAAAAAAAAABSaoBsAAAAAAAAAAACFJugGAAAAAAAAAABAoRU66DZ37tyceeaZ6datW5ZddtmsttpqOe+881IqlSrGlEqlnHXWWenYsWOWXXbZ9OnTJ6+99lodVg0AAAAAdUdPDQAAAID6qNBBt4suuihXXnllLrvssrz00ku56KKLMnTo0Fx66aUVY4YOHZrhw4fnqquuyvjx49OsWbP07ds3X3zxRR1WDgAAAAB1Q08NAAAAgPqoUV0XsDCPP/54dt999/z4xz9OknTt2jV/+tOf8q9//SvJ1795eskll+SMM87I7rvvniS54YYb0r59+9x+++3Zd99966x2AAAAAKgLemoAAAAA1EeFXtHtRz/6UR566KG8+uqrSZJnnnkmjz76aHbaaackyaRJkzJlypT06dOn4pqWLVtms802y7hx4+qkZgAAAACoS3pqAAAAANRHhV7R7dRTT82sWbPSvXv3NGzYMHPnzs0FF1yQ/fffP0kyZcqUJEn79u0rXde+ffuKc/Mze/bszJ49u+L5rFmzlkD1AAAAAPDd01MDAAAAoD4q9Ipuf/nLX3LTTTdl1KhRefLJJ3P99ddn2LBhuf7662s074UXXpiWLVtWPDp37lxLFQMAAABA3dJTAwAAAKA+KnTQ7ZRTTsmpp56afffdN+uuu24OPPDAnHDCCbnwwguTJB06dEiSTJ06tdJ1U6dOrTg3P6eddlpmzpxZ8Zg8efKSuwkAAAAA+A7pqQEAAABQHxU66PbZZ5+lQYPKJTZs2DDl5eVJkm7duqVDhw556KGHKs7PmjUr48ePzxZbbLHAeZs0aZIWLVpUegAAAABAfaCnBgAAAEB91KiuC1iYXXfdNRdccEFWWWWVrL322nnqqafy29/+NgcffHCSpKysLMcff3zOP//8rLHGGunWrVvOPPPMdOrUKXvssUfdFg8AAAAAdUBPDQAAAPi+6T94dF2XUCOjh/av6xKWCoUOul166aU588wzc/TRR+f9999Pp06dcsQRR+Sss86qGDN48OB8+umnOfzwwzNjxoz06tUr9913X5o2bVqHlQMAAABA3dBTAwAAAKA+KnTQbfnll88ll1ySSy65ZIFjysrKcu655+bcc8/97goDAAAAgILSUwMAAACgPmpQ1wUAAAAAAAAAAADAwgi6AQAAAAAAAAAAUGiCbgAAAAAAAAAAABSaoBsAAAAAAAAAAACF1qiuCwAAAAAAAABg6dd/8Oi6LqFGRg/tX9clAAALYUU3AAAAAAAAAAAACk3QDQAAAAAAAAAAgEITdAMAAAAAAAAAAKDQGtV1ASw5/QePrusSFtvoof3rugQAAAAAAAAAAKAgrOgGAAAAAAAAAABAoQm6AQAAAAAAAAAAUGiCbgAAAAAAAAAAABSaoBsAAAAAAAAAAACFJugGAAAAAAAAAABAoQm6AQAAAAAAAAAAUGiN6roAqA39B4+u6xJqZPTQ/nVdAgAAAAAAAAAAFJYV3QAAAAAAAAAAACg0QTcAAAAAAAAAAAAKTdANAAAAAAAAAACAQhN0AwAAAAAAAAAAoNAE3QAAAAAAAAAAACg0QTcAAAAAAAAAAAAKTdANAAAAAAAAAACAQhN0AwAAAAAAAAAAoNAE3QAAAAAAAAAAACg0QTcAAAAAAAAAAAAKTdANAAAAAAAAAACAQhN0AwAAAAAAAAAAoNAE3QAAAAAAAAAAACg0QTcAAAAAAAAAAAAKTdANAAAAAAAAAACAQhN0AwAAAAAAAAAAoNAE3QAAAAAAAAAAACg0QTcAAAAAAAAAAAAKTdANAAAAAAAAAACAQhN0AwAAAAAAAAAAoNAE3QAAAAAAAAAAACg0QTcAAAAAAAAAAAAKTdANAAAAAAAAAACAQhN0AwAAAAAAAAAAoNAa1XUBAAAAQPX1Hzy6rkuokdFD+9d1CQDfe/4uAQCoGf+eAoDvlhXdAAAAAAAAAAAAKDRBNwAAAAAAAAAAAApN0A0AAAAAAAAAAIBCE3QDAAAAAAAAAACg0ATdAAAAAAAAAAAAKDRBNwAAAAAAAAAAAAqtUV0XAAAAAABQFP0Hj67rEhbb6KH967oEAAAAgCXGim4AAAAAAAAAAAAUmqAbAAAAAAAAAAAAhSboBgAAAAAAAAAAQKEJugEAAAAAAAAAAFBogm4AAAAAAAAAAAAU2mIF3WbMmJHf//73Oe200zJt2rQkyZNPPpl33nmnVosDAAAAgPpCTw0AAAAAFl+j6l7w7LPPpk+fPmnZsmXefPPNHHbYYWndunVuu+22vP3227nhhhuWRJ0AAAAAsNTSUwMAAACAmqn2im4nnnhiBg4cmNdeey1NmzatOL7zzjvnkUceqdXiAAAAAKA+0FMDAAAAgJqpdtBtwoQJOeKII6ocX2mllTJlypRaKQoAAAAA6hM9NQAAAAComWpvXdqkSZPMmjWryvFXX301bdu2rZWigIXrP3h0XZew2EYP7V/XJQAAAMB3Tk8NAAAAAGqm2iu67bbbbjn33HMzZ86cJElZWVnefvvt/OIXv0i/fv1qvUAAAAAAWNrpqQEAAABAzVQ76Pab3/wmn3zySdq1a5fPP/88W2+9dVZfffUsv/zyueCCC5ZEjQAAAACwVNNTAwAAAICaqXbQrWXLlnnggQdy1113Zfjw4Rk0aFDuueeejB07Ns2aNav1At95550ccMABadOmTZZddtmsu+66eeKJJyrOl0qlnHXWWenYsWOWXXbZ9OnTJ6+99lqt1wEAAAAAi0tPDQAAAABqplF1Bs+ZMyfLLrtsnn766fTs2TM9e/ZcUnUlSaZPn56ePXtmm222yb333pu2bdvmtddeyworrFAxZujQoRk+fHiuv/76dOvWLWeeeWb69u2bF198MU2bNl2i9QEAAADAt9FTAwAAAICaq1bQrXHjxllllVUyd+7cJVVPJRdddFE6d+6cESNGVBzr1q1bxX+XSqVccsklOeOMM7L77rsnSW644Ya0b98+t99+e/bdd9/vpE4AAAAAWBA9NQAAAACouWpvXfrLX/4yp59+eqZNm7Yk6qnkzjvvzCabbJKf/OQnadeuXTbccMNce+21FecnTZqUKVOmpE+fPhXHWrZsmc022yzjxo1b4LyzZ8/OrFmzKj0AAAAAYEnRUwMAAACAmqnWim5Jctlll+Xf//53OnXqlC5duqRZs2aVzj/55JO1Vtwbb7yRK6+8MieeeGJOP/30TJgwIT//+c+zzDLLZMCAAZkyZUqSpH379pWua9++fcW5+bnwwgtzzjnn1FqdAAAAALAwemoAAAAAUDPVDrrtscceS6CM+SsvL88mm2ySX/3qV0mSDTfcMM8//3yuuuqqDBgwYLHnPe2003LiiSdWPJ81a1Y6d+5c43oBAAAAYH701AAAAACgZqoddDv77LOXRB3z1bFjx/To0aPSsbXWWiu33nprkqRDhw5JkqlTp6Zjx44VY6ZOnZoNNthggfM2adIkTZo0qf2CAQAAAGA+9NQAAAAAoGaqHXSbZ+LEiXnppZeSJGuvvXY23HDDWitqnp49e+aVV16pdOzVV19Nly5dkiTdunVLhw4d8tBDD1U04WbNmpXx48fnqKOOqvV6AAAAAKAm9NQAAAAAYPFUO+j2/vvvZ999982YMWPSqlWrJMmMGTOyzTbb5M9//nPatm1ba8WdcMIJ+dGPfpRf/epX2WefffKvf/0r11xzTa655pokSVlZWY4//vicf/75WWONNdKtW7eceeaZ6dSp03e6HQQAAAAALIyeGgAAAADUTIPqXnDsscfm448/zgsvvJBp06Zl2rRpef755zNr1qz8/Oc/r9XiNt100/z1r3/Nn/70p6yzzjo577zzcskll2T//fevGDN48OAce+yxOfzww7Ppppvmk08+yX333ZemTZvWai0AAAAAsLj01AAAAACgZqq9ott9992XBx98MGuttVbFsR49euTyyy/PDjvsUKvFJckuu+ySXXbZZYHny8rKcu655+bcc8+t9dcGAAAAgNqgpwYAAAAANVPtFd3Ky8vTuHHjKscbN26c8vLyWikKAAAAAOoTPTUAAAAAqJlqB9223XbbHHfccXn33Xcrjr3zzjs54YQTst1229VqcQAAAABQH+ipAQAAAEDNVDvodtlll2XWrFnp2rVrVltttay22mrp1q1bZs2alUsvvXRJ1AgAAAAASzU9NQAAAAComUbVvaBz58558skn8+CDD+bll19Okqy11lrp06dPrRcHAAAAAPWBnhoAAAAA1Ey1g25JUlZWlu233z7bb799bdcDAAAAAPWSnhoAAAAALL5qb13685//PMOHD69y/LLLLsvxxx9fGzUBAAAAQL2ipwYAAAAANVPtoNutt96anj17Vjn+ox/9KLfcckutFAUAAAAA9YmeGgAAAADUTLWDbh999FFatmxZ5XiLFi3y4Ycf1kpRAAAAAFCf6KkBAAAAQM1UO+i2+uqr57777qty/N57782qq65aK0UBAAAAQH2ipwYAAAAANdOouheceOKJGTRoUD744INsu+22SZKHHnoov/nNb3LJJZfUdn0AAAAAsNTTUwMAAACAmql20O3ggw/O7Nmzc8EFF+S8885LknTt2jVXXnllfvazn9V6gQAAAACwtNNTAwAAAICaqXbQLUmOOuqoHHXUUfnggw+y7LLLpnnz5rVdFwAAAADUK3pqAAAAULf6Dx5d1yXUyOih/eu6BKhTDWpycdu2bTNx4sTce++9mT59em3VBAAAAAD1lp4aAAAAAFTfIq/odtFFF+WTTz6p2FqhVCplp512yv33358kadeuXR566KGsvfbaS6ZSAAAAAFjK6KkBAAAAQO1Y5BXdRo8enXXWWafi+S233JJHHnkk//jHP/Lhhx9mk002yTnnnLNEigQAAACApZGeGgAAAADUjkUOuk2aNCnrrbdexfN77rkne++9d3r27JnWrVvnjDPOyLhx45ZIkQAAAACwNNJTAwAAAIDaschBt6+++ipNmjSpeD5u3Lj86Ec/qnjeqVOnfPjhh7VbHQAAAAAsxfTUAAAAAKB2LHLQbbXVVssjjzySJHn77bfz6quvZquttqo4/5///Cdt2rSp/QoBAAAAYCmlpwYAAAAAtaPRog485phjMmjQoPzjH//IP//5z2yxxRbp0aNHxfm///3v2XDDDZdIkQAAAACwNNJTAwAAAIDaschBt8MOOywNGzbM3/72t2y11VY5++yzK51/9913c/DBB9d6gQAAAACwtNJTAwAAAIDaschBtyQ5+OCDF9h4u+KKK2qlIAAAAACoT/TUAAAAAKDmGtR1AQAAAAAAAAAAALAw1VrRDQAAAAAAAAAAKL7+g0fXdQmLbfTQ/nVdAgVkRTcAAAAAAAAAAAAKTdANAAAAAAAAAACAQqv21qUjRoxI//79s9xyyy2JegAAAACg3tFTAwD4/rJtHABA7aj2im6nnnpqOnTokEMOOSSPP/74kqgJAAAAAOoVPTUAAAAAqJlqB93eeeedXH/99fnwww/Tu3fvdO/ePRdddFGmTJmyJOoDAAAAgKWenhoAAAAA1Ey1g26NGjXKnnvumTvuuCOTJ0/OYYcdlptuuimrrLJKdtttt9xxxx0pLy9fErUCAAAAwFJJTw0AAAAAaqbaQbdvat++fXr16pUtttgiDRo0yHPPPZcBAwZktdVWy5gxY2qpRAAAAACoP/TUAAAAAKD6FivoNnXq1AwbNixrr712evfunVmzZuWuu+7KpEmT8s4772SfffbJgAEDartWAAAAAFhq6akBAAAAwOKrdtBt1113TefOnTNy5Mgcdthheeedd/KnP/0pffr0SZI0a9YsJ510UiZPnlzrxQIAAADA0khPDQAAAABqplF1L2jXrl3Gjh2bLbbYYoFj2rZtm0mTJtWoMAAAAIB5+g8eXdclLLbRQ/vXdQkUgJ4aAAAAANRMtVd0O/vss7PRRhtVOV5eXp633347SVJWVpYuXbrUvDoAAAAAqAf01AAAAACgZqoddOvWrVs22mijvP7665WOf/DBB+nWrVutFQYAAAAA9YWeGgAAAADUTLWDbqVSKWuttVZ++MMf5qGHHqpyDgAAAACoTE8NAAAAAGqm2kG3srKyXHHFFTnjjDPy4x//OMOHD690DgAAAACoTE8NAAAAAGqmUXUvmPcbpieccEK6d++en/70p3nuuedy1lln1XpxAAAAAFAf6KkBAAAAQM1UO+j2TTvttFMef/zx7LbbbvnXv/5VWzUBAAAAQL2lpwYAAAAA1VftrUu33nrrLLPMMhXPe/TokfHjx6dVq1YVv5kKAAAAAPwfPTUAAAAAqJlqr+j28MMPVznWpk2bjB07tlYKAgAAAID6Rk8NAAAAAGqm2iu6bbvttjnnnHOqHJ8+fXq23XbbWikKAAAAAOoTPTUAAAAAqJlqr+g2ZsyYPPfcc3nqqady0003pVmzZkmSL7/80m+gAgAAAMB86KkBAAAAQM1Ue0W3JHnwwQczZcqUbL755nnzzTdruSQAAAAAqH/01AAAAABg8S1W0K1jx44ZO3Zs1l133Wy66aYZM2ZMLZcFAAAAAPWLnhoAAAAALL5qB93KysqSJE2aNMmoUaNy3HHHZccdd8wVV1xR68UBAAAAQH2gpwYAAAAANdOouheUSqVKz88444ystdZaGTBgQK0VBQAAAAD1iZ4aAAAAANRMtYNukyZNyoorrljpWL9+/bLmmmtm4sSJtVYYAAAAANQXemoAAAAAUDPVDrp16dJlvsfXWWedrLPOOjUuCAAAAADqGz01AAAAAKiZagfdttlmm5SVlS3w/N///vcaFQQAAAAA9Y2eGgAAAADUTLWDbhtssEGl53PmzMnTTz+d559/PgMGDKitugAAKKD+g0fXdQmLbfTQ/nVdAgDwPaanBgAAAAA1U+2g28UXXzzf40OGDMknn3xS44IAAAAAoL7RUwMAAACAmmlQWxMdcMABue6662prOgAAAACo9/TUAAAAAGDR1FrQbdy4cWnatGltTQcAAAAA9Z6eGgAAAAAsmmpvXbrXXntVel4qlfLee+/liSeeyJlnnllrhQEAAABAfaGnBgAAAAA1U+2gW8uWLSs9b9CgQdZcc82ce+652WGHHWqtMAAAAACoL/TUAAAAAKBmFjno9sYbb6Rbt24ZMWLEkqwHAAAAAOoNPTUAAAAAqB0NFnXgGmuskQ8++KDief/+/TN16tQlUhQAAAAA1Ad6agAAAABQOxY56FYqlSo9v+eee/Lpp5/WekEAAAAAUF/oqQEAAABA7VjkoBsAAAAAAAAAAADUhUUOupWVlaWsrKzKse/S//zP/6SsrCzHH398xbEvvvgixxxzTNq0aZPmzZunX79+tn8AAAAAoBD01AAAAACgdjRa1IGlUikDBw5MkyZNknzdDDvyyCPTrFmzSuNuu+222q3w/5swYUKuvvrqrLfeepWOn3DCCbn77rtz8803p2XLlhk0aFD22muvPPbYY0ukDgAAAABYVHpqAAAAAFA7FjnoNmDAgErPDzjggFovZkE++eST7L///rn22mtz/vnnVxyfOXNm/vCHP2TUqFHZdtttkyQjRozIWmutlX/+85/ZfPPNv7MaAQAAAOC/6akBAAAAQO1Y5KDbiBEjlmQdC3XMMcfkxz/+cfr06VOpKTdx4sTMmTMnffr0qTjWvXv3rLLKKhk3btwCm3KzZ8/O7NmzK57PmjVryRUPAAAAwPeWnhoAAAAA1I5FDrrVlT//+c958sknM2HChCrnpkyZkmWWWSatWrWqdLx9+/aZMmXKAue88MILc84559R2qQAAAABQCHpqAAAAANQ3Deq6gIWZPHlyjjvuuNx0001p2rRprc172mmnZebMmRWPyZMn19rcAAAAAFCX9NQAAAAAqI8KHXSbOHFi3n///Wy00UZp1KhRGjVqlLFjx2b48OFp1KhR2rdvny+//DIzZsyodN3UqVPToUOHBc7bpEmTtGjRotIDAAAAAOoDPTUAAAAA6qNCb1263Xbb5bnnnqt07KCDDkr37t3zi1/8Ip07d07jxo3z0EMPpV+/fkmSV155JW+//Xa22GKLuigZAAAAAOqUnhoAAAAA9VGhg27LL7981llnnUrHmjVrljZt2lQcP+SQQ3LiiSemdevWadGiRY499thsscUW2XzzzeuiZAAAAACoU3pqAAAAANRHhQ66LYqLL744DRo0SL9+/TJ79uz07ds3V1xxRV2XBQAAAACFpacGAAAAwNJmqQu6jRkzptLzpk2b5vLLL8/ll19eNwUBAAAAQMHpqQEAAACwtGtQ1wUAAAAAAAAAAADAwgi6AQAAAAAAAAAAUGiCbgAAAAAAAAAAABSaoBsAAAAAAAAAAACFJugGAAAAAAAAAABAoQm6AQAAAAAAAAAAUGiCbgAAAAAAAAAAABSaoBsAAAAAAAAAAACFJugGAAAAAAAAAABAoQm6AQAAAAAAAAAAUGiCbgAAAAAAAAAAABSaoBsAAAAAAAAAAACFJugGAAAAAAAAAABAoQm6AQAAAAAAAAAAUGiCbgAAAAAAAAAAABSaoBsAAAAAAAAAAACFJugGAAAAAAAAAABAoQm6AQAAAAAAAAAAUGiCbgAAAAAAAAAAABSaoBsAAAAAAAAAAACFJugGAAAAAAAAAABAoQm6AQAAAAAAAAAAUGiCbgAAAAAAAAAAABSaoBsAAAAAAAAAAACFJugGAAAAAAAAAABAoQm6AQAAAAAAAAAAUGiCbgAAAAAAAAAAABSaoBsAAAAAAAAAAACFJugGAAAAAAAAAABAoQm6AQAAAAAAAAAAUGiCbgAAAAAAAAAAABSaoBsAAAAAAAAAAACFJugGAAAAAAAAAABAoQm6AQAAAAAAAAAAUGiCbgAAAAAAAAAAABRao7ouAAAA4LvUf/Doui6hRkYP7V/XJQAAAADwPaOnBkARWNENAAAAAAAAAACAQhN0AwAAAAAAAAAAoNAE3QAAAAAAAAAAACg0QTcAAAAAAAAAAAAKTdANAAAAAAAAAACAQhN0AwAAAAAAAAAAoNAE3QAAAAAAAAAAACg0QTcAAAAAAAAAAAAKTdANAAAAAAAAAACAQhN0AwAAAAAAAAAAoNAE3QAAAAAAAAAAACg0QTcAAAAAAAAAAAAKTdANAAAAAAAAAACAQhN0AwAAAAAAAAAAoNAE3QAAAAAAAAAAACg0QTcAAAAAAAAAAAAKTdANAAAAAAAAAACAQmtU1wUAAAAAAMCS1n/w6LouYbGNHtq/rksAAACAOmdFNwAAAAAAAAAAAApN0A0AAAAAAAAAAIBCE3QDAAAAAAAAAACg0ATdAAAAAAAAAAAAKDRBNwAAAAAAAAAAAAqt0EG3Cy+8MJtuummWX375tGvXLnvssUdeeeWVSmO++OKLHHPMMWnTpk2aN2+efv36ZerUqXVUMQAAAADULT01AAAAAOqjQgfdxo4dm2OOOSb//Oc/88ADD2TOnDnZYYcd8umnn1aMOeGEE/K3v/0tN998c8aOHZt33303e+21Vx1WDQAAAAB1R08NAAAAgPqoUV0XsDD33XdfpecjR45Mu3btMnHixGy11VaZOXNm/vCHP2TUqFHZdtttkyQjRozIWmutlX/+85/ZfPPN66JsAAAAAKgzemoAAAAA1EeFXtHtv82cOTNJ0rp16yTJxIkTM2fOnPTp06diTPfu3bPKKqtk3LhxdVIjAAAAABSJnhoAAAAA9UGhV3T7pvLy8hx//PHp2bNn1llnnSTJlClTsswyy6RVq1aVxrZv3z5TpkxZ4FyzZ8/O7NmzK57PmjVridQMAAAAAHVJTw0AAACA+mKpWdHtmGOOyfPPP58///nPNZ7rwgsvTMuWLSsenTt3roUKAQAAAKBY9NQAAAAAqC+WiqDboEGDctddd+Xhhx/OyiuvXHG8Q4cO+fLLLzNjxoxK46dOnZoOHToscL7TTjstM2fOrHhMnjx5SZUOAAAAAHVCTw0AAACA+qTQQbdSqZRBgwblr3/9a/7+97+nW7dulc5vvPHGady4cR566KGKY6+88krefvvtbLHFFguct0mTJmnRokWlBwAAAADUB3pqAAAAANRHjeq6gIU55phjMmrUqNxxxx1ZfvnlM2XKlCRJy5Yts+yyy6Zly5Y55JBDcuKJJ6Z169Zp0aJFjj322GyxxRbZfPPN67h6AAAAAPju6akBAAAAUB8VOuh25ZVXJkl69+5d6fiIESMycODAJMnFF1+cBg0apF+/fpk9e3b69u2bK6644juuFAAAAACKQU8NAAAAgPqo0EG3Uqn0rWOaNm2ayy+/PJdffvl3UBEAAAAAFJueGgAAAAD1UYO6LgAAAAAAAAAAAAAWRtANAAAAAAAAAACAQhN0AwAAAAAAAAAAoNAE3QAAAAAAAAAAACg0QTcAAAAAAAAAAAAKTdANAAAAAAAAAACAQhN0AwAAAAAAAAAAoNAE3QAAAAAAAAAAACg0QTcAAAAAAAAAAAAKTdANAAAAAAAAAACAQhN0AwAAAAAAAAAAoNAE3QAAAAAAAAAAACg0QTcAAAAAAAAAAAAKTdANAAAAAAAAAACAQhN0AwAAAAAAAAAAoNAE3QAAAAAAAAAAACg0QTcAAAAAAAAAAAAKTdANAAAAAAAAAACAQhN0AwAAAAAAAAAAoNAE3QAAAAAAAAAAACg0QTcAAAAAAAAAAAAKTdANAAAAAAAAAACAQhN0AwAAAAAAAAAAoNAE3QAAAAAAAAAAACg0QTcAAAAAAAAAAAAKTdANAAAAAAAAAACAQhN0AwAAAAAAAAAAoNAE3QAAAAAAAAAAACg0QTcAAAAAAAAAAAAKTdANAAAAAAAAAACAQhN0AwAAAAAAAAAAoNAE3QAAAAAAAAAAACg0QTcAAAAAAAAAAAAKTdANAAAAAAAAAACAQhN0AwAAAAAAAAAAoNAE3QAAAAAAAAAAACg0QTcAAAAAAAAAAAAKTdANAAAAAAAAAACAQhN0AwAAAAAAAAAAoNAE3QAAAAAAAAAAACg0QTcAAAAAAAAAAAAKTdANAAAAAAAAAACAQhN0AwAAAAAAAAAAoNAE3QAAAAAAAAAAACg0QTcAAAAAAAAAAAAKTdANAAAAAAAAAACAQhN0AwAAAAAAAAAAoNAE3QAAAAAAAAAAACg0QTcAAAAAAAAA/h979x1mRXn+D/izgNKLWCiGZsdeY7ChiKJRIppELInYu4hG8WsiqKhBjQV7S4IlqCRqjLErBjVqFGusgIolUbACYkGF+f3hzxNX2i4s7IG97+va62Jm3pl53jlzZuY8PDMDAFDWFLoBAAAAAAAAAABQ1hS6AQAAAAAAAAAAUNYUugEAAAAAAAAAAFDWFLoBAAAAAAAAAABQ1hS6AQAAAAAAAAAAUNYUugEAAAAAAAAAAFDWFLoBAAAAAAAAAABQ1hS6AQAAAAAAAAAAUNYUugEAAAAAAAAAAFDWFLoBAAAAAAAAAABQ1hS6AQAAAAAAAAAAUNaWmEK3Sy65JJ07d06jRo2y6aab5oknnqjtkAAAAACgrMmpAQAAALC4WCIK3UaOHJljjz02J598cp5++umst9566dWrV957773aDg0AAAAAypKcGgAAAACLkyWi0O28887LQQcdlP322y9rrrlmLr/88jRp0iR//OMfazs0AAAAAChLcmoAAAAALE4a1HYAC+rLL7/MU089lRNPPLE0rl69eunZs2cee+yx2c4zffr0TJ8+vTQ8ZcqUJMnUqVMXbrCL2FfTP6vtEOZbdT+LxbmvSd3qb13qa6K/87I497cu9TWpW/2tS31N6lZ/61JfE/2dm7rU10R/Fyd1qa9J3epvXeprsuTlV77tT1EUtRxJzZJTm7PF+TvoeDN3i3N/61JfE/2dl8W5v3Wpr0nd6m9d6mtSt/pbl/qa6O/c1KW+Jvq7OKlLfU3qVn/rUl+TJS+/srByahXFYp6le+edd7Liiivm0UcfTbdu3UrjBw4cmAcffDCPP/74LPOccsopOfXUUxdlmAAAAAAsxt5+++384Ac/qO0waoycGgAAAAALW03n1Bb7J7rNjxNPPDHHHntsaXjmzJn56KOPsuyyy6aioqIWI1s8TJ06NR06dMjbb7+dFi1a1HY4C53+LrnqUl+TutXfutTXpG71ty71NdHfJVld6mtSt/pbl/qa1K3+1qW+Jvq7JKtLfa0pRVHkk08+Sfv27Ws7lFonp7Zg6tr3T3+XXHWpr0nd6m9d6mtSt/pbl/qa6O+SrC71Nalb/a1LfU3qVn/rUl8T/V2S1aW+1pSFlVNb7AvdlltuudSvXz+TJk2qNH7SpElp27btbOdp2LBhGjZsWGlcq1atFlaIS6wWLVrUqS+w/i656lJfk7rV37rU16Ru9bcu9TXR3yVZXeprUrf6W5f6mtSt/talvib6uySrS32tCS1btqztEGqcnFrtqWvfP/1dctWlviZ1q791qa9J3epvXepror9LsrrU16Ru9bcu9TWpW/2tS31N9HdJVpf6WhMWRk6tXo0vcRFbeumls9FGG2XUqFGlcTNnzsyoUaMqvXYBAAAAAPiGnBoAAAAAi5vF/oluSXLsscemX79+2XjjjfPDH/4ww4YNy6effpr99tuvtkMDAAAAgLIkpwYAAADA4mSJKHTr27dv3n///QwePDgTJ07M+uuvn7vvvjtt2rSp7dCWSA0bNszJJ588y6sqllT6u+SqS31N6lZ/61Jfk7rV37rU10R/l2R1qa9J3epvXeprUrf6W5f6mujvkqwu9ZV5k1NbtOra909/l1x1qa9J3epvXeprUrf6W5f6mujvkqwu9TWpW/2tS31N6lZ/61JfE/1dktWlvpa7iqIoitoOAgAAAAAAAAAAAOakXm0HAAAAAAAAAAAAAHOj0A0AAAAAAAAAAICyptANAAAAAAAAAACAsqbQjQW29dZbZ8CAAXNt07lz5wwbNqxWYygHb7zxRioqKvLss88mSUaPHp2KiopMnjy5xpc9O1dffXVatWq1wOtakszrM/n+NjvllFOy/vrrL/I4Z2dR7PcVFRW59dZbF+o6FrZ99903ffr0KQ1XZ7strG1cFEUOPvjgtG7dep7f24XJMWHJtDA/1wX9TpTTMbQmzGt71MQxdGGch75/XKzLFpdryEWlJrZHXd+m1TkGl8N5uKZ+jyzs33u1YWGfs5a0cyIwf+TUqk5OrfzIqc2dnJqcGosfObVFR05t8be4XEMuKnJqC05Obckhp8ai0KC2A6BuGDNmTJo2bVrbYZSdzTbbLO+++25atmy5SNbXt2/f/PjHP14k61pcdOjQIe+++26WW265KrU/7rjjctRRRy3kqGreG2+8kS5duuSZZ56p8yf/W265JUsttVStxnD33Xfn6quvzujRo7PSSitVef8DFi/vvvtulllmmRpdZk2chy644IIURVFDEVFXjR49Ottss00+/vjjSomlcjjP1qZyv97eeuuts/7669d4As3vveqr7vHc9TzUXY6xsyenVvvk1OqecrjWl1ODukFOjSWZnNrslfv1tpxa+ZBTI1Hoxlx89dVXNXZCXX755WtkOUuapZdeOm3btl1k62vcuHEaN268yNZX7r788stqfwbNmjVLs2bNFmJULGytW7eu7RDy2muvpV27dtlss81mO/3bfZNkxowZqaioSL16S/5DaH3us7c4b5eFcY6vifPQovrPwLpmcd5Xa1I5nGdrU1293l6cf+/V5O/e6vC7ApZscmoLn5xa7ZJTq5vK4VpfTq3q5NRYnLeLnFrdsjjvqzWpHM6ztamuXm8vzr/35NSoTUv+FS4ld999d7bYYou0atUqyy67bHbeeee89tprSf73qPmRI0eme/fuadSoUUaMGJEPP/wwe+65Z1ZcccU0adIk66yzTm644YZZlv3111/nyCOPTMuWLbPccstl0KBBle5q+P5jNydPnpxDDjkkbdq0SaNGjbL22mvn9ttvX6D+zS2G6dOn57jjjsuKK66Ypk2bZtNNN83o0aNL8377iNN77rknXbt2TbNmzbLDDjvk3XffrbT8/v37l7bfCSeckH79+lV6TPHctvHszM9jTWfOnJmzzz47q6yySho2bJiOHTvmjDPOKE1//fXXs80226RJkyZZb7318thjj83Sz299+2jP6667Lp07d07Lli2zxx575JNPPqm0vqFDh6ZLly5p3Lhx1ltvvdx0002l6R9//HH23nvvLL/88mncuHFWXXXVDB8+vDT97bffzu67755WrVqldevW2WWXXfLGG29Uub9V7X+PHj1y5JFHVmr7/vvvZ+mll86oUaOSfLMfnnbaadlnn33SokWLHHzwwVV6PcV3ze5xqH/84x+z1lprpWHDhmnXrt0scdSETz/9NPvss0+aNWuWdu3a5dxzz600fXaP8m7VqlWuvvrqJEmXLl2SJBtssEEqKiqy9dZbVzn+Dz74ILvuumuaNGmSVVddNbfddluN9Wtu+9e3349Ro0Zl4403TpMmTbLZZptl7NixlZZx+umnZ4UVVkjz5s1z4IEH5v/+7//mWpH//cc/X3rppVl11VXTqFGjtGnTJj/72c9miXHgwIFp3bp12rZtm1NOOWWB+rzvvvvmqKOOyltvvZWKiop07tw5W2+9dY488sgMGDAgyy23XHr16pUkeeGFF7LjjjumWbNmadOmTX75y1/mgw8+qNSX/v37zzW+qhxv53bsq65PPvkke++9d5o2bZp27drl/PPPr7TNq3o8vu2227LmmmumYcOGeeutt9K5c+ecfvrppe9Bp06dctttt+X999/PLrvskmbNmmXdddfNk08+WVpWVc5hVdmGC2tbzO6YlCT//Oc/s+WWW6Zx48bp0KFD+vfvn08//bS03Hltw+97//33s/HGG2fXXXfN9OnTF7hfc/tOTJ48OQceeGCWX375tGjRIj169Mhzzz03yzKuuOKKdOjQIU2aNMnuu++eKVOmlKZ9+wqAM844I+3bt8/qq6+eZO7nkxdeeCH16tXL+++/nyT56KOPUq9eveyxxx6l5Z5++unZYostFrj/1dke3z02f3u+ueWWW+Z4nk6++Q507NgxTZo0ya677poPP/yw0vSafs3CvK5dvo37xhtvzGabbVY6jjz44IOlNjNmzMgBBxxQOpavvvrqueCCC2a7znPOOSft2rXLsssumyOOOCJfffVVqc289u0333wzvXv3zjLLLJOmTZtmrbXWyp133lmaPq9jZlXccccdadmyZUaMGJHnn38+PXr0SOPGjbPsssvm4IMPzrRp02bpU3X21eSbu/S22267LLfccmnZsmW6d++ep59+ulIcFRUV+f3vf7/Qzr9Vcd1112XjjTdO8+bN07Zt2+y111557733knyzX2yzzTZJkmWWWSYVFRXZd999k8x6nu3cuXN++9vfZv/990/z5s3TsWPHXHnllQst7ptuuinrrLNO6XPr2bNnPv3009Lndeqpp5aOUYceemi+/PLL0rxV/T7M7Xv8/evt5557Lttss02aN2+eFi1aZKONNqp0rkpq9jw8N/vuu28efPDBXHDBBamoqEhFRUVp33zqqafmeL312muvZZdddkmbNm3SrFmzbLLJJrn//vsrLbucXrMwu1jWX3/90vG5oqIil112WX7yk5+kadOmpd9SZ555Ztq0aZPmzZvngAMOyBdffFFpGbN7hUifPn1K+/73XXnllWnfvn1mzpxZafwuu+yS/ffff7bH89///vfp2rVrGjVqlDXWWCOXXnppadqcruercnyd2/c5+d919z333JMNNtggjRs3To8ePfLee+/lrrvuSteuXdOiRYvstdde+eyzz0rzldtvRViY5NTk1OTU5NTk1OTU5NTk1BaUnFrVt4ec2qzrlFOTU5NTk1Nb2OTU5NQWKwV1xk033VTcfPPNxfjx44tnnnmm6N27d7HOOusUM2bMKCZMmFAkKTp37lzcfPPNxeuvv1688847xX/+85/id7/7XfHMM88Ur732WnHhhRcW9evXLx5//PHScrt37140a9asOProo4tXXnml+NOf/lQ0adKkuPLKK0ttOnXqVJx//vlFURTFjBkzih/96EfFWmutVdx7773Fa6+9Vvz9738v7rzzzvnu27xiOPDAA4vNNtuseOihh4pXX321+N3vflc0bNiwGDduXFEURTF8+PBiqaWWKnr27FmMGTOmeOqpp4quXbsWe+21V2kdp59+etG6devilltuKV5++eXi0EMPLVq0aFHssssuVdrGRVGUtvMzzzxTFEVR/OMf/yiSFB9//HGV+zpw4MBimWWWKa6++uri1VdfLR5++OHiqquuKi17jTXWKG6//fZi7Nixxc9+9rOiU6dOxVdffVXqZ8uWLUvLOvnkk4tmzZoVu+22W/H8888XDz30UNG2bdvi17/+daV+r7HGGsXdd99dvPbaa8Xw4cOLhg0bFqNHjy6KoiiOOOKIYv311y/GjBlTTJgwobjvvvuK2267rSiKovjyyy+Lrl27Fvvvv3/x73//u3jppZeKvfbaq1h99dWL6dOnV7nPVen/iBEjimWWWab44osvSm3PO++8onPnzsXMmTOLovhmP2zRokVxzjnnFK+++mrx6quvzvMzmd02W2+99UrDl156adGoUaNi2LBhxdixY4snnniitK/XpMMOO6zo2LFjcf/99xf//ve/i5133rlo3rx5cfTRRxdFURRJir/+9a+V5mnZsmUxfPjwoiiK4oknniiSFPfff3/x7rvvFh9++GGV4k9S/OAHPyiuv/76Yvz48UX//v2LZs2aleZfUHPbv779LDbddNNi9OjRxYsvvlhsueWWxWabbVaa/09/+lPRqFGj4o9//GMxduzY4tRTTy1atGhR6TPq169fpe9p9+7dS9ttzJgxRf369Yvrr7++eOONN4qnn366uOCCCyq1bdGiRXHKKacU48aNK6655pqioqKiuPfee+e7z5MnTy6GDBlS/OAHPyjefffd4r333isdw44//vjilVdeKV555ZXi448/LpZffvnixBNPLF5++eXi6aefLrbbbrtim222qXJ88zreVuXYV10HHnhg0alTp+L+++8vnn/++WLXXXettK9W9Xi82WabFY888kjxyiuvFJ9++mnRqVOnonXr1sXll19ejBs3rjjssMOKFi1aFDvssEPx5z//uRg7dmzRp0+fomvXrqXvfFXPYTX9GVd1W8zumPTqq68WTZs2Lc4///xi3LhxxSOPPFJssMEGxb777ltpufPaht8et956661i9dVXL/r161d8/fXXC9yneW2vnj17Fr179y7GjBlTjBs3rvjVr35VLLvssqVjxsknn1w0bdq06NGjR/HMM88UDz74YLHKKqtU2uf69etXNGvWrPjlL39ZvPDCC8ULL7wwz/PJzJkzi+WWW674y1/+UhRFUdx6663FcsstV7Rt27a03J49exa/+c1vFngbVGd7fPfYXJXz9L/+9a+iXr16xVlnnVWMHTu2uOCCC4pWrVrN9Tw0P757XKzqtcsPfvCD4qabbipeeuml4sADDyyaN29efPDBB0VRfHO+Hzx4cDFmzJji9ddfL12HjRw5stI6W7RoURx66KHFyy+/XPz973+f5XpxXvv2TjvtVGy33XbFv//979Lx7MEHHyyKoqjSMXN2vntOGDFiRNG8efPi73//ezFt2rSiXbt2pWukUaNGFV26dCn69etXqU/V3VeLoihGjRpVXHfddcXLL79cvPTSS8UBBxxQtGnTppg6dWpp2Qv7/FuV7fGHP/yhuPPOO4vXXnuteOyxx4pu3boVO+64Y1EURfH1118XN998c5GkGDt2bPHuu+8WkydPnmUZRVGUjt+XXHJJMX78+GLo0KFFvXr1ildeeaXG43/nnXeKBg0aFOedd14xYcKE4t///ndxySWXFJ988knp8+rbt2/xwgsvFLfffnux/PLLV7rurer3oTrX22uttVbxi1/8onj55ZeLcePGFX/+85+LZ599ttS2ps/DczN58uSiW7duxUEHHVS8++67xbvvvlvcf//987zeevbZZ4vLL7+8eP7554tx48YVJ510UtGoUaPizTffLLX57u+92ja7WNZbb73i5JNPLorim+/XCiusUPzxj38sXnvtteLNN98sRo4cWTRs2LD4/e9/X7zyyivFb37zm6J58+aVjrff37eLoih22WWXSseF7/roo4+KpZdeurj//vtL4z788MPSuO8fz//0pz8V7dq1K/0ev/nmm4vWrVsXV199dVEUc76er8rxdW7f56L432+gH/3oR8U///nP4umnny5WWWWVonv37sX2229fPP3008VDDz1ULLvsssWZZ55Zmq/cfivCwiSnJqcmpyanJqcmpyanJqe2IOTUqrc95NTk1OTU5NTk1BY9OTU5tcWJQrc67P333y+SFM8//3zpBDNs2LB5zrfTTjsVv/rVr0rD3bt3r/QjqCiK4oQTTii6du1aGv7ugfGee+4p6tWrV4wdO7bG+jK3GN58882ifv36xX//+99K82y77bbFiSeeWBTFNyfEJMWrr75amn7JJZcUbdq0KQ23adOm+N3vflca/vrrr4uOHTtW+rH/fd/dxkWx4Em5qVOnFg0bNiyuuuqqWaZ9u+zf//73pXEvvvhikaR4+eWXS/38/oV9kyZNKl0EHn/88cWmm25aFEVRfPHFF0WTJk2KRx99tNK6DjjggGLPPfcsiqIoevfuXey3336zjfe6664rVl999Uqfy/Tp04vGjRsX99xzT5X6/F1z6//nn39eLLPMMpV+AKy77rrFKaecUhru1KlT0adPn0rzLWhSrn379jX+I+/7Pvnkk2LppZcu/vznP5fGffjhh0Xjxo2rnJT7fj+/Na/4kxQnnXRSaXjatGlFkuKuu+5aoD4Vxbz3r28/i+9eyNxxxx1FkuLzzz8viqIoNt100+KII46oNP/mm29e5aTczTffXLRo0aLSd+C7unfvXmyxxRaVxm2yySbFCSecUN3uVnL++ecXnTp1qrSeDTbYoFKb0047rdh+++0rjXv77bdLP4CqEt+8jrdVOfZVx9SpU4ulllqqlBgpim9+ADRp0qQ4+uijq3U8/vYHy7c6depU/OIXvygNv/vuu0WSYtCgQaVxjz32WJGkePfdd+cY4+zOYQvjM57Xtvi2T98/Jh1wwAHFwQcfXGncww8/XNSrV6/4/PPPq7wNW7ZsWbzyyitFhw4div79+1c6Di+IuW2vhx9+uGjRokWl/xwpiqJYeeWViyuuuKIoim+OofXr1y/+85//lKbfddddRb169UqfW79+/Yo2bdpUuiCvyvlkt912Kx0PBgwYUBx//PHFMsssU7z88svFl19+WTRp0qRGkq3fNa/9Z3ZJubmdp/fcc8/ixz/+caXl9e3bd6Em5b5vTtcu3/0R9tVXXxU/+MEPirPOOmuO6zjiiCOKn/70p5XW2alTp0rJ4Z///OdF3759i6IoqrRvr7POOpXO699VlWPm7Hx7Trj44ouLli1bln5IXnnllcUyyyxTTJs2rdT2jjvuKOrVq1dMnDix1Kf52Ve/b8aMGaVk4LcW5vl3bmaXdPjWmDFjiiTFJ598UhTFnK9jZ5eU++7xe+bMmcUKK6xQXHbZZTUdfvHUU08VSYo33nhjlmn9+vUrWrduXXz66aelcZdddlnRrFmzUtLt++b0fajO9Xbz5s1LSZXvq+nzcFV8//OpyvXW7Ky11lrFRRddVBpe3JJyAwYMqDS9W7duxeGHH15p3KabbrpASblvp++///6l4SuuuKJo3759MWPGjFmO5yuvvHJx/fXXV5r/tNNOK7p161YUxZyv5+d1fJ2dOX2fv7sfDB06tEhSvPbaa6VxhxxySNGrV6+iKMrvtyIsanJqcmpyanJqcmpyanJqcmrVIadWmZyanJqcmpyanNo35NRmT05NTm1evLq0Dhk/fnz23HPPrLTSSmnRokU6d+6cJHnrrbdKbTbeeONK88yYMSOnnXZa1llnnbRu3TrNmjXLPffcU2meJPnRj36UioqK0nC3bt0yfvz4zJgxY5Y4nn322fzgBz/IaqutVoO9m3MMzz//fGbMmJHVVlut9M7mZs2a5cEHH6z02NQmTZpk5ZVXLg23a9eu9OjJKVOmZNKkSfnhD39Yml6/fv1stNFGlWKoyjZeEC+//HKmT5+ebbfddo5t1l133Up9SFLpEZrf17lz5zRv3rzSPN+2f/XVV/PZZ59lu+22q7Ttrr322tK2O+yww3LjjTdm/fXXz8CBA/Poo4+WlvXcc8/l1VdfTfPmzUvztm7dOl988cVcXz8xP/1v1KhRfvnLX+aPf/xjkuTpp5/OCy+8MMtjT7+/jy+I9957L++8885cP4+a8Nprr+XLL7/MpptuWhrXunXr0uOc51dV4//uPtW0adO0aNFirvtUVVVl//r++r+/T48dO7bS9zLJLMNzs91226VTp05ZaaWV8stf/jIjRoyo9OjY76//2xhqov/f9/3jyXPPPZd//OMflbbNGmuskSRz3D7fj68qx9u5Hfuq6/XXX89XX31V6TNo2bJlaV+t6vF46aWXnqVf3+9rmzZtkiTrrLPOLOO+jb+q57CF8RnPa1t86/vHpOeeey5XX311pe3Tq1evzJw5MxMmTKjyNvz888+z5ZZbZrfddis9TrumzGl7Pffcc5k2bVqWXXbZSrFNmDChUmwdO3bMiiuuWBru1q1bZs6cWemR3uuss06WXnrpSttlXueT7t27lx7J/+CDD6ZHjx7ZaqutMnr06IwZMyZfffVVNt988xrbDvPaHlVp//1j2ssvv1zpWJ98s30Wpqpeu3w3jgYNGmTjjTfOyy+/XBp3ySWXZKONNsryyy+fZs2a5corr5xlGWuttVbq169fGv7utqrKvt2/f/+cfvrp2XzzzXPyySfn3//+d2lZVT1mzs5NN92UY445Jvfdd1+6d++e5JvPYr311kvTpk1L7TbffPMa2VcnTZqUgw46KKuuumpatmyZFi1aZNq0aXM9NtXk+beqnnrqqfTu3TsdO3ZM8+bNS9tmfq5rv9uXioqKtG3bdqH0Zb311su2226bddZZJz//+c9z1VVX5eOPP640vUmTJqXhbt26Zdq0aXn77beTVP37UJ3r7WOPPTYHHnhgevbsmTPPPHOW/bEmz8MLYm59mjZtWo477rh07do1rVq1SrNmzfLyyy/X2G+c2vD98+/COv7uvffeufnmm0uvORoxYkT22GOP1KtXORXz6aef5rXXXssBBxxQ6Th2+umnV+l309yOr0nVv8/fv9Zq0qRJVlpppUrjyvW3IixscmpyarMjpzb/5NQWjJxaZXJqcmqJnNq35NT+R05NTi2RU6sqObX5J6cmp5bIqdWGBrUdAItO796906lTp1x11VWl9xqvvfbald6h/d0LjyT53e9+lwsuuCDDhg3LOuusk6ZNm2bAgAGV5qmuxo0bz/e882PatGmpX79+nnrqqUoHqiRp1qxZ6d9LLbVUpWkVFRUpiqJa66rKNl4QVdl23+3Htz/Cvv8O6zm1/3aeb9tPmzYtSXLHHXdU+gGVJA0bNkyS7LjjjnnzzTdz55135r777su2226bI444Iuecc06mTZuWjTbaKCNGjJhlvcsvv/w8+/J98+r/gQcemPXXXz//+c9/Mnz48PTo0SOdOnWq1Ob7+/iCWNT78tzMbn/97jvEZ6eq8c9tH1kQ89q/vj0ZV3efro7mzZvn6aefzujRo3Pvvfdm8ODBOeWUUzJmzJi0atVqlvV/G0NNrf+7vr9vTps2Lb17985ZZ501S9tvL5bnFV91jxnfzl/dY19VVfV43Lhx49kmkWa3L8xt/6jqOWxRfcazM7vP/ZBDDkn//v1naduxY8f8+9//rtI2bNiwYXr27Jnbb789xx9//CzfsQUxp+01bdq0tGvXrpQY+65vv09VNbvtMq/zydZbb50BAwZk/Pjxeemll7LFFlvklVdeyejRo/Pxxx9n4403rvRjvKZUd/9ZmMe0+VET1y433nhjjjvuuJx77rnp1q1bmjdvnt/97nd5/PHHK7Wb1zXHvPbtAw88ML169codd9yRe++9N0OHDs25556bo446qsrHzNnZYIMN8vTTT+ePf/xjNt5442olsednX+3Xr18+/PDDXHDBBenUqVMaNmyYbt26ldWx6dNPP02vXr3Sq1evjBgxIssvv3zeeuut9OrVa76uaxdVX+rXr5/77rsvjz76aO69995cdNFF+c1vfjPLvjgnVf0+VOd7fMopp2SvvfbKHXfckbvuuisnn3xybrzxxuy6666zLOvb5S2s8/DczK1Pxx13XO67776cc845WWWVVdK4ceP87Gc/q7HfODWtXr1687wunp/fBFVZ7vf17t07RVHkjjvuyCabbJKHH344559//iztvr0uvuqqq2ZJDn7/mDg7c/uOVef7/P39YHH6rQgLm5yanNq82n87T7keJ+XU5kxObf7IqcmpfX8Z3y5HTm3O5NQqk1OTU/suObXZk1OTU1uU5NTk1BYnCt3qiA8//DBjx47NVVddlS233DJJ8s9//nOe8z3yyCPZZZdd8otf/CLJNwfmcePGZc0116zU7vsnun/9619ZddVVZ3sAWXfddfOf//wn48aNq9E7UOcUwwYbbJAZM2bkvffeK/W9ulq2bJk2bdpkzJgx2WqrrZJ8c1fT008/nfXXXz/J/G/j6lh11VXTuHHjjBo1KgceeGCNLnt21lxzzTRs2DBvvfVWqUJ5dpZffvn069cv/fr1y5Zbbpnjjz8+55xzTjbccMOMHDkyK6ywQlq0aLHA8cyr/+uss0423njjXHXVVbn++utz8cUXL/A656Z58+bp3LlzRo0alW222WahrWfllVfOUkstlccffzwdO3ZMknz88ccZN25c6XNZfvnl8+6775bmGT9+fKW7KL+9M+a7d4QvqvjnZF77V1WqzldfffWMGTMm++yzT2ncmDFjqhVHgwYN0rNnz/Ts2TMnn3xyWrVqlQceeCC77bZbtZZT0zbccMPcfPPN6dy5cxo0mL/T9cI63s7JSiutlKWWWipjxowp7atTpkzJuHHjstVWW9XI8bg6qnoOWxjmtS3mZMMNN8xLL72UVVZZZbbTq7oN69Wrl+uuuy577bVXttlmm4wePTrt27dfsE7Nw4YbbpiJEyemQYMGpTu2Zuett97KO++8U4rnX//6V+rVqzfXO+qrcj5ZZ511sswyy+T000/P+uuvn2bNmmXrrbfOWWedlY8//jhbb731gnRvkejatetsr2cWlupcu/zrX/8q7btff/11nnrqqRx55JFJvvmubbbZZjn88MNL7at751BV9+0OHTrk0EMPzaGHHpoTTzwxV111VY466qgFOmauvPLKOffcc7P11lunfv36ufjii9O1a9dcffXV+fTTT0s/3h955JEa2VcfeeSRXHrppfnxj3+cJHn77bfzwQcfVCvmhe2VV17Jhx9+mDPPPDMdOnRIkjz55JOV2szu2qIcVFRUZPPNN8/mm2+ewYMHp1OnTvnrX/+a5Ju73T7//PPSf1r961//SrNmzdKhQ4eFei2/2mqrZbXVVssxxxyTPffcM8OHDy8l5Ra1pZdeutqf2SOPPJJ99923FPO0adPyxhtvLIToasb3r4unTp2aCRMmzHWeb4+/372m/P7x9/vLnTFjRl544YW5Xkc3atQou+22W0aMGJFXX301q6++ejbccMNZ2rVp0ybt27fP66+/nr333nu2y5rf71xVvs/zo9x+K8LCJKcmpzY/yu04Kacmp/Z9cmpzJ6cmpyanJqc2N3Jq35BTm5Wcmpzad8mpzX65cmrl9VtxceXVpXXEMsssk2WXXTZXXnllXn311TzwwAM59thj5znfqquuWqrgfvnll3PIIYdk0qRJs7R76623cuyxx2bs2LG54YYbctFFF+Xoo4+e7TK7d++erbbaKj/96U9z3333ZcKECbnrrrty9913L1Af5xTDaqutlr333jv77LNPbrnllkyYMCFPPPFEhg4dmjvuuKPKyz/qqKMydOjQ/O1vf8vYsWNz9NFH5+OPPy5VZ8/vNq6ORo0a5YQTTsjAgQNLj6/817/+lT/84Q81up5vNW/ePMcdd1yOOeaYXHPNNXnttdfy9NNP56KLLso111yTJBk8eHD+9re/5dVXX82LL76Y22+/PV27dk3yzWNFl1tuueyyyy55+OGHM2HChIwePTr9+/fPf/7zn2rHU5X+H3jggTnzzDNTFMUiudg55ZRTcu655+bCCy/M+PHjS9unJjVr1iwHHHBAjj/++DzwwAOl10d89/GsPXr0yMUXX5xnnnkmTz75ZA499NBK1eIrrLBCGjdunLvvvjuTJk3KlClTFln8c1KV/WtejjrqqPzhD3/INddck/Hjx+f000/Pv//97yrfOXT77bfnwgsvzLPPPps333wz1157bWbOnLnAr7CoCUcccUQ++uij7LnnnhkzZkxee+213HPPPdlvv/2qfDG2sI63c9K8efP069cvxx9/fP7xj3/kxRdfzAEHHJB69eqloqKixo7HVVXVc9jCMK9tMScnnHBCHn300Rx55JF59tlnM378+Pztb38rJT+qsw3r16+fESNGZL311kuPHj0yceLEhdrnnj17plu3bunTp0/uvffevPHGG3n00Ufzm9/8ptLFf6NGjdKvX78899xzefjhh9O/f//svvvuadu27RyXXZXzSUVFRbbaaquMGDGilIBbd911M3369IwaNWquPxjKRf/+/XP33XfnnHPOyfjx43PxxRcvtO9rUr1rl0suuSR//etf88orr+SII47Ixx9/nP333z/JN9+1J598Mvfcc0/GjRuXQYMGVfs/SKqybw8YMCD33HNPJkyYkKeffjr/+Mc/StccC3rMXG211fKPf/wjN998cwYMGJC99967tK++8MIL+cc//pGjjjoqv/zlL0uvdJmdquyrq666aq677rq8/PLLefzxx7P33nuX1RMtkm/udl966aVz0UUX5fXXX89tt92W0047rVKbTp06paKiIrfffnvef//90p1otenxxx/Pb3/72zz55JN56623csstt+T9998v7SdffvllDjjggLz00ku58847c/LJJ+fII49MvXr1Fsq1/Oeff54jjzwyo0ePzptvvplHHnkkY8aMKcVTGzp37pzHH388b7zxRj744IMq3QW86qqr5pZbbsmzzz6b5557LnvttVet3jU/Lz169Mh1112Xhx9+OM8//3z69es3zzs4jz766Pzxj3/M8OHDM27cuJx88sl58cUXZ1nuHXfckTvuuCOvvPJKDjvssEyePHme8ey9996544478sc//nGOCbckOfXUUzN06NBceOGFGTduXJ5//vkMHz485513XpI5X8/PS1W+z/Oj3H4rwsIkpyanNj/K7Tgppyan9n1yanMnpyanJqcmpzY3cmqV1y+n9j9yanJq3yWn9r/lyqn9T7n9VlxcKXSrI+rVq5cbb7wxTz31VNZee+0cc8wx+d3vfjfP+U466aRsuOGG6dWrV7beeuu0bds2ffr0maXdPvvsk88//zw//OEPc8QRR+Too4/OwQcfPMfl3nzzzdlkk02y5557Zs0118zAgQMXuHJ9bjEMHz48++yzT371q19l9dVXT58+fSrdEVQVJ5xwQvbcc8/ss88+6datW5o1a5ZevXqlUaNGSeZ/G1fXoEGD8qtf/SqDBw9O165d07dv34X6zvHTTjstgwYNytChQ9O1a9fssMMOueOOO9KlS5ck31RBn3jiiVl33XWz1VZbpX79+rnxxhuTfPN+9IceeigdO3bMbrvtlq5du+aAAw7IF198Md8VxvPq/5577pkGDRpkzz33LH02C1O/fv0ybNiwXHrppVlrrbWy8847Z/z48TW+nt/97nfZcsst07t37/Ts2TNbbLFFNtpoo9L0c889Nx06dMiWW26ZvfbaK8cdd1ylx4k3aNAgF154Ya644oq0b98+u+yyyyKNf07mtX/Ny957750TTzwxxx13XDbccMNMmDAh++67b5U/+1atWuWWW25Jjx490rVr11x++eW54YYbstZaay1It2pE+/bt88gjj2TGjBnZfvvts84662TAgAFp1arVLO+gn5uFcbydm/POOy/dunXLzjvvnJ49e2bzzTdP165dS59JTRyPq6qq57CFZV7bYnbWXXfdPPjggxk3bly23HLLbLDBBhk8eHClO0ersw0bNGhQ2qd79OixUM8XFRUVufPOO7PVVltlv/32y2qrrZY99tgjb775ZqUkxiqrrJLddtstP/7xj7P99ttn3XXXzaWXXjrXZVf1fNK9e/fMmDGjlJSrV69ettpqq9LdaOXuRz/6Ua666qpccMEFWW+99XLvvffmpJNOWmjrq861y5lnnpkzzzwz6623Xv75z3/mtttuy3LLLZckOeSQQ7Lbbrulb9++2XTTTfPhhx9WuhO1qua1b8+YMSNHHHFE6Xyx2mqrlfadmjhmrr766nnggQdyww03ZNCgQbnnnnvy0UcfZZNNNsnPfvazbLvttvN8skVV9tU//OEP+fjjj7Phhhvml7/8Zfr3758VVlih2ttrYVp++eVz9dVX5y9/+UvWXHPNnHnmmTnnnHMqtVlxxRVz6qmn5v/+7//Spk2b0n8e1KYWLVrkoYceyo9//OOsttpqOemkk3Luuedmxx13TJJsu+22WXXVVbPVVlulb9+++clPfpJTTjklycK5lq9fv34+/PDD7LPPPllttdWy++67Z8cdd8ypp566oF2db8cdd1zq16+fNddcs/S4/Xk577zzsswyy2SzzTZL796906tXr9neQVkuTjzxxHTv3j0777xzdtppp/Tp0ycrr7zyXOfp27dvBg0alIEDB2ajjTbKm2++mcMOO6xSm/333z/9+vXLPvvsk+7du2ellVaq0hNcevTokdatW2fs2LHZa6+95tjuwAMPzO9///sMHz4866yzTrp3756rr766dF08p+v5eanK93l+ldtvRVhY5NTk1OZXuR0n5dTk1L5LTm3e5NTk1OTU5NTmRE6tMjm1/5FTk1P7Ljm1b8ipzarcfisujiqK2nhZMSwBZs6cma5du2b33XevkepdasYbb7yRlVdeOWPGjCnriwUWnu222y5t27bNddddV9uhkG/eYb/iiivm3HPPzQEHHFDb4dQq24Jyseeee6Z+/fr505/+NM+2b7zxRrp06ZJnnnmm9GopWBztu+++mTx5cm699dbaDgUA6jw5tfIkp4acWnmRR/of24JyIadGXSSnBpSj6r1sG+qwN998M/fee2+6d++e6dOn5+KLL86ECRPmWkHMovPVV1/lww8/zEknnZQf/ehHEnJ1xGeffZbLL788vXr1Sv369XPDDTfk/vvvz3333VfbodVZzzzzTF555ZX88Ic/zJQpUzJkyJAkqfIdEksS24Jy8/XXX2fcuHF57LHHcsghh9R2OAAA1BFyauVNTq1uklMrP/JI/2NbUG7k1ACgvCh0gyqqV69err766hx33HEpiiJrr7127r///lp9Hzj/88gjj2SbbbbJaqutlptuuqm2w2ER+fax7meccUa++OKLrL766rn55pvTs2fP2g6tTjvnnHMyduzYLL300tloo43y8MMPlx7HXtfYFpSTF154IZtttlm22WabHHroobUdDgAAdYScWnmTU6ub5NTKkzzS/9gWlBM5NQAoL15dCgAAAAAAAAAAQFmrV9sBAAAAAAAAAAAAwNwodAMAAAAAAAAAAKCsKXQDAAAAAAAAAACgrCl0AwAAAAAAAAAAoKwpdAMAAAAAAAAAAKCsKXQDAAAAAAAAAACgrCl0AwCoZfvuu2/69OlT22EAAAAAwGJDTg0AoO5R6AYAAAAAAAAAAEBZU+gGAFDGzjvvvKyzzjpp2rRpOnTokMMPPzzTpk0rTb/66qvTqlWr3HPPPenatWuaNWuWHXbYIe+++26pzddff53+/funVatWWXbZZXPCCSekX79+le547dy5c4YNG1Zp3euvv35OOeWUKseSJFdddVU6dOiQJk2aZNddd815552XVq1aVWrzt7/9LRtuuGEaNWqUlVZaKaeeemq+/vrrJElRFDnllFPSsWPHNGzYMO3bt0///v0XbCMCAAAAUKfIqcmpAQBLJoVuAABlrF69ernwwgvz4osv5pprrskDDzyQgQMHVmrz2Wef5Zxzzsl1112Xhx56KG+99VaOO+640vSzzjorI0aMyPDhw/PII49k6tSpufXWW2s8lkceeSSHHnpojj766Dz77LPZbrvtcsYZZ1RaxsMPP5x99tknRx99dF566aVcccUVufrqq0vtbr755px//vm54oorMn78+Nx6661ZZ511qh0rAAAAAHWXnJqcGgCwZKooiqKo7SAAAOqyfffdN5MnT65Souymm27KoYcemg8++CDJN3ef7rfffnn11Vez8sorJ0kuvfTSDBkyJBMnTkyStG3bNscdd1wpUTdjxoystNJK2WCDDUrr7Ny5cwYMGJABAwaU1rX++uunT58+le5AnVsse+yxR6ZNm5bbb7+91OYXv/hFbr/99kyePDlJ0rNnz2y77bY58cQTS23+9Kc/ZeDAgXnnnXdy3nnn5YorrsgLL7yQpZZaap7bAwAAAIC6SU5NTg0AqHs80Q0AoIzdf//92XbbbbPiiiumefPm+eUvf5kPP/wwn332WalNkyZNSgm5JGnXrl3ee++9JMmUKVMyadKk/PCHPyxNr1+/fjbaaKMaj2Xs2LGV1pNkluHnnnsuQ4YMSbNmzUp/Bx10UN5999189tln+fnPf57PP/88K620Ug466KD89a9/Lb2CAQAAAACqQk5NTg0AWDIpdAMAKFNvvPFGdt5556y77rq5+eab89RTT+WSSy5Jknz55Zeldt+/S7OioiLVfWhvvXr1Zpnnq6++qnYs8zJt2rSceuqpefbZZ0t/zz//fMaPH59GjRqlQ4cOGTt2bC699NI0btw4hx9+eLbaaqtKsQAAAADAnMipyakBAEuuBrUdAAAAs/fUU09l5syZOffcc1Ov3jf3J/z5z3+u1jJatmyZNm3aZMyYMdlqq62SfPOahaeffjrrr79+qd3yyy+fd999tzQ8derUTJgwoVqxrL766hkzZkylcd8f3nDDDTN27Nisssoqc4y5cePG6d27d3r37p0jjjgia6yxRp5//vlsuOGG1eo7AAAAAHWPnJqcGgCw5FLoBgBQBqZMmZJnn3220rjlllsuX331VS666KL07t07jzzySC6//PJqL/uoo47K0KFDs8oqq2SNNdbIRRddlI8//jgVFRWlNj169MjVV1+d3r17p1WrVhk8eHDq169fmr7KKqvMM5ajjjoqW221Vc4777z07t07DzzwQO66665K6xk8eHB23nnndOzYMT/72c9Sr169PPfcc3nhhRdy+umn5+qrr86MGTOy6aabpkmTJvnTn/6Uxo0bp1OnTtXuNwAAAABLNjk1OTUAoG7x6lIAgDIwevTobLDBBpX+rrvuupx33nk566yzsvbaa2fEiBEZOnRotZd9wgknZM8998w+++yTbt26pVmzZunVq1caNWpUanPiiSeme/fu2XnnnbPTTjulT58+WXnllUvT11tvvXnGsvnmm+fyyy/Peeedl/XWWy933313jjnmmErr6dWrV26//fbce++92WSTTfKjH/0o559/finp1qpVq1x11VXZfPPNs+666+b+++/P3//+9yy77LLV7jcAAAAASzY5NTk1AKBuqSiq+7J5AAAWazNnzkzXrl2z++6757TTTluo6zrooIPyyiuv5OGHH16o6wEAAACAhUlODQCg9nl1KQDAEu7NN9/Mvffem+7du2f69Om5+OKLM2HChOy11141vq5zzjkn2223XZo2bZq77ror11xzTS699NIaXw8AAAAALExyagAA5UehGwDAEq5evXq5+uqrc9xxx6Uoiqy99tq5//7707Vr1xpf1xNPPJGzzz47n3zySVZaaaVceOGFOfDAA2t8PQAAAACwMMmpAQCUH68uBQAAAAAAAAAAoKzVq+0AAAAAAAAAAAAAYG4UugEAAAAAAAAAAFDWFLoBAAAAAAAAAABQ1hS6AQAAAAAAAAAAUNYUugEAAAAAAAAAAFDWFLoBAAAAAAAAAABQ1hS6AQAAAAAAAAAAUNYUugEAAAAAAAAAAFDWFLoBAAAAAAAAAABQ1hS6AQAAAAAAAAAAUNYUugEAAAAAAAAAAFDWFLoBAAAAAAAAAABQ1hS6AQAAAAAAAAAAUNYUugEAAAAAAAAAAFDWFLoBACzmTjnllFRUVOSDDz6okeVtvfXW2XrrrUvDo0ePTkVFRW666aYaWT4AAAAAMH/k6gCAukyhGwAAAAAAALDEe/TRR3PKKadk8uTJc203efLkrLDCCvNVUPbZZ5/llFNOyejRo+c/UAAAZkuhGwAAldx777259957azsMAAAAAKhRjz76aE499dR5FroNHjw4n3322Xyt47PPPsupp56q0A0AYCFQ6AYAQCVLL710ll566doOAwAAAAAWuRdeeCGXXXZZTjjhhNoOpZKvv/46X375ZW2HAQBQqxS6AQAsISZPnpx99903rVq1SsuWLbPffvtVuvN0+PDh6dGjR1ZYYYU0bNgwa665Zi677LJZlrP11ltn6623nuu6pk+fnp133jktW7bMo48+mjfeeCMVFRW5+uqrZ2lbUVGRU045ZQF7BwAAAEBdNHr06Gy88cZp1KhRVl555VxxxRU55ZRTUlFRUWpTUVGRI488MiNGjMjqq6+eRo0aZaONNspDDz1UanPKKafk+OOPT5J06dIlFRUVqaioyBtvvFFpfUcffXR23XXXbLnlltWO9Y033sjyyy+fJDn11FNL6/g2NzanvNu+++6bzp07V1pORUVFzjnnnAwbNiwrr7xyGjZsmJdeeqnUZsaMGfn1r3+dtm3bpmnTpvnJT36St99+e5Zl/+Uvf8lGG22Uxo0bZ7nllssvfvGL/Pe//6123wAAykGD2g4AAICasfvuu6dLly4ZOnRonn766fz+97/PCiuskLPOOitJctlll2WttdbKT37ykzRo0CB///vfc/jhh2fmzJk54ogjqryezz//PLvsskuefPLJ3H///dlkk01mSQgCAAAAwIJ65plnssMOO6Rdu3Y59dRTM2PGjAwZMqRUTPZdDz74YEaOHJn+/funYcOGufTSS7PDDjvkiSeeyNprr53ddtst48aNyw033JDzzz8/yy23XJJUWtZf/vKXPProo3n55ZfnK9+1/PLL57LLLsthhx2WXXfdNbvttluSZN11152v/g8fPjxffPFFDj744DRs2DCtW7cuvXb1jDPOSEVFRU444YS89957GTZsWHr27Jlnn302jRs3TpJcffXV2W+//bLJJptk6NChmTRpUi644II88sgjeeaZZ9KqVav5igsAoLYodAMAWEJssMEG+cMf/lAa/vDDD/OHP/yhVOj24IMPlpJcSXLkkUdmhx12yHnnnVflQrdp06Zl5513zosvvpgHHngg66+/fo32AQAAAAC+dfLJJ6d+/fp55JFH0r59+yTf3OzZtWvXWdq+8MILefLJJ7PRRhslSfbYY4+svvrqGTx4cG655Zasu+662XDDDXPDDTekT58+lZ6glnxzc+dxxx2XY445Jp07d56vQremTZvmZz/7WQ477LCsu+66+cUvflHtZXzXf/7zn7z66quVivFef/31JMlHH32Ul19+Oc2bN0+SbLjhhtl9991z1VVXpX///vnqq69ywgknZO21185DDz2URo0aJUm22GKL7Lzzzjn//PNz6qmnLlB8AACLmleXAgAsIQ499NBKw1tuuWU+/PDDTJ06NUkqFblNmTIlH3zwQbp3757XX389U6ZMmefyp0yZku233z6vvPJKRo8ercgNAAAAgIVmxowZuf/++9OnT59SkVuSrLLKKtlxxx1nad+tW7dSkVuSdOzYMbvsskvuueeezJgxY57rO/PMM/PVV1/l17/+dc10oAb89Kc/ne3T65Jkn332KRW5JcnPfvaztGvXLnfeeWeS5Mknn8x7772Xww8/vFTkliQ77bRT1lhjjdxxxx0LN3gAgIXAE90AAJYQHTt2rDS8zDLLJEk+/vjjtGjRIo888khOPvnkPPbYY/nss88qtZ0yZUpatmw51+UPGDAgX3zxRZ555pmstdZaNRs8AAAAAHzHe++9l88//zyrrLLKLNNmN27VVVedZdxqq62Wzz77LO+//37atm07x3W98cYb+d3vfpdLLrkkzZo1W7DAa1CXLl3mOO37/a2oqMgqq6xSehLdm2++mSRZffXVZ5l3jTXWyD//+c+aCxQAYBHxRDcAgCVE/fr1Zzu+KIq89tpr2XbbbfPBBx/kvPPOyx133JH77rsvxxxzTJJk5syZ81z+LrvskqIocuaZZ87SvqKiYrbzVOVuWQAAAACoTYMHD86KK66YrbfeOm+88UbeeOONTJw4MUny/vvv54033qhS/mxeqptD++4bGgAA8EQ3AIA64e9//3umT5+e2267rdKT3/7xj39UeRl9+vTJ9ttvn3333TfNmzfPZZddVpr27dPjJk+eXGmeb+8cBQAAAIDqWGGFFdKoUaO8+uqrs0yb3bjx48fPMm7cuHFp0qRJ6fWfcyo0e+utt/Lqq69mpZVWmmXa4YcfnuSbtya0atVqnnHPaR3JNzm0119/fZbx85ND+35/i6LIq6++mnXXXTdJ0qlTpyTJ2LFj06NHj0ptx44dW5oOALA48UQ3AIA64NunvRVFURo3ZcqUDB8+vFrL2WeffXLhhRfm8ssvzwknnFAa36JFiyy33HJ56KGHKrW/9NJLFyBqAAAAAOqq+vXrp2fPnrn11lvzzjvvlMa/+uqrueuuu2Zp/9hjj+Xpp58uDb/99tv529/+lu23376UG2vatGmSWW/WPP300/PXv/610t9pp52WJBk4cGD++te/luadlyZNmsx2HUmy8sor55VXXsn7779fGvfcc8/lkUceqdKyv+vaa6/NJ598Uhq+6aab8u6772bHHXdMkmy88cZZYYUVcvnll2f69OmldnfddVdefvnl7LTTTtVeJwBAbfNENwCAOmD77bfP0ksvnd69e+eQQw7JtGnTctVVV2WFFVbIu+++W61lHXnkkZk6dWp+85vfpGXLlvn1r3+dJDnwwANz5pln5sADD8zGG2+chx56KOPGjVsY3QEAAACgDjjllFNy7733ZvPNN89hhx2WGTNm5OKLL87aa6+dZ599tlLbtddeO7169Ur//v3TsGHD0g2Yp556aqnNRhttlCT5zW9+kz322CNLLbVUevfunS222GKWdX/79LZNNtkkffr0qXLMjRs3zpprrpmRI0dmtdVWS+vWrbP22mtn7bXXzv7775/zzjsvvXr1ygEHHJD33nsvl19+edZaa61MnTq1WtumdevW2WKLLbLffvtl0qRJGTZsWFZZZZUcdNBBSZKllloqZ511Vvbbb7907949e+65ZyZNmpQLLrggnTt3zjHHHFOt9QEAlANPdAMAqANWX3313HTTTamoqMhxxx2Xyy+/PAcffHCOPvro+Vrer3/96wwcODC/+c1vcskllyRJBg8enAMOOCA33XRTBg4cmBkzZsz27loAAAAAqIqNNtood911V5ZZZpkMGjQof/jDHzJkyJBsu+22adSoUaW23bt3z7Bhw3Lddddl8ODBad26de66667SqzyTb4rWTjvttDz33HPZd999s+eee1Z6ulpN+f3vf58VV1wxxxxzTPbcc8/cdNNNSZKuXbvm2muvzZQpU3Lsscfmtttuy3XXXZcNN9yw2uv49a9/nZ122ilDhw7NBRdckG233TajRo0qPVEuSfbdd9+MHDkyX375ZU444YRcccUV2XXXXfPPf/6zSq9hBQAoNxXFd99fBQAAAAAAAFDG+vTpkxdffDHjx49PklRUVOSII47IxRdfXMuRAQCwMHmiGwAAAAAAAFCWPv/880rD48ePz5133pmtt966dgICAKDWNKjtAAAAAAAAAABmZ6WVVsq+++6blVZaKW+++WYuu+yyLL300hk4cOAijWPGjBnzfM1ps2bN0qxZs0UUEQBA3aPQDQAAAAAAAChLO+ywQ2644YZMnDgxDRs2TLdu3fLb3/42q6666iKN4+23306XLl3m2ubkk0/OKaecsmgCAgCogyqKoihqOwgAAAAAAACAcvXFF1/kn//851zbrLTSSllppZUWUUQAAHWPQjcAAAAAAAAAAADKWr3aDgAAAAAAAAAAAADmpkFtB1AOZs6cmXfeeSfNmzdPRUVFbYcDAAAAQJkoiiKffPJJ2rdvn3r13DP6XXJqAAAAAMzOwsqpKXRL8s4776RDhw61HQYAAAAAZertt9/OD37wg9oOo6zIqQEAAAAwNzWdU1PolqR58+ZJvtm4LVq0qOVoAAAAACgXU6dOTYcOHUr5I/5HTg0AAACA2VlYOTWFbknp1QotWrSQlAMAAABgFl7NOSs5NQAAAADmpqZzajX3ElQAAAAAAAAAAABYCBS6AQAAAAAAAAAAUNYUugEAAAAAAAAAAFDWFLoBAAAAAAAAAABQ1hS6AQAAAAAAAAAAUNYUugEAAAAAAAAAAFDWarXQ7aGHHkrv3r3Tvn37VFRU5NZbb600vSiKDB48OO3atUvjxo3Ts2fPjB8/vlKbjz76KHvvvXdatGiRVq1a5YADDsi0adMWYS8AAAAAAAAAAABYmGq10O3TTz/Neuutl0suuWS2088+++xceOGFufzyy/P444+nadOm6dWrV7744otSm7333jsvvvhi7rvvvtx+++156KGHcvDBBy+qLgAAAAAAAAAAALCQVRRFUdR2EElSUVGRv/71r+nTp0+Sb57m1r59+/zqV7/KcccdlySZMmVK2rRpk6uvvjp77LFHXn755ay55poZM2ZMNt544yTJ3XffnR//+Mf5z3/+k/bt21dp3VOnTk3Lli0zZcqUtGjRYqH0DwAAAIDFj7zRnNk2AAAAAMzOwsob1eoT3eZmwoQJmThxYnr27Fka17Jly2y66aZ57LHHkiSPPfZYWrVqVSpyS5KePXumXr16efzxxxd5zAAAAAAAAAAAANS8si10mzhxYpKkTZs2lca3adOmNG3ixIlZYYUVKk1v0KBBWrduXWozO9OnT8/UqVMr/QEAAADA4uChhx5K79690759+1RUVOTWW2+tNL0oigwePDjt2rVL48aN07Nnz4wfP75Sm48++ih77713WrRokVatWuWAAw7ItGnTFmEvAAAAAKB6yrbQbWEaOnRoWrZsWfrr0KFDbYcEAAAAAFXy6aefZr311ssll1wy2+lnn312Lrzwwlx++eV5/PHH07Rp0/Tq1StffPFFqc3ee++dF198Mffdd19uv/32PPTQQzn44IMXVRcAAAAAoNrKttCtbdu2SZJJkyZVGj9p0qTStLZt2+a9996rNP3rr7/ORx99VGozOyeeeGKmTJlS+nv77bdrOHoAAAAAWDh23HHHnH766dl1111nmVYURYYNG5aTTjopu+yyS9Zdd91ce+21eeedd0pPfnv55Zdz99135/e//3023XTTbLHFFrnoooty44035p133lnEvQEAAACAqinbQrcuXbqkbdu2GTVqVGnc1KlT8/jjj6dbt25Jkm7dumXy5Ml56qmnSm0eeOCBzJw5M5tuuukcl92wYcO0aNGi0h8AAAAALO4mTJiQiRMnpmfPnqVxLVu2zKabbprHHnssSfLYY4+lVatW2XjjjUttevbsmXr16uXxxx+f47KnT5+eqVOnVvoDAAAAgEWlQW2ufNq0aXn11VdLwxMmTMizzz6b1q1bp2PHjhkwYEBOP/30rLrqqunSpUsGDRqU9u3bp0+fPkmSrl27ZocddshBBx2Uyy+/PF999VWOPPLI7LHHHmnfvn0t9QqAquo7cGRthzDfRp7dt7ZDAAAAmMXEiROTJG3atKk0vk2bNqVpEydOzAorrFBpeoMGDdK6detSm9kZOnRoTj311BqOGAD4lnwpAADMXa0+0e3JJ5/MBhtskA022CBJcuyxx2aDDTbI4MGDkyQDBw7MUUcdlYMPPjibbLJJpk2blrvvvjuNGjUqLWPEiBFZY401su222+bHP/5xtthii1x55ZW10h8AAAAAWFKdeOKJmTJlSunv7bffru2QAAAAAKhDavWJbltvvXWKopjj9IqKigwZMiRDhgyZY5vWrVvn+uuvXxjhAQAAAMBipW3btkmSSZMmpV27dqXxkyZNyvrrr19q895771Wa7+uvv85HH31Umn92GjZsmIYNG9Z80AAAAABQBbX6RDcAAAAAoOZ06dIlbdu2zahRo0rjpk6dmscffzzdunVLknTr1i2TJ0/OU089VWrzwAMPZObMmdl0000XecwAAAAAUBW1+kQ3AAAAqEl9B46s7RDm28iz+9Z2CMBiYtq0aXn11VdLwxMmTMizzz6b1q1bp2PHjhkwYEBOP/30rLrqqunSpUsGDRqU9u3bp0+fPkmSrl27ZocddshBBx2Uyy+/PF999VWOPPLI7LHHHmnfvn0t9QqAqnLNCwDUNNcXwOJCoRsAAAAALEaefPLJbLPNNqXhY489NknSr1+/XH311Rk4cGA+/fTTHHzwwZk8eXK22GKL3H333WnUqFFpnhEjRuTII4/Mtttum3r16uWnP/1pLrzwwkXeFwAAAACoKoVuAAAAALAY2XrrrVMUxRynV1RUZMiQIRkyZMgc27Ru3TrXX3/9wggPAAAAABYKhW4AAABLsMX5tQOJVw8AAAAAAADfqFfbAQAAAAAAAAAAAMDcKHQDAAAAAAAAAACgrCl0AwAAAAAAAAAAoKwpdAMAAAAAAAAAAKCsKXQDAAAAAAAAAACgrCl0AwAAAAAAAAAAoKw1qO0AAAAAAAAA5lffgSNrO4QFMvLsvrUdAgAAwGLBE90AAAAAAAAAAAAoawrdAAAAAAAAAAAAKGsK3QAAAAAAAAAAAChrDWo7AAAAAAAAAPi+vgNH1nYIC2Tk2X1rOwQAAFiieKIbAAAAAAAAAAAAZU2hGwAAAAAAAAAAAGXNq0sBgBq3OL9WwislAAAAAAAAAMqPJ7oBAAAAAAAAAABQ1hS6AQAAAAAAAAAAUNYUugEAAAAAAAAAAFDWGtR2AAAAAAAAAEDd0XfgyNoOYYGMPLtvbYcAAFAneaIbAAAAAAAAAAAAZU2hGwAAAAAAAAAAAGXNq0sBAAAAAAAAAP4/r1gGKE8K3QDKiItmAAAAAAAAAIBZeXUpAAAAAAAAAAAAZU2hGwAAAAAAAAAAAGVNoRsAAAAAAAAAAABlTaEbAAAAAAAAAAAAZU2hGwAAAAAAAAAAAGWtQW0HAAAAAAAA1Jy+A0fWdggLZOTZfWs7BAAAAMqQJ7oBAAAAAAAAAABQ1hS6AQAAAAAAAAAAUNYUugEAAAAAAAAAAFDWFLoBAAAAAAAAAABQ1hS6AQAAAAAAAAAAUNYUugEAAAAAAAAAAFDWFLoBAAAAAAAAAABQ1hS6AQAAAAAAAAAAUNYUugEAAAAAAAAAAFDWFLoBAAAAAAAAAABQ1hS6AQAAAAAAAAAAUNYUugEAAAAAAAAAAFDWFLoBAAAAAAAAAABQ1hS6AQAAAAAAAAAAUNYUugEAAAAAAAAAAFDWFLoBAAAAAAAAAABQ1hS6AQAAAAAAAAAAUNYa1HYAAAAAAAAAAAAA86vvwJG1HcICGXl239oOYbHgiW4AAAAAAAAAAACUNYVuAAAAAAAAAAAAlDWFbgAAAAAAAAAAAJQ1hW4AAAAAAAAAAACUNYVuAAAAAAAAAAAAlDWFbgAAAAAAAAAAAJS1BrUdAADUBX0HjqztEBbIyLP71nYIAAAAAAAAANRhnugGAAAAAAAAAABAWVPoBgAAAAAAAAAAQFkr60K3GTNmZNCgQenSpUsaN26clVdeOaeddlqKoii1KYoigwcPTrt27dK4ceP07Nkz48ePr8WoAQAAAAAAAAAAqEllXeh21lln5bLLLsvFF1+cl19+OWeddVbOPvvsXHTRRaU2Z599di688MJcfvnlefzxx9O0adP06tUrX3zxRS1GDgAAAAAAAAAAQE1pUNsBzM2jjz6aXXbZJTvttFOSpHPnzrnhhhvyxBNPJPnmaW7Dhg3LSSedlF122SVJcu2116ZNmza59dZbs8cee9Ra7AAAAAAAAAAAANSMsn6i22abbZZRo0Zl3LhxSZLnnnsu//znP7PjjjsmSSZMmJCJEyemZ8+epXlatmyZTTfdNI899tgclzt9+vRMnTq10h8AAAAALAlmzJiRQYMGpUuXLmncuHFWXnnlnHbaaSmKotSmKIoMHjw47dq1S+PGjdOzZ8+MHz++FqMGAAAAgLkr6ye6/d///V+mTp2aNdZYI/Xr18+MGTNyxhlnZO+9906STJw4MUnSpk2bSvO1adOmNG12hg4dmlNPPXXhBQ4AAAAAteSss87KZZddlmuuuSZrrbVWnnzyyey3335p2bJl+vfvnyQ5++yzc+GFF+aaa65Jly5dMmjQoPTq1SsvvfRSGjVqVMs9AAAAAIBZlfUT3f785z9nxIgRuf766/P000/nmmuuyTnnnJNrrrlmgZZ74oknZsqUKaW/t99+u4YiBgAAAIDa9eijj2aXXXbJTjvtlM6dO+dnP/tZtt9++zzxxBNJvnma27Bhw3LSSSdll112ybrrrptrr70277zzTm699dbaDR4AAAAA5qCsC92OP/74/N///V/22GOPrLPOOvnlL3+ZY445JkOHDk2StG3bNkkyadKkSvNNmjSpNG12GjZsmBYtWlT6AwAAAIAlwWabbZZRo0Zl3LhxSZLnnnsu//znP7PjjjsmSSZMmJCJEyemZ8+epXlatmyZTTfdNI899tgclzt9+vRMnTq10h8AAAAALCplXej22WefpV69yiHWr18/M2fOTJJ06dIlbdu2zahRo0rTp06dmscffzzdunVbpLECAAAAQDn49sbRNdZYI0sttVQ22GCDDBgwIHvvvXeSZOLEiUmSNm3aVJqvTZs2pWmzM3To0LRs2bL016FDh4XXCQAAAAD4nga1HcDc9O7dO2eccUY6duyYtdZaK88880zOO++87L///kmSioqKDBgwIKeffnpWXXXVdOnSJYMGDUr79u3Tp0+f2g0eAAAAYD70HTiytkNYICPP7lvbIdR5f/7znzNixIhcf/31WWuttfLss89mwIABad++ffr16zffyz3xxBNz7LHHloanTp2q2A0AAACARaasC90uuuiiDBo0KIcffnjee++9tG/fPoccckgGDx5cajNw4MB8+umnOfjggzN58uRsscUWufvuu9OoUaNajBwAAAAAasfxxx9feqpbkqyzzjp58803M3To0PTr1y9t27ZNkkyaNCnt2rUrzTdp0qSsv/76c1xuw4YN07Bhw4UaOwAAAADMSVkXujVv3jzDhg3LsGHD5timoqIiQ4YMyZAhQxZdYAAAAABQpj777LPUq1ev0rj69etn5syZSZIuXbqkbdu2GTVqVKmwberUqXn88cdz2GGHLepwAQAAAKBKyrrQDQAAAACont69e+eMM85Ix44ds9Zaa+WZZ57Jeeedl/333z/JNzeODhgwIKeffnpWXXXVdOnSJYMGDUr79u3Tp0+f2g0eAAAAAOZAoRsAAAAALEEuuuiiDBo0KIcffnjee++9tG/fPoccckgGDx5cajNw4MB8+umnOfjggzN58uRsscUWufvuu9OoUaNajBwAAAAA5kyhGwAAAAAsQZo3b55hw4Zl2LBhc2xTUVGRIUOGZMiQIYsuMAAAAABYAArdAAAAAADqoL4DR9Z2CAtk5Nl9azsEAAAAYBGqV9sBAAAAAAAAAAAAwNwodAMAAAAAAAAAAKCsKXQDAAAAAAAAAACgrCl0AwAAAAAAAAAAoKwpdAMAAAAAAAAAAKCsKXQDAAAAAAAAAACgrCl0AwAAAAAAAAAAoKwpdAMAAAAAAAAAAKCsKXQDAAAAAAAAAACgrCl0AwAAAAAAAAAAoKwpdAMAAAAAAAAAAKCsKXQDAAAAAAAAAACgrCl0AwAAAAAAAAAAoKwpdAMAAAAAAAAAAKCsKXQDAAAAAAAAAACgrCl0AwAAAAAAAAAAoKwpdAMAAAAAAAAAAKCsKXQDAAAAAAAAAACgrCl0AwAAAAAAAAAAoKwpdAMAAAAAAAAAAKCsNajtAAAAAAAAAABY/PUdOLK2Q1ggI8/uW9shAABz4YluAAAAAAAAAAAAlDWFbgAAAAAAAAAAAJQ1hW4AAAAAAAAAAACUNYVuAAAAAAAAAAAAlDWFbgAAAAAAAAAAAJQ1hW4AAAAAAAAAAACUNYVuAAAAAAAAAAAAlDWFbgAAAAAAAAAAAJQ1hW4AAAAAAAAAAACUNYVuAAAAAAAAAAAAlDWFbgAAAAAAAAAAAJQ1hW4AAAAAAAAAAACUNYVuAAAAAAAAAAAAlDWFbgAAAAAAAAAAAJQ1hW4AAAAAAAAAAACUNYVuAAAAAAAAAAAAlDWFbgAAAAAAAAAAAJQ1hW4AAAAAAAAAAACUNYVuAAAAAAAAAAAAlDWFbgAAAAAAAAAAAJQ1hW4AAAAAAAAAAACUNYVuAAAAAAAAAAAAlDWFbgAAAAAAAAAAAJQ1hW4AAAAAAAAAAACUNYVuAAAAAAAAAAAAlDWFbgAAAAAAAAAAAJQ1hW4AAAAAAAAAAACUtQbzM9PkyZNz00035bXXXsvxxx+f1q1b5+mnn06bNm2y4oor1nSMAAAAALDYk1MDAIAlS9+BI2s7hAUy8uy+tR0CAFRLtQvd/v3vf6dnz55p2bJl3njjjRx00EFp3bp1brnllrz11lu59tprF0acAAAAALDYklMDAAAAgAVT7VeXHnvssdl3330zfvz4NGrUqDT+xz/+cR566KEaDQ4AAAAAlgRyagAAAACwYKpd6DZmzJgccsghs4xfccUVM3HixBoJCgAAAACWJHJqAAAAALBgql3o1rBhw0ydOnWW8ePGjcvyyy9fI0EBAAAAwJJETg0AAAAAFkyD6s7wk5/8JEOGDMmf//znJElFRUXeeuutnHDCCfnpT39a4wECdVvfgSNrO4QFMvLsvrUdAgAAAGVATg0AAAAAFky1n+h27rnnZtq0aVlhhRXy+eefp3v37llllVXSvHnznHHGGQsjRgAAAABYrMmpAQAAAMCCqfYT3Vq2bJn77rsvjzzySJ577rlMmzYtG264YXr27Lkw4st///vfnHDCCbnrrrvy2WefZZVVVsnw4cOz8cYbJ0mKosjJJ5+cq666KpMnT87mm2+eyy67LKuuuupCiQcAAAAAqmtR59QAAAAAYElTrUK3r776Ko0bN86zzz6bzTffPJtvvvnCiitJ8vHHH2fzzTfPNttsk7vuuivLL798xo8fn2WWWabU5uyzz86FF16Ya665Jl26dMmgQYPSq1evvPTSS2nUqNFCjQ8AAAAA5mVR59QAAAAAYElUrUK3pZZaKh07dsyMGTMWVjyVnHXWWenQoUOGDx9eGtelS5fSv4uiyLBhw3LSSSdll112SZJce+21adOmTW699dbsscceiyROAAAAAJiTRZ1TAwAAAIAlUb3qzvCb3/wmv/71r/PRRx8tjHgque2227Lxxhvn5z//eVZYYYVssMEGueqqq0rTJ0yYkIkTJ1Z6xUPLli2z6aab5rHHHlvo8QEAAABAVSzKnFqS/Pe//80vfvGLLLvssmncuHHWWWedPPnkk6XpRVFk8ODBadeuXRo3bpyePXtm/PjxiyQ2AAAAAJgf1XqiW5JcfPHFefXVV9O+fft06tQpTZs2rTT96aefrrHgXn/99Vx22WU59thj8+tf/zpjxoxJ//79s/TSS6dfv36ZOHFikqRNmzaV5mvTpk1p2uxMnz4906dPLw1PnTq1xmIGAAAAgO9blDm1jz/+OJtvvnm22Wab3HXXXVl++eUzfvz4LLPMMqU2Z599di688MJcc8016dKlSwYNGpRevXrlpZdeSqNGjWosFgAAAACoKdUudOvTp89CCGP2Zs6cmY033ji//e1vkyQbbLBBXnjhhVx++eXp16/ffC936NChOfXUU2sqTAAAAACYq0WZUzvrrLPSoUOHDB8+vDSuS5cupX8XRZFhw4blpJNOyi677JIkufbaa9OmTZvceuut2WOPPRZZrAAAAABQVdUudDv55JMXRhyz1a5du6y55pqVxnXt2jU333xzkqRt27ZJkkmTJqVdu3alNpMmTcr6668/x+WeeOKJOfbYY0vDU6dOTYcOHWowcgAAAAD4n0WZU7vtttvSq1ev/PznP8+DDz6YFVdcMYcffngOOuigJMmECRMyceLE9OzZszRPy5Yts+mmm+axxx6bY6GbtyQAAAAAUJuqXej2raeeeiovv/xykmSttdbKBhtsUGNBfWvzzTfP2LFjK40bN25cOnXqlOSbO1Hbtm2bUaNGlQrbpk6dmscffzyHHXbYHJfbsGHDNGzYsMbjBQAAAIC5WRQ5tddffz2XXXZZjj322Pz617/OmDFj0r9//yy99NLp169fJk6cmCRp06ZNpfnatGlTmjY73pIAAAAAQG2qdqHbe++9lz322COjR49Oq1atkiSTJ0/ONttskxtvvDHLL798jQV3zDHHZLPNNstvf/vb7L777nniiSdy5ZVX5sorr0ySVFRUZMCAATn99NOz6qqrpkuXLhk0aFDat2+/SF8HAQAAAABzsyhzajNnzszGG2+c3/72t0mSDTbYIC+88EIuv/zy9OvXb76X6y0JAAAAANSmetWd4aijjsonn3ySF198MR999FE++uijvPDCC5k6dWr69+9fo8Ftsskm+etf/5obbrgha6+9dk477bQMGzYse++9d6nNwIEDc9RRR+Xggw/OJptskmnTpuXuu+9Oo0aNajQWAAAAAJhfizKn1q5du6y55pqVxnXt2jVvvfVWkqRt27ZJkkmTJlVqM2nSpNK02WnYsGFatGhR6Q8AAAAAFpVqP9Ht7rvvzv3335+uXbuWxq255pq55JJLsv3229docEmy8847Z+edd57j9IqKigwZMiRDhgyp8XUDAAAAQE1YlDm1zTffPGPHjq00bty4cenUqVOSpEuXLmnbtm1GjRqV9ddfP8k3T2d7/PHHc9hhh9VoLAAAAABQU6pd6DZz5swstdRSs4xfaqmlMnPmzBoJCgAAAACWJIsyp3bMMcdks802y29/+9vsvvvueeKJJ3LllVfmyiuvTPLNjaMDBgzI6aefnlVXXTVdunTJoEGD0r59+/Tp06dGYwEAAACAmlLtV5f26NEjRx99dN55553SuP/+97855phjsu2229ZocAAAAACwJFiUObVNNtkkf/3rX3PDDTdk7bXXzmmnnZZhw4Zl7733LrUZOHBgjjrqqBx88MHZZJNNMm3atNx9991p1KhRjcYCAAAAADWl2k90u/jii/OTn/wknTt3TocOHZIkb7/9dtZee+386U9/qvEAAQAAAGBxt6hzajvvvHN23nnnOU6vqKjIkCFDMmTIkBpfNwAAAAAsDNUudOvQoUOefvrp3H///XnllVeSJF27dk3Pnj1rPDgAAAAAWBLIqQEAAADAgql2oVvyzR2f2223XbbbbruajgcAAAAAlkhyagAAAAAw/+pVd4b+/fvnwgsvnGX8xRdfnAEDBtRETAAAAACwRJFTAwAAAIAFU+1Ct5tvvjmbb775LOM322yz3HTTTTUSFAAAAAAsSeTUAAAAAGDBVLvQ7cMPP0zLli1nGd+iRYt88MEHNRIUAAAAACxJ5NQAAAAAYMFUu9BtlVVWyd133z3L+LvuuisrrbRSjQQFAAAAAEsSOTUAAAAAWDANqjvDsccemyOPPDLvv/9+evTokSQZNWpUzj333AwbNqym4wMAAACAxZ6cGgAAAAAsmGoXuu2///6ZPn16zjjjjJx22mlJks6dO+eyyy7LPvvsU+MBAgAAAMDiTk4NAAAAal/fgSNrO4QFMvLsvrUdAtSqahe6Jclhhx2Www47LO+//34aN26cZs2a1XRcAAAAALBEkVMDAAAAgPlXb0FmXn755fPUU0/lrrvuyscff1xTMQEAAADAEktODQAAAACqr8pPdDvrrLMybdq00qsViqLIjjvumHvvvTdJssIKK2TUqFFZa621Fk6kAAAAALCYkVMDAAAAgJpR5UK3kSNH5oQTTigN33TTTXnooYfy8MMPp2vXrtlnn31y6qmn5s9//vNCCRQAAAAAFjdyaoufvgNH1nYI823k2X1rOwQAAACAhabKry6dMGFC1l133dLwnXfemZ/97GfZfPPN07p165x00kl57LHHFkqQAAAAALA4klMDAAAAgJpR5UK3r7/+Og0bNiwNP/bYY9lss81Kw+3bt88HH3xQs9EBAAAAwGJMTg0AAAAAakaVX1268sor56GHHspKK62Ut956K+PGjctWW21Vmv6f//wnyy677EIJEgAAAAAWR3JqAAB4NToAQM2ocqHbEUcckSOPPDIPP/xw/vWvf6Vbt25Zc801S9MfeOCBbLDBBgslSAAAAABYHMmpAQAAAEDNqHKh20EHHZT69evn73//e7baaqucfPLJlaa/88472X///Ws8QAAAAABYXMmpAQAAAEDNqHKhW5Lsv//+c0y8XXrppTUSEAAAAAAsSeTUAAAAAGDB1avtAAAAAAAAAAAAAGBuFLoBAAAAAAAAAABQ1hS6AQAAAAAAAAAAUNYa1HYAAAAAAAAAAABAzeo7cGRthzDfRp7dt7ZDoAxV+4luw4cPz2effbYwYgEAAACAJZKcGgAAAAAsmGoXuv3f//1f2rZtmwMOOCCPPvrowogJAAAAAJYocmoAAAAAsGCqXej23//+N9dcc00++OCDbL311lljjTVy1llnZeLEiQsjPgAAAABY7MmpAQAAAMCCqXahW4MGDbLrrrvmb3/7W95+++0cdNBBGTFiRDp27Jif/OQn+dvf/paZM2cujFgBAAAAYLEkpwYAAAAAC6bahW7f1aZNm2yxxRbp1q1b6tWrl+effz79+vXLyiuvnNGjR9dQiAAAAACw5JBTAwAAAIDqm69Ct0mTJuWcc87JWmutla233jpTp07N7bffngkTJuS///1vdt999/Tr16+mYwUAAACAxZacGgAAAADMv2oXuvXu3TsdOnTI1VdfnYMOOij//e9/c8MNN6Rnz55JkqZNm+ZXv/pV3n777RoPFgAAAAAWR3JqAAAAALBgGlR3hhVWWCEPPvhgunXrNsc2yy+/fCZMmLBAgQEAAADAkkJODQAAAAAWTLWf6HbyySdnww03nGX8zJkz89ZbbyVJKioq0qlTpwWPDgAAAACWAHJqAAAAALBgql3o1qVLl2y44YZ57bXXKo1///3306VLlxoLDAAAAACWFHJqAAAAALBgql3oVhRFunbtmh/+8IcZNWrULNMAAAAAgMrk1AAAAABgwVS70K2ioiKXXnppTjrppOy000658MILK00DAAAAACqTUwMAAACABdOgujN8e4fpMccckzXWWCN77rlnnn/++QwePLjGgwMAAACAJYGcGgAAAAAsmGoXun3XjjvumEcffTQ/+clP8sQTT9RUTAAAAACwxJJTAwAAAIDqq/arS7t3756ll166NLzmmmvm8ccfT6tWrUp3pgIAAAAA/yOnBgAAAAALptpPdPvHP/4xy7hll102Dz74YI0EBAAAAABLGjk1AAAAAFgw1X6iW48ePXLqqafOMv7jjz9Ojx49aiQoAAAAAFiSyKkBAAAAwIKp9hPdRo8eneeffz7PPPNMRowYkaZNmyZJvvzyS3egAgAAAMBsyKkBAAAAwIKp9hPdkuT+++/PxIkT86Mf/ShvvPFGDYcEAAAAAEseOTUAAAAAmH/zVejWrl27PPjgg1lnnXWyySabZPTo0TUcFgAAAAAsWeTUAAAAAGD+VbvQraKiIknSsGHDXH/99Tn66KOzww475NJLL63x4AAAAABgSSCnBgAAAAALpkF1ZyiKotLwSSedlK5du6Zfv341FhQAAAAALEnk1AAAAABgwVS70G3ChAlZbrnlKo376U9/mtVXXz1PPfVUjQUG1dF34MjaDmGBjDy7b22HAAAAACxEcmoAAAAAsGCqXejWqVOn2Y5fe+21s/baay9wQAAAAACwpJFTAwAAAIAFU+1Ct2222SYVFRVznP7AAw8sUEAAAAAAsKSRUwMAAACABVPtQrf111+/0vBXX32VZ599Ni+88EL69etXU3EBAAAAwBJDTg0AAAAAFky1C93OP//82Y4/5ZRTMm3atAUOCAAAAACWNHJqAAAAALBg6tXUgn7xi1/kj3/8Y00tDgAAAACWeHJqAAAAAFA1NVbo9thjj6VRo0Y1tTgAAAAAWOLJqQEAAABA1VT71aW77bZbpeGiKPLuu+/mySefzKBBg2osMAAAAABYUsipAQAAAMCCqXahW8uWLSsN16tXL6uvvnqGDBmS7bffvsYCAwAAAIAlhZwaAAAAACyYKhe6vf766+nSpUuGDx++MOMBAAAAgCWGnBoAAAAA1Ix6VW246qqr5v333y8N9+3bN5MmTVooQQEAAADAkkBODQAAAABqRpUL3YqiqDR855135tNPP63xgAAAAABgSSGnBgAAAAA1o8qFbgAAAAAAAAAAAFAbqlzoVlFRkYqKilnGLUpnnnlmKioqMmDAgNK4L774IkcccUSWXXbZNGvWLD/96U+9/gEAAACAslAOOTUAAAAAWBI0qGrDoiiy7777pmHDhkm+KTA79NBD07Rp00rtbrnllpqN8P8bM2ZMrrjiiqy77rqVxh9zzDG544478pe//CUtW7bMkUcemd122y2PPPLIQokDAAAAAKqqtnNqyTc3j5544ok5+uijM2zYsFIcv/rVr3LjjTdm+vTp6dWrVy699NK0adNmocUBAAAAAAuiyoVu/fr1qzT8i1/8osaDmZNp06Zl7733zlVXXZXTTz+9NH7KlCn5wx/+kOuvvz49evRIkgwfPjxdu3bNv/71r/zoRz9aZDECAAAAwPfVZk4tcfMoAAAAAEuOKhe6DR8+fGHGMVdHHHFEdtppp/Ts2bNSodtTTz2Vr776Kj179iyNW2ONNdKxY8c89thjCt0AAAAAqFW1mVNz8ygAAAAAS5J6tR3AvNx44415+umnM3To0FmmTZw4MUsvvXRatWpVaXybNm0yceLEOS5z+vTpmTp1aqU/AAAAAFiSfPfm0e+a182jAAAAAFCOqvxEt9rw9ttv5+ijj859992XRo0a1dhyhw4dmlNPPbXGlgcAAAAA5eTbm0fHjBkzy7QFuXl0+vTppWE3jwIAAACwKJX1E92eeuqpvPfee9lwww3ToEGDNGjQIA8++GAuvPDCNGjQIG3atMmXX36ZyZMnV5pv0qRJadu27RyXe+KJJ2bKlCmlv7fffnsh9wQAAAAAFo1vbx4dMWJEjd882rJly9Jfhw4damzZAAAAADAvZV3otu222+b555/Ps88+W/rbeOONs/fee5f+vdRSS2XUqFGlecaOHZu33nor3bp1m+NyGzZsmBYtWlT6AwAAAIAlgZtHAQAAAFgSlfWrS5s3b56111670rimTZtm2WWXLY0/4IADcuyxx6Z169Zp0aJFjjrqqHTr1i0/+tGPaiNkAAAAAKhV3948+l377bdf1lhjjZxwwgnp0KFD6ebRn/70p0mqfvNow4YNF2rsAAAAADAnZV3oVhXnn39+6tWrl5/+9KeZPn16evXqlUsvvbS2wwIAAACAWuHmUQAAAACWRItdodvo0aMrDTdq1CiXXHJJLrnkktoJCAAAAAAWM24eBQAAAGBxs9gVugEAAAAA1ePmUQAAAAAWd/VqOwAAAAAAAAAAAACYG4VuAAAAAAAAAAAAlDWFbgAAAAAAAAAAAJQ1hW4AAAAAAAAAAACUNYVuAAAAAAAAAAAAlDWFbgAAAAAAAAAAAJQ1hW4AAAAAAAAAAACUtQa1HQALT9+BI2s7hPk28uy+tR0CADAbri8AAAAAAACA2uCJbgAAAAAAAAAAAJQ1hW4AAAAAAAAAAACUNYVuAAAAAAAAAAAAlDWFbgAAAAAAAAAAAJQ1hW4AAAAAAAAAAACUNYVuAAAAAAAAAAAAlDWFbgAAAAAAAAAAAJQ1hW4AAAAAAAAAAACUNYVuAAAAAAAAAAAAlDWFbgAAAAAAAAAAAJQ1hW4AAAAAAAAAAACUNYVuAAAAAAAAAAAAlDWFbgAAAAAAAAAAAJQ1hW4AAAAAAAAAAACUNYVuAAAAAAAAAAAAlDWFbgAAAAAAAAAAAJQ1hW4AAAAAAAAAAACUNYVuAAAAAAAAAAAAlDWFbgAAAAAAAAAAAJQ1hW4AAAAAAAAAAACUtQa1HQAAAFD7+g4cWdshLJCRZ/et7RAAAAAAAABYiDzRDQAAAAAAAAAAgLKm0A0AAAAAAAAAAICyptANAAAAAAAAAACAsqbQDQAAAAAAAAAAgLKm0A0AAAAAgP/H3p3HazXgjwP/3Fu03e5NpIU2JKEkTBJKLjE0wnxlL/tSEpNMM1ox2XfZlTGhGeuMJRTFJKRs0UqpGZWtRUlS5/eHX8+4rfd27+0+9973+/W6r1fPWT+f85znnPN8+jznAAAAAKQ1jW4AAAAAAAAAAACktYolHQAAAABQcF36jCzpEApl5A1dSjoEAAAAAABKEXd0AwAAAAAAAAAAIK1pdAMAAAAAAAAAACCtaXQDAAAAAAAAAAAgrWl0AwAAAAAAAAAAIK1pdAMAAAAAAAAAACCtaXQDAAAAAAAAAAAgrWl0AwAAAAAAAAAAIK1pdAMAAAAAAAAAACCtaXQDAAAAAAAAAAAgrWl0AwAAAAAAAAAAIK1pdAMAAAAAAAAAACCtaXQDAAAAAAAAAAAgrWl0AwAAAAAAAAAAIK1VLOkAAABKsy59RpZ0CIUy8oYuJR0CAAAAAAAAwGa5oxsAAAAAAAAAAABpTaMbAAAAAAAAAAAAaU2jGwAAAAAAAAAAAGmtYkkHAAAAAAAAxa1Ln5ElHcIWG3lDl5IOAQAAAEqcO7oBAAAAAAAAAACQ1jS6AQAAAAAAAAAAkNY0ugEAAAAAAAAAAJDWNLoBAAAAAAAAAACQ1jS6AQAAAAAAAAAAkNbSutFtyJAhccABB0T16tVjxx13jM6dO8f06dPzTPPjjz9G9+7dY/vtt4+srKw48cQTY+HChSUUMQAAAACULDU1AAAAAMqiiiUdwKaMGzcuunfvHgcccED8/PPP8ac//SmOPPLI+PTTT6NatWoREXHZZZfFCy+8EP/4xz8iJycnevToESeccEKMHz++hKMHAAAAgK1PTQ0AAChqXfqMLOkQCmXkDV1KOgQAikBaN7qNGjUqz+vhw4fHjjvuGJMmTYpDDz00lixZEg899FA89thj0aFDh4iIGDZsWDRr1izefvvtOPDAA0sibAAAAAAoMWpqAAAAAJRFaf3o0nUtWbIkIiJq1qwZERGTJk2KVatWRW5ubmqaPfbYIxo0aBATJkzY6HJWrlwZS5cuzfMHAAAAAGVRUdXUAAAAAKAkpfUd3X5tzZo10atXr2jbtm3svffeERGxYMGC2HbbbaNGjRp5pq1du3YsWLBgo8saMmRIDBo0qDjDBQAA0pTHLABQnhRlTW3lypWxcuXK1Gs/HgUAAABgayo1d3Tr3r17TJkyJZ544olCL6tv376xZMmS1N+8efOKIEIAAAAASC9FWVMbMmRI5OTkpP7q169fBBECAAAAQP6Uika3Hj16xPPPPx+vv/567LzzzqnhderUiZ9++ikWL16cZ/qFCxdGnTp1Nrq8SpUqRXZ2dp4/AAAAAChLirqm5sejAAAAAJSktG50S5IkevToEc8880y89tpr0bhx4zzj99tvv9hmm21izJgxqWHTp0+PuXPnRps2bbZ2uAAAAABQ4oqrpubHowAAAACUpIolHcCmdO/ePR577LF47rnnonr16rFgwYKIiMjJyYkqVapETk5OnHPOOXH55ZdHzZo1Izs7Oy655JJo06ZNHHjggSUcPQAAAABsfWpqAAAAAJRFad3ods8990RERPv27fMMHzZsWHTr1i0iIm699dbIzMyME088MVauXBkdO3aMoUOHbuVIAQAAACA9qKkBAAAAUBaldaNbkiSbnaZy5cpx9913x913370VIgIAAACA9KamBgAAAEBZlFnSAQAAAAAAAAAAAMCmaHQDAAAAAAAAAAAgrWl0AwAAAAAAAAAAIK1pdAMAAAAAAAAAACCtaXQDAAAAAAAAAAAgrWl0AwAAAAAAAAAAIK1pdAMAAAAAAAAAACCtaXQDAAAAAAAAAAAgrWl0AwAAAAAAAAAAIK1pdAMAAAAAAAAAACCtaXQDAAAAAAAAAAAgrWl0AwAAAAAAAAAAIK1pdAMAAAAAAAAAACCtaXQDAAAAAAAAAAAgrVUs6QCAguvSZ2RJh7DFRt7QpaRDAAAAAAAAAACglHFHNwAAAAAAAAAAANKaRjcAAAAAAAAAAADSmkY3AAAAAAAAAAAA0ppGNwAAAAAAAAAAANKaRjcAAAAAAAAAAADSmkY3AAAAAAAAAAAA0ppGNwAAAAAAAAAAANKaRjcAAAAAAAAAAADSmkY3AAAAAAAAAAAA0ppGNwAAAAAAAAAAANKaRjcAAAAAAAAAAADSmkY3AAAAAAAAAAAA0ppGNwAAAAAAAAAAANKaRjcAAAAAAAAAAADSmkY3AAAAAAAAAAAA0ppGNwAAAAAAAAAAANKaRjcAAAAAAAAAAADSmkY3AAAAAAAAAAAA0ppGNwAAAAAAAAAAANKaRjcAAAAAAAAAAADSWsWSDgAAANJRlz4jSzqEQhl5Q5eSDgGgSJXm47JjMgAAAABA4bmjGwAAAAAAAAAAAGlNoxsAAAAAAAAAAABpTaMbAAAAAAAAAAAAaU2jGwAAAAAAAAAAAGlNoxsAAAAAAAAAAABpTaMbAAAAAAAAAAAAaU2jGwAAAAAAAAAAAGlNoxsAAAAAAAAAAABpTaMbAAAAAAAAAAAAaU2jGwAAAAAAAAAAAGlNoxsAAAAAAAAAAABpTaMbAAAAAAAAAAAAaU2jGwAAAAAAAAAAAGlNoxsAAAAAAAAAAABpTaMbAAAAAAAAAAAAaU2jGwAAAAAAAAAAAGlNoxsAAAAAAAAAAABpTaMbAAAAAAAAAAAAaU2jGwAAAAAAAAAAAGlNoxsAAAAAAAAAAABpTaMbAAAAAAAAAAAAaU2jGwAAAAAAAAAAAGlNoxsAAAAAAAAAAABprcw0ut19993RqFGjqFy5crRu3Trefffdkg4JAAAAANKamhoAAAAApUWZaHQbOXJkXH755TFgwICYPHly7LPPPtGxY8f46quvSjo0AAAAAEhLamoAAAAAlCZlotHtlltuifPOOy/OOuus2HPPPePee++NqlWrxsMPP1zSoQEAAABAWlJTAwAAAKA0KfWNbj/99FNMmjQpcnNzU8MyMzMjNzc3JkyYUIKRAQAAAEB6UlMDAAAAoLSpWNIBFNY333wTq1evjtq1a+cZXrt27Zg2bdoG51m5cmWsXLky9XrJkiUREbF06dLiC7QErFr5Q0mHsMUK+l6U5lwjyle+5SnXCPluTmnOtzzlGlG+8i1PuUaUr3zLU64R8t2U8pRrhHxLk/KUa0T5yrc85RpR9uora/NJkqSEIylaamobV5o/g443m1aa8y1PuUbId3NKc77lKdeI8pVveco1onzlW55yjZDvppSnXCPkW5qUp1wjyle+5SnXiLJXXymumlpGUsqrdF9++WXstNNO8dZbb0WbNm1Sw/v06RPjxo2Ld955Z715Bg4cGIMGDdqaYQIAAABQis2bNy923nnnkg6jyKipAQAAAFDcirqmVurv6LbDDjtEhQoVYuHChXmGL1y4MOrUqbPBefr27RuXX3556vWaNWviu+++i+233z4yMjKKNd6yYOnSpVG/fv2YN29eZGdnl3Q4xU6+ZVd5yjWifOVbnnKNKF/5lqdcI+RblpWnXCPKV77lKdeI8pVveco1Qr5lWXnKtagkSRLff/991KtXr6RDKVJqaltfefv8ybfsKk+5RpSvfMtTrhHlK9/ylGuEfMuy8pRrRPnKtzzlGlG+8i1PuUbItywrT7kWleKqqZX6Rrdtt9029ttvvxgzZkx07tw5In4pso0ZMyZ69OixwXkqVaoUlSpVyjOsRo0axRxp2ZOdnV2uPsDyLbvKU64R5Svf8pRrRPnKtzzlGiHfsqw85RpRvvItT7lGlK98y1OuEfIty8pTrkUhJyenpEMocmpqJae8ff7kW3aVp1wjyle+5SnXiPKVb3nKNUK+ZVl5yjWifOVbnnKNKF/5lqdcI+RblpWnXItCcdTUSn2jW0TE5ZdfHl27do39998/fvOb38Rtt90Wy5cvj7POOqukQwMAAACAtKSmBgAAAEBpUiYa3bp06RJff/119O/fPxYsWBAtW7aMUaNGRe3atUs6NAAAAABIS2pqAAAAAJQmZaLRLSKiR48eG32sAkWrUqVKMWDAgPUeVVFWybfsKk+5RpSvfMtTrhHlK9/ylGuEfMuy8pRrRPnKtzzlGlG+8i1PuUbItywrT7mSP2pqW095+/zJt+wqT7lGlK98y1OuEeUr3/KUa4R8y7LylGtE+cq3POUaUb7yLU+5Rsi3LCtPuaa7jCRJkpIOAgAAAAAAAAAAADYms6QDAAAAAAAAAAAAgE3R6AYAAAAAAAAAAEBa0+hGobVv3z569eq1yWkaNWoUt912W4nGkA7mzJkTGRkZ8cEHH0RExNixYyMjIyMWL15c5MvekOHDh0eNGjUKva6yZHPvybrbbODAgdGyZcutHueGbI39PiMjI5599tliXUdx69atW3Tu3Dn1uiDbrbi2cZIkcf7550fNmjU3+7ktTo4JZVNxvq+F/Uyk0zG0KGxuexTFMbQ4zkPrHhfLs9JyDbm1FMX2KO/btCDH4HQ4DxfV95Hi/r5XEor7nFXWzonAllFTyz81tfSjprZpampqapQ+ampbj5pa6VdariG3FjW1wlNTKzvU1NgaKpZ0AJQPEydOjGrVqpV0GGnnoIMOivnz50dOTs5WWV+XLl3it7/97VZZV2lRv379mD9/fuywww75mr53795xySWXFHNURW/OnDnRuHHjeP/998v9yf/pp5+ObbbZpkRjGDVqVAwfPjzGjh0bu+yyS773P6B0mT9/fmy33XZFusyiOA/dfvvtkSRJEUVEeTV27Ng47LDDYtGiRXkKS+lwni1J6X693b59+2jZsmWRF9B83yu4gh7PXc9D+eUYu2FqaiVPTa38SYdrfTU1KB/U1CjL1NQ2LN2vt9XU0oeaGhEa3diEVatWFdkJtVatWkWynLJm2223jTp16my19VWpUiWqVKmy1daX7n766acCvwdZWVmRlZVVjFFR3GrWrFnSIcRnn30WdevWjYMOOmiD49fum0SsXr06MjIyIjOz7N+E1vu+YaV5uxTHOb4ozkNb6z8Dy5vSvK8WpXQ4z5ak8nq9XZq/7xXl996C8L0CyjY1teKnplay1NTKp3S41ldTyz81NUrzdlFTK19K875alNLhPFuSyuv1dmn+vqemRkkq+1e4pIwaNSoOPvjgqFGjRmy//fZx7LHHxmeffRYR/7vV/MiRI6Ndu3ZRuXLlGDFiRHz77bdxyimnxE477RRVq1aN5s2bx+OPP77esn/++efo0aNH5OTkxA477BD9+vXL86uGdW+7uXjx4rjggguidu3aUbly5dh7773j+eefL1R+m4ph5cqV0bt379hpp52iWrVq0bp16xg7dmxq3rW3OH355ZejWbNmkZWVFUcddVTMnz8/z/J79uyZ2n5XXnlldO3aNc9tije1jTdkS25rumbNmrjhhhtit912i0qVKkWDBg3i2muvTY3//PPP47DDDouqVavGPvvsExMmTFgvz7XW3trz0UcfjUaNGkVOTk6cfPLJ8f333+dZ35AhQ6Jx48ZRpUqV2GeffeLJJ59MjV+0aFGcdtppUatWrahSpUo0adIkhg0blho/b968OOmkk6JGjRpRs2bNOO6442LOnDn5zje/+Xfo0CF69OiRZ9qvv/46tt122xgzZkxE/LIfXn311XHmmWdGdnZ2nH/++fl6PMWvbeh2qA8//HDstddeUalSpahbt+56cRSF5cuXx5lnnhlZWVlRt27duPnmm/OM39CtvGvUqBHDhw+PiIjGjRtHRMS+++4bGRkZ0b59+3zH/80338Txxx8fVatWjSZNmsQ///nPIstrU/vX2s/HmDFjYv/994+qVavGQQcdFNOnT8+zjGuuuSZ23HHHqF69epx77rnxxz/+cZMd+eve/nno0KHRpEmTqFy5ctSuXTt+//vfrxdjnz59ombNmlGnTp0YOHBgoXLu1q1bXHLJJTF37tzIyMiIRo0aRfv27aNHjx7Rq1ev2GGHHaJjx44RETFlypQ4+uijIysrK2rXrh1nnHFGfPPNN3ly6dmz5ybjy8/xdlPHvoL6/vvv47TTTotq1apF3bp149Zbb82zzfN7PP7nP/8Ze+65Z1SqVCnmzp0bjRo1imuuuSb1OWjYsGH885//jK+//jqOO+64yMrKihYtWsR7772XWlZ+zmH52YbFtS02dEyKiPj3v/8dhxxySFSpUiXq168fPXv2jOXLl6eWu7ltuK6vv/469t9//zj++ONj5cqVhc5rU5+JxYsXx7nnnhu1atWK7Ozs6NChQ3z44YfrLeO+++6L+vXrR9WqVeOkk06KJUuWpMatfQTAtddeG/Xq1YumTZtGxKbPJ1OmTInMzMz4+uuvIyLiu+++i8zMzDj55JNTy73mmmvi4IMPLnT+Bdkevz42rz3fPP300xs9T0f88hlo0KBBVK1aNY4//vj49ttv84wv6scsbO7aZW3cTzzxRBx00EGp48i4ceNS06xevTrOOeec1LG8adOmcfvtt29wnTfddFPUrVs3tt9+++jevXusWrUqNc3m9u0vvvgiOnXqFNttt11Uq1Yt9tprr3jxxRdT4zd3zMyPF154IXJycmLEiBHx8ccfR4cOHaJKlSqx/fbbx/nnnx/Lli1bL6eC7KsRv/xK74gjjogddtghcnJyol27djF58uQ8cWRkZMSDDz5YbOff/Hj00Udj//33j+rVq0edOnXi1FNPja+++ioiftkvDjvssIiI2G677SIjIyO6desWEeufZxs1ahR/+ctf4uyzz47q1atHgwYN4v777y+2uJ988slo3rx56n3Lzc2N5cuXp96vQYMGpY5RF154Yfz000+pefP7edjU53jd6+0PP/wwDjvssKhevXpkZ2fHfvvtl+dcFVG05+FN6datW4wbNy5uv/32yMjIiIyMjNS+OWnSpI1eb3322Wdx3HHHRe3atSMrKysOOOCAGD16dJ5lp9NjFjYUS8uWLVPH54yMjLjnnnvid7/7XVSrVi31Xeq6666L2rVrR/Xq1eOcc86JH3/8Mc8yNvQIkc6dO6f2/XXdf//9Ua9evVizZk2e4ccdd1ycffbZGzyeP/jgg9GsWbOoXLly7LHHHjF06NDUuI1dz+fn+Lqpz3PE/667X3755dh3332jSpUq0aFDh/jqq6/ipZdeimbNmkV2dnaceuqp8cMPP6TmS7fvilCc1NTU1NTU1NTU1NTU1NTU1ApLTS3/20NNbf11qqmpqampqakVNzU1NbVSJaHcePLJJ5OnnnoqmTlzZvL+++8nnTp1Spo3b56sXr06mT17dhIRSaNGjZKnnnoq+fzzz5Mvv/wy+c9//pPceOONyfvvv5989tlnyR133JFUqFAheeedd1LLbdeuXZKVlZVceumlybRp05K//e1vSdWqVZP7778/NU3Dhg2TW2+9NUmSJFm9enVy4IEHJnvttVfyyiuvJJ999lnyr3/9K3nxxRe3OLfNxXDuuecmBx10UPLGG28ks2bNSm688cakUqVKyYwZM5IkSZJhw4Yl22yzTZKbm5tMnDgxmTRpUtKsWbPk1FNPTa3jmmuuSWrWrJk8/fTTydSpU5MLL7wwyc7OTo477rh8beMkSVLb+f3330+SJElef/31JCKSRYsW5TvXPn36JNttt10yfPjwZNasWcmbb76ZPPDAA6ll77HHHsnzzz+fTJ8+Pfn973+fNGzYMFm1alUqz5ycnNSyBgwYkGRlZSUnnHBC8vHHHydvvPFGUqdOneRPf/pTnrz32GOPZNSoUclnn32WDBs2LKlUqVIyduzYJEmSpHv37knLli2TiRMnJrNnz05effXV5J///GeSJEny008/Jc2aNUvOPvvs5KOPPko+/fTT5NRTT02aNm2arFy5Mt855yf/ESNGJNttt13y448/pqa95ZZbkkaNGiVr1qxJkuSX/TA7Ozu56aabklmzZiWzZs3a7HuyoW22zz77pF4PHTo0qVy5cnLbbbcl06dPT959993Uvl6ULrrooqRBgwbJ6NGjk48++ig59thjk+rVqyeXXnppkiRJEhHJM888k2eenJycZNiwYUmSJMm7776bREQyevToZP78+cm3336br/gjItl5552Txx57LJk5c2bSs2fPJCsrKzV/YW1q/1r7XrRu3ToZO3Zs8sknnySHHHJIctBBB6Xm/9vf/pZUrlw5efjhh5Pp06cngwYNSrKzs/O8R127ds3zOW3Xrl1qu02cODGpUKFC8thjjyVz5sxJJk+enNx+++15ps3Ozk4GDhyYzJgxI3nkkUeSjIyM5JVXXtninBcvXpwMHjw42XnnnZP58+cnX331VeoYdsUVVyTTpk1Lpk2blixatCipVatW0rdv32Tq1KnJ5MmTkyOOOCI57LDD8h3f5o63+Tn2FdS5556bNGzYMBk9enTy8ccfJ8cff3yefTW/x+ODDjooGT9+fDJt2rRk+fLlScOGDZOaNWsm9957bzJjxozkoosuSrKzs5Ojjjoq+fvf/55Mnz496dy5c9KsWbPUZz6/57Cifo/zuy02dEyaNWtWUq1ateTWW29NZsyYkYwfPz7Zd999k27duuVZ7ua24drj1ty5c5OmTZsmXbt2TX7++edC57S57ZWbm5t06tQpmThxYjJjxozkD3/4Q7L99tunjhkDBgxIqlWrlnTo0CF5//33k3HjxiW77bZbnn2ua9euSVZWVnLGGWckU6ZMSaZMmbLZ88maNWuSHXbYIfnHP/6RJEmSPPvss8kOO+yQ1KlTJ7Xc3Nzc5M9//nOht0FBtsevj835OU+//fbbSWZmZnL99dcn06dPT26//fakRo0amzwPbYlfHxfze+2y8847J08++WTy6aefJueee25SvXr15JtvvkmS5Jfzff/+/ZOJEycmn3/+eeo6bOTIkXnWmZ2dnVx44YXJ1KlTk3/961/rXS9ubt8+5phjkiOOOCL56KOPUsezcePGJUmS5OuYuSG/PieMGDEiqV69evKvf/0rWbZsWVK3bt3UNdKYMWOSxo0bJ127ds2TU0H31SRJkjFjxiSPPvpoMnXq1OTTTz9NzjnnnKR27drJ0qVLU8su7vNvfrbHQw89lLz44ovJZ599lkyYMCFp06ZNcvTRRydJkiQ///xz8tRTTyURkUyfPj2ZP39+snjx4vWWkSRJ6vh99913JzNnzkyGDBmSZGZmJtOmTSvy+L/88sukYsWKyS233JLMnj07+eijj5K77747+f7771PvV5cuXZIpU6Ykzz//fFKrVq081735/TwU5Hp7r732Sk4//fRk6tSpyYwZM5K///3vyQcffJCatqjPw5uyePHipE2bNsl5552XzJ8/P5k/f34yevTozV5vffDBB8m9996bfPzxx8mMGTOSq666KqlcuXLyxRdfpKb59fe9krahWPbZZ59kwIABSZL88vnacccdk4cffjj57LPPki+++CIZOXJkUqlSpeTBBx9Mpk2blvz5z39Oqlevnud4u+6+nSRJctxxx+U5Lvzad999l2y77bbJ6NGjU8O+/fbb1LB1j+d/+9vfkrp166a+jz/11FNJzZo1k+HDhydJsvHr+fwcXzf1eU6S/30HOvDAA5N///vfyeTJk5PddtstadeuXXLkkUcmkydPTt54441k++23T6677rrUfOn2XRGKk5qampqampqampqampqamlphqKkVbHuoqampqampqampbX1qampqpYlGt3Ls66+/TiIi+fjjj1MnmNtuu22z8x1zzDHJH/7wh9Trdu3a5fkSlCRJcuWVVybNmjVLvf71gfHll19OMjMzk+nTpxdZLpuK4YsvvkgqVKiQ/Pe//80zz+GHH5707ds3SZJfTogRkcyaNSs1/u67705q166del27du3kxhtvTL3++eefkwYNGuT5sr+uX2/jJCl8UW7p0qVJpUqVkgceeGC9cWuX/eCDD6aGffLJJ0lEJFOnTk3lue6FfdWqVfNcBF5xxRVJ69atkyRJkh9//DGpWrVq8tZbb+VZ1znnnJOccsopSZIkSadOnZKzzjprg/E++uijSdOmTfO8LytXrkyqVKmSvPzyy/nK+dc2lf+KFSuS7bbbLs8XgBYtWiQDBw5MvW7YsGHSuXPnPPMVtihXr169Iv+St67vv/8+2XbbbZO///3vqWHffvttUqVKlXwX5dbNc63NxR8RyVVXXZV6vWzZsiQikpdeeqlQOSXJ5vevte/Fry9kXnjhhSQikhUrViRJkiStW7dOunfvnmf+tm3b5rso99RTTyXZ2dl5PgO/1q5du+Tggw/OM+yAAw5IrrzyyoKmm8ett96aNGzYMM969t133zzTXH311cmRRx6ZZ9i8efNSX4DyE9/mjrf5OfYVxNKlS5NtttkmVRhJkl++AFStWjW59NJLC3Q8XvuFZa2GDRsmp59+eur1/Pnzk4hI+vXrlxo2YcKEJCKS+fPnbzTGDZ3DiuM93ty2WJvTusekc845Jzn//PPzDHvzzTeTzMzMZMWKFfnehjk5Ocm0adOS+vXrJz179sxzHC6MTW2vN998M8nOzs7znyNJkiS77rprct999yVJ8ssxtEKFCsl//vOf1PiXXnopyczMTL1vXbt2TWrXrp3ngjw/55MTTjghdTzo1atXcsUVVyTbbbddMnXq1OSnn35KqlatWiTF1l/b3P6zoaLcps7Tp5xySvLb3/42z/K6dOlSrEW5dW3s2uXXX8JWrVqV7Lzzzsn111+/0XV07949OfHEE/Oss2HDhnmKw//3f/+XdOnSJUmSJF/7dvPmzfOc138tP8fMDVl7TrjrrruSnJyc1BfJ+++/P9luu+2SZcuWpaZ94YUXkszMzGTBggWpnLZkX13X6tWrU8XAtYrz/LspGyo6rDVx4sQkIpLvv/8+SZKNX8duqCj36+P3mjVrkh133DG55557ijr8ZNKkSUlEJHPmzFlvXNeuXZOaNWsmy5cvTw275557kqysrFTRbV0b+zwU5Hq7evXqqaLKuor6PJwf674/+bne2pC99torufPOO1OvS1tRrlevXnnGt2nTJrn44ovzDGvdunWhinJrx5999tmp1/fdd19Sr169ZPXq1esdz3fdddfkscceyzP/1VdfnbRp0yZJko1fz2/u+LohG/s8/3o/GDJkSBIRyWeffZYadsEFFyQdO3ZMkiT9vivC1qampqampqampqampqampqZWEGpqeampqampqampqan9Qk1tw9TU1NQ2x6NLy5GZM2fGKaecErvssktkZ2dHo0aNIiJi7ty5qWn233//PPOsXr06rr766mjevHnUrFkzsrKy4uWXX84zT0TEgQceGBkZGanXbdq0iZkzZ8bq1avXi+ODDz6InXfeOXbfffcizG7jMXz88cexevXq2H333VPPbM7Kyopx48bluW1q1apVY9ddd029rlu3burWk0uWLImFCxfGb37zm9T4ChUqxH777Zcnhvxs48KYOnVqrFy5Mg4//PCNTtOiRYs8OUREnltorqtRo0ZRvXr1PPOsnX7WrFnxww8/xBFHHJFn2/31r39NbbuLLroonnjiiWjZsmX06dMn3nrrrdSyPvzww5g1a1ZUr149NW/NmjXjxx9/3OTjJ7Yk/8qVK8cZZ5wRDz/8cERETJ48OaZMmbLebU/X3ccL46uvvoovv/xyk+9HUfjss8/ip59+itatW6eG1axZM3U75y2V3/h/vU9Vq1YtsrOzN7lP5Vd+9q9117/uPj19+vQ8n8uIWO/1phxxxBHRsGHD2GWXXeKMM86IESNG5Ll17LrrXxtDUeS/rnWPJx9++GG8/vrrebbNHnvsERGx0e2zbnz5Od5u6thXUJ9//nmsWrUqz3uQk5OT2lfzezzedttt18tr3Vxr164dERHNmzdfb9ja+PN7DiuO93hz22KtdY9JH374YQwfPjzP9unYsWOsWbMmZs+ene9tuGLFijjkkEPihBNOSN1Ou6hsbHt9+OGHsWzZsth+++3zxDZ79uw8sTVo0CB22mmn1Os2bdrEmjVr8tzSu3nz5rHtttvm2S6bO5+0a9cudUv+cePGRYcOHeLQQw+NsWPHxsSJE2PVqlXRtm3bItsOm9se+Zl+3WPa1KlT8xzrI37ZPsUpv9cuv46jYsWKsf/++8fUqVNTw+6+++7Yb7/9olatWpGVlRX333//esvYa6+9okKFCqnXv95W+dm3e/bsGddcc020bds2BgwYEB999FFqWfk9Zm7Ik08+GZdddlm8+uqr0a5du4j45b3YZ599olq1aqnp2rZtWyT76sKFC+O8886LJk2aRE5OTmRnZ8eyZcs2eWwqyvNvfk2aNCk6deoUDRo0iOrVq6e2zZZc1/46l4yMjKhTp06x5LLPPvvE4YcfHs2bN4//+7//iwceeCAWLVqUZ3zVqlVTr9u0aRPLli2LefPmRUT+Pw8Fud6+/PLL49xzz43c3Ny47rrr1tsfi/I8XBibymnZsmXRu3fvaNasWdSoUSOysrJi6tSpRfYdpySse/4truPvaaedFk899VTqMUcjRoyIk08+OTIz85Zili9fHp999lmcc845eY5j11xzTb6+N23q+BqR/8/zutdaVatWjV122SXPsHT9rgjFTU1NTW1D1NS2nJpa4aip5aWmpqYWoaa2lpra/6ipqalFqKnll5rallNTU1OLUFMrCRVLOgC2nk6dOkXDhg3jgQceSD3XeO+9987zDO1fX3hERNx4441x++23x2233RbNmzePatWqRa9evfLMU1BVqlTZ4nm3xLJly6JChQoxadKkPAeqiIisrKzUv7fZZps84zIyMiJJkgKtKz/buDDys+1+ncfaL2HrPsN6Y9OvnWft9MuWLYuIiBdeeCHPF6iIiEqVKkVExNFHHx1ffPFFvPjii/Hqq6/G4YcfHt27d4+bbropli1bFvvtt1+MGDFivfXWqlVrs7msa3P5n3vuudGyZcv4z3/+E8OGDYsOHTpEw4YN80yz7j5eGFt7X96UDe2vv36G+IbkN/5N7SOFsbn9a+3JuKD7dEFUr149Jk+eHGPHjo1XXnkl+vfvHwMHDoyJEydGjRo11lv/2hiKav2/tu6+uWzZsujUqVNcf/3160279mJ5c/EV9Jixdv6CHvvyK7/H4ypVqmywiLShfWFT+0d+z2Fb6z3ekA297xdccEH07NlzvWkbNGgQH330Ub62YaVKlSI3Nzeef/75uOKKK9b7jBXGxrbXsmXLom7duqnC2K+t/Tzl14a2y+bOJ+3bt49evXrFzJkz49NPP42DDz44pk2bFmPHjo1FixbF/vvvn+fLeFEp6P5TnMe0LVEU1y5PPPFE9O7dO26++eZo06ZNVK9ePW688cZ455138ky3uWuOze3b5557bnTs2DFeeOGFeOWVV2LIkCFx8803xyWXXJLvY+aG7LvvvjF58uR4+OGHY//99y9QEXtL9tWuXbvGt99+G7fffns0bNgwKlWqFG3atEmrY9Py5cujY8eO0bFjxxgxYkTUqlUr5s6dGx07dtyi69qtlUuFChXi1VdfjbfeeiteeeWVuPPOO+PPf/7zevvixuT381CQz/HAgQPj1FNPjRdeeCFeeumlGDBgQDzxxBNx/PHHr7estcsrrvPwpmwqp969e8err74aN910U+y2225RpUqV+P3vf19k33GKWmZm5mavi7fkO0F+lruuTp06RZIk8cILL8QBBxwQb775Ztx6663rTbf2uviBBx5Yrzi47jFxQzb1GSvI53nd/aA0fVeE4qampqa2uenXzpOux0k1tY1TU9syampqausuY+1y1NQ2Tk0tLzU1NbVfU1PbMDU1NbWtSU1NTa000ehWTnz77bcxffr0eOCBB+KQQw6JiIh///vfm51v/Pjxcdxxx8Xpp58eEb8cmGfMmBF77rlnnunWPdG9/fbb0aRJkw0eQFq0aBH/+c9/YsaMGUX6C9SNxbDvvvvG6tWr46uvvkrlXlA5OTlRu3btmDhxYhx66KER8cuvmiZPnhwtW7aMiC3fxgXRpEmTqFKlSowZMybOPffcIl32huy5555RqVKlmDt3bqpDeUNq1aoVXbt2ja5du8YhhxwSV1xxRdx0003RqlWrGDlyZOy4446RnZ1d6Hg2l3/z5s1j//33jwceeCAee+yxuOuuuwq9zk2pXr16NGrUKMaMGROHHXZYsa1n1113jW222SbeeeedaNCgQURELFq0KGbMmJF6X2rVqhXz589PzTNz5sw8v6Jc+8uYX/8ifGvFvzGb27/y03XetGnTmDhxYpx55pmpYRMnTixQHBUrVozc3NzIzc2NAQMGRI0aNeK1116LE044oUDLKWqtWrWKp556Kho1ahQVK27Z6bq4jrcbs8suu8Q222wTEydOTO2rS5YsiRkzZsShhx5aJMfjgsjvOaw4bG5bbEyrVq3i008/jd12222D4/O7DTMzM+PRRx+NU089NQ477LAYO3Zs1KtXr3BJbUarVq1iwYIFUbFixdQvtjZk7ty58eWXX6biefvttyMzM3OTv6jPz/mkefPmsd1228U111wTLVu2jKysrGjfvn1cf/31sWjRomjfvn1h0tsqmjVrtsHrmeJSkGuXt99+O7Xv/vzzzzFp0qTo0aNHRPzyWTvooIPi4osvTk1f0F8O5Xffrl+/flx44YVx4YUXRt++feOBBx6ISy65pFDHzF133TVuvvnmaN++fVSoUCHuuuuuaNasWQwfPjyWL1+e+vI+fvz4ItlXx48fH0OHDo3f/va3ERExb968+OabbwoUc3GbNm1afPvtt3HddddF/fr1IyLivffeyzPNhq4t0kFGRka0bds22rZtG/3794+GDRvGM888ExG//NptxYoVqf+0evvttyMrKyvq169frNfyu+++e+y+++5x2WWXxSmnnBLDhg1LFeW2tm233bbA79n48eOjW7duqZiXLVsWc+bMKYboisa618VLly6N2bNnb3KetcffX19Trnv8XXe5q1evjilTpmzyOrpy5cpxwgknxIgRI2LWrFnRtGnTaNWq1XrT1a5dO+rVqxeff/55nHbaaRtc1pZ+5vLzed4S6fZdEYqTmpqa2pZIt+Okmpqa2rrU1DZNTU1NTU1NTW1T1NR+oaa2PjU1NbVfU1Pb8HLV1NLru2Jp5dGl5cR2220X22+/fdx///0xa9aseO211+Lyyy/f7HxNmjRJdXBPnTo1Lrjggli4cOF6082dOzcuv/zymD59ejz++ONx5513xqWXXrrBZbZr1y4OPfTQOPHEE+PVV1+N2bNnx0svvRSjRo0qVI4bi2H33XeP0047Lc4888x4+umnY/bs2fHuu+/GkCFD4oUXXsj38i+55JIYMmRIPPfcczF9+vS49NJLY9GiRanu7C3dxgVRuXLluPLKK6NPnz6p21e+/fbb8dBDDxXpetaqXr169O7dOy677LJ45JFH4rPPPovJkyfHnXfeGY888khERPTv3z+ee+65mDVrVnzyySfx/PPPR7NmzSLil9uK7rDDDnHcccfFm2++GbNnz46xY8dGz5494z//+U+B48lP/ueee25cd911kSTJVrnYGThwYNx8881xxx13xMyZM1PbpyhlZWXFOeecE1dccUW89tprqcdH/Pr2rB06dIi77ror3n///XjvvffiwgsvzNMtvuOOO0aVKlVi1KhRsXDhwliyZMlWi39j8rN/bc4ll1wSDz30UDzyyCMxc+bMuOaaa+Kjjz7K9y+Hnn/++bjjjjvigw8+iC+++CL++te/xpo1awr9CIui0L179/juu+/ilFNOiYkTJ8Znn30WL7/8cpx11ln5vhgrruPtxlSvXj26du0aV1xxRbz++uvxySefxDnnnBOZmZmRkZFRZMfj/MrvOaw4bG5bbMyVV14Zb731VvTo0SM++OCDmDlzZjz33HOp4kdBtmGFChVixIgRsc8++0SHDh1iwYIFxZpzbm5utGnTJjp37hyvvPJKzJkzJ956663485//nOfiv3LlytG1a9f48MMP480334yePXvGSSedFHXq1NnosvNzPsnIyIhDDz00RowYkSrAtWjRIlauXBljxozZ5BeGdNGzZ88YNWpU3HTTTTFz5sy46667iu3zGlGwa5e77747nnnmmZg2bVp07949Fi1aFGeffXZE/PJZe++99+Lll1+OGTNmRL9+/Qr8HyT52bd79eoVL7/8csyePTsmT54cr7/+euqao7DHzN133z1ef/31eOqpp6JXr15x2mmnpfbVKVOmxOuvvx6XXHJJnHHGGalHumxIfvbVJk2axKOPPhpTp06Nd955J0477bS0uqNFxC+/dt92223jzjvvjM8//zz++c9/xtVXX51nmoYNG0ZGRkY8//zz8fXXX6d+iVaS3nnnnfjLX/4S7733XsydOzeefvrp+Prrr1P7yU8//RTnnHNOfPrpp/Hiiy/GgAEDokePHpGZmVks1/IrVqyIHj16xNixY+OLL76I8ePHx8SJE1PxlIRGjRrFO++8E3PmzIlvvvkmX78CbtKkSTz99NPxwQcfxIcffhinnnpqif5qfnM6dOgQjz76aLz55pvx8ccfR9euXTf7C85LL700Hn744Rg2bFjMmDEjBgwYEJ988sl6y33hhRfihRdeiGnTpsVFF10Uixcv3mw8p512Wrzwwgvx8MMPb7TgFhExaNCgGDJkSNxxxx0xY8aM+Pjjj2PYsGFxyy23RMTGr+c3Jz+f5y2Rbt8VoTipqampbYl0O06qqamprUtNbdPU1NTU1NTU1DZFTS3v+tXU/kdNTU3t19TU/rdcNbX/SbfviqWVRrdyIjMzM5544omYNGlS7L333nHZZZfFjTfeuNn5rrrqqmjVqlV07Ngx2rdvH3Xq1InOnTuvN92ZZ54ZK1asiN/85jfRvXv3uPTSS+P888/f6HKfeuqpOOCAA+KUU06JPffcM/r06VPozvVNxTBs2LA488wz4w9/+EM0bdo0OnfunOcXQflx5ZVXximnnBJnnnlmtGnTJrKysqJjx45RuXLliNjybVxQ/fr1iz/84Q/Rv3//aNasWXTp0qVYnzl+9dVXR79+/WLIkCHRrFmzOOqoo+KFF16Ixo0bR8QvXdB9+/aNFi1axKGHHhoVKlSIJ554IiJ+eT76G2+8EQ0aNIgTTjghmjVrFuecc078+OOPW9xhvLn8TznllKhYsWKccsopqfemOHXt2jVuu+22GDp0aOy1115x7LHHxsyZM4t8PTfeeGMccsgh0alTp8jNzY2DDz449ttvv9T4m2++OerXrx+HHHJInHrqqdG7d+88txOvWLFi3HHHHXHfffdFvXr14rjjjtuq8W/M5vavzTnttNOib9++0bt372jVqlXMnj07unXrlu/3vkaNGvH0009Hhw4dolmzZnHvvffG448/HnvttVdh0ioS9erVi/Hjx8fq1avjyCOPjObNm0evXr2iRo0a6z2DflOK43i7Kbfccku0adMmjj322MjNzY22bdtGs2bNUu9JURyP8yu/57DisrltsSEtWrSIcePGxYwZM+KQQw6JfffdN/r375/nl6MF2YYVK1ZM7dMdOnQo1vNFRkZGvPjii3HooYfGWWedFbvvvnucfPLJ8cUXX+QpYuy2225xwgknxG9/+9s48sgjo0WLFjF06NBNLju/55N27drF6tWrU0W5zMzMOPTQQ1O/Rkt3Bx54YDzwwANx++23xz777BOvvPJKXHXVVcW2voJcu1x33XVx3XXXxT777BP//ve/45///GfssMMOERFxwQUXxAknnBBdunSJ1q1bx7fffpvnl6j5tbl9e/Xq1dG9e/fU+WL33XdP7TtFccxs2rRpvPbaa/H4449Hv3794uWXX47vvvsuDjjggPj9738fhx9++GbvbJGfffWhhx6KRYsWRatWreKMM86Inj17xo477ljg7VWcatWqFcOHD49//OMfseeee8Z1110XN910U55pdtpppxg0aFD88Y9/jNq1a6f+86AkZWdnxxtvvBG//e1vY/fdd4+rrroqbr755jj66KMjIuLwww+PJk2axKGHHhpdunSJ3/3udzFw4MCIKJ5r+QoVKsS3334bZ555Zuy+++5x0kknxdFHHx2DBg0qbKpbrHfv3lGhQoXYc889U7fb35xbbrkltttuuzjooIOiU6dO0bFjxw3+gjJd9O3bN9q1axfHHntsHHPMMdG5c+fYddddNzlPly5dol+/ftGnT5/Yb7/94osvvoiLLroozzRnn312dO3aNc4888xo165d7LLLLvm6g0uHDh2iZs2aMX369Dj11FM3Ot25554bDz74YAwbNiyaN28e7dq1i+HDh6euizd2Pb85+fk8b6l0+64IxUVNTU1tS6XbcVJNTU3t19TUNk9NTU1NTU1NbWPU1PJSU/sfNTU1tV9TU/uFmtr60u27YmmUkZTEw4qhDFizZk00a9YsTjrppCLp3qVozJkzJ3bdddeYOHFiWl8sUHyOOOKIqFOnTjz66KMlHQrxyzPsd9ppp7j55pvjnHPOKelwSpRtQbo45ZRTokKFCvG3v/1ts9POmTMnGjduHO+//37q0VJQGnXr1i0WL14czz77bEmHAgDlnppaelJTQ00tvagj/Y9tQbpQU6M8UlMD0lHBHrYN5dgXX3wRr7zySrRr1y5WrlwZd911V8yePXuTHcRsPatWrYpvv/02rrrqqjjwwAMV5MqJH374Ie69997o2LFjVKhQIR5//PEYPXp0vPrqqyUdWrn1/vvvx7Rp0+I3v/lNLFmyJAYPHhwRke9fSJQltgXp5ueff44ZM2bEhAkT4oILLijpcAAAKCfU1NKbmlr5pKaWftSR/se2IN2oqQFAetHoBvmUmZkZw4cPj969e0eSJLH33nvH6NGjS/R54PzP+PHj47DDDovdd989nnzyyZIOh61k7W3dr7322vjxxx+jadOm8dRTT0Vubm5Jh1au3XTTTTF9+vTYdtttY7/99os333wzdTv28sa2IJ1MmTIlDjrooDjssMPiwgsvLOlwAAAoJ9TU0puaWvmkppae1JH+x7YgnaipAUB68ehSAAAAAAAAAAAA0lpmSQcAAAAAAAAAAAAAm6LRDQAAAAAAAAAAgLSm0Q0AAAAAAAAAAIC0ptENAAAAAAAAAACAtKbRDQAAAAAAAAAAgLSm0Q0AAAAAAAAAAIC0ptENAKCEdevWLTp37lzSYQAAAABAqaGmBgBQ/mh0AwAAAAAAAAAAIK1pdAMASGO33HJLNG/ePKpVqxb169ePiy++OJYtW5YaP3z48KhRo0a8/PLL0axZs8jKyoqjjjoq5s+fn5rm559/jp49e0aNGjVi++23jyuvvDK6du2a5xevjRo1ittuuy3Pulu2bBkDBw7MdywREQ888EDUr18/qlatGscff3zccsstUaNGjTzTPPfcc9GqVauoXLly7LLLLjFo0KD4+eefIyIiSZIYOHBgNGjQICpVqhT16tWLnj17Fm4jAgAAAFCuqKmpqQEAZZNGNwCANJaZmRl33HFHfPLJJ/HII4/Ea6+9Fn369MkzzQ8//BA33XRTPProo/HGG2/E3Llzo3fv3qnx119/fYwYMSKGDRsW48ePj6VLl8azzz5b5LGMHz8+Lrzwwrj00kvjgw8+iCOOOCKuvfbaPMt4880348wzz4xLL700Pv3007jvvvti+PDhqemeeuqpuPXWW+O+++6LmTNnxrPPPhvNmzcvcKwAAAAAlF9qampqAEDZlJEkSVLSQQAAlGfdunWLxYsX56tQ9uSTT8aFF14Y33zzTUT88uvTs846K2bNmhW77rprREQMHTo0Bg8eHAsWLIiIiDp16kTv3r1ThbrVq1fHLrvsEvvuu29qnY0aNYpevXpFr169Uutq2bJldO7cOc8vUDcVy8knnxzLli2L559/PjXN6aefHs8//3wsXrw4IiJyc3Pj8MMPj759+6am+dvf/hZ9+vSJL7/8Mm655Za47777YsqUKbHNNttsdnsAAAAAiyonUwAA5IZJREFUUD6pqampAQDljzu6AQCksdGjR8fhhx8eO+20U1SvXj3OOOOM+Pbbb+OHH35ITVO1atVUQS4iom7duvHVV19FRMSSJUti4cKF8Zvf/CY1vkKFCrHffvsVeSzTp0/Ps56IWO/1hx9+GIMHD46srKzU33nnnRfz58+PH374If7v//4vVqxYEbvsskucd9558cwzz6QewQAAAAAA+aGmpqYGAJRNGt0AANLUnDlz4thjj40WLVrEU089FZMmTYq77747IiJ++umn1HTr/kozIyMjCnrT3szMzPXmWbVqVYFj2Zxly5bFoEGD4oMPPkj9ffzxxzFz5syoXLly1K9fP6ZPnx5Dhw6NKlWqxMUXXxyHHnponlgAAAAAYGPU1NTUAICyq2JJBwAAwIZNmjQp1qxZEzfffHNkZv7y+4S///3vBVpGTk5O1K5dOyZOnBiHHnpoRPzymIXJkydHy5YtU9PVqlUr5s+fn3q9dOnSmD17doFiadq0aUycODHPsHVft2rVKqZPnx677bbbRmOuUqVKdOrUKTp16hTdu3ePPfbYIz7++ONo1apVgXIHAAAAoPxRU1NTAwDKLo1uAABpYMmSJfHBBx/kGbbDDjvEqlWr4s4774xOnTrF+PHj49577y3wsi+55JIYMmRI7LbbbrHHHnvEnXfeGYsWLYqMjIzUNB06dIjhw4dHp06dokaNGtG/f/+oUKFCavxuu+222VguueSSOPTQQ+OWW26JTp06xWuvvRYvvfRSnvX0798/jj322GjQoEH8/ve/j8zMzPjwww9jypQpcc0118Tw4cNj9erV0bp166hatWr87W9/iypVqkTDhg0LnDcAAAAAZZuampoaAFC+eHQpAEAaGDt2bOy77755/h599NG45ZZb4vrrr4+99947RowYEUOGDCnwsq+88so45ZRT4swzz4w2bdpEVlZWdOzYMSpXrpyapm/fvtGuXbs49thj45hjjonOnTvHrrvumhq/zz77bDaWtm3bxr333hu33HJL7LPPPjFq1Ki47LLL8qynY8eO8fzzz8crr7wSBxxwQBx44IFx6623popuNWrUiAceeCDatm0bLVq0iNGjR8e//vWv2H777QucNwAAAABlm5qamhoAUL5kJAV92DwAAKXamjVrolmzZnHSSSfF1VdfXazrOu+882LatGnx5ptvFut6AAAAAKA4qakBAJQ8jy4FACjjvvjii3jllVeiXbt2sXLlyrjrrrti9uzZceqppxb5um666aY44ogjolq1avHSSy/FI488EkOHDi3y9QAAAABAcVJTAwBIPxrdAADKuMzMzBg+fHj07t07kiSJvffeO0aPHh3NmjUr8nW9++67ccMNN8T3338fu+yyS9xxxx1x7rnnFvl6AAAAAKA4qakBAKQfjy4FAAAAAAAAAAAgrWWWdAAAAAAAAAAAAACwKRrdAAAAAAAAAAAASGsa3QAAAAAAAAAAAEhrGt0AAAAAAAAAAABIaxrdAAAAAAAAAAAASGsa3QAAAAAAAAAAAEhrGt0AAAAAAAAAAABIaxrdAAAAAAAAAAAASGsa3QAAAAAAAAAAAEhrGt0AAAAAAAAAAABIaxrdAAAAAAAAAAAASGsa3QAAAAAAAAAAAEhrGt0AAAAAAAAAAABIaxrdAAAAAAAAAAAASGsa3QAAAAAAAAD+v4EDB0ZGRkaB5pkzZ05kZGTE8OHDiycoAAA0ugEA8D9vvfVWDBw4MBYvXrzJ6RYvXhw77rhjZGRkxJNPPrl1ggMAAAAAAADKLY1uAACkvPXWWzFo0KDNNrr1798/fvjhh60TFAAAAABsRVdddVWsWLGiQPM0bNgwVqxYEWeccUYxRQUAgEY3AAAKZMqUKXHPPffElVdeWdKhAAAAAECRq1ixYlSuXLlA82RkZETlypWjQoUKxRQVAAAa3QAASrmxY8fG/vvvH5UrV45dd9017rvvvhg4cGBkZGSkpsnIyIgePXrEiBEjomnTplG5cuXYb7/94o033khNM3DgwLjiiisiIqJx48aRkZERGRkZMWfOnDzru/TSS+P444+PQw45ZKMxvf/++3H00UdHdnZ2ZGVlxeGHHx5vv/120SYOAAAAAAXw5JNPRkZGRowbN269cffdd19kZGTElClT1qutRUS8+uqrcfDBB0eNGjUiKysrmjZtGn/6059S4+fMmRMZGRkxfPjwPPO99tprccghh0S1atWiRo0acdxxx8XUqVPzTLN2fbNmzYpu3bpFjRo1IicnJ8466yxPVQAA+JWKJR0AAABb7v3334+jjjoq6tatG4MGDYrVq1fH4MGDo1atWutNO27cuBg5cmT07NkzKlWqFEOHDo2jjjoq3n333dh7773jhBNOiBkzZsTjjz8et956a+ywww4REXmW9Y9//CPeeuutmDp16noNcGt98sknccghh0R2dnb06dMnttlmm7jvvvuiffv2MW7cuGjdunWxbAsAAAAA2JRjjjkmsrKy4u9//3u0a9cuz7iRI0fGXnvtFXvvvXc8+eSTecZ98sknceyxx0aLFi1i8ODBUalSpZg1a1aMHz9+k+sbPXp0HH300bHLLrvEwIEDY8WKFXHnnXdG27ZtY/LkydGoUaM805900knRuHHjGDJkSEyePDkefPDB2HHHHeP6668vkvwBAEo7jW4AAKXYgAEDokKFCjF+/PioV69eRPxSEGvWrNl6006ZMiXee++92G+//SIi4uSTT46mTZtG//794+mnn44WLVpEq1at4vHHH4/OnTuvV2hbsWJF9O7dOy677LJo1KjRRhvdrrrqqli1alX8+9//jl122SUiIs4888xo2rRp9OnTZ4O/mAUAAACA4lalSpXo1KlTPPnkk3HHHXekHjO6YMGCGDduXAwcOHCD87366qvx008/xUsvvZT6cWh+XHHFFVGzZs2YMGFC1KxZMyIiOnfuHPvuu28MGDAgHnnkkTzT77vvvvHQQw+lXn/77bfx0EMPaXQDAPj/PLoUAKCUWr16dYwePTo6d+6canKLiNhtt93i6KOPXm/6Nm3apJrcIiIaNGgQxx13XLz88suxevXqza7vuuuui1WrVuV5JMOGYnrllVeic+fOqSa3iIi6devGqaeeGv/+979j6dKl+U0RAAAAAIpUly5d4quvvoqxY8emhj355JOxZs2a6NKlywbnqVGjRkREPPfcc7FmzZp8rWf+/PnxwQcfRLdu3VJNbhERLVq0iCOOOCJefPHF9ea58MIL87w+5JBD4ttvv1VPAwD4/zS6AQCUUl999VWsWLEidtttt/XGbWhYkyZN1hu2++67xw8//BBff/31Jtc1Z86cuPHGG+Paa6+NrKysjU739ddfxw8//BBNmzZdb1yzZs1izZo1MW/evE2uCwAAAACKy1FHHRU5OTkxcuTI1LCRI0dGy5YtY/fdd9/gPF26dIm2bdvGueeeG7Vr146TTz45/v73v2+y6e2LL76IiNhoneybb76J5cuX5xneoEGDPK+32267iIhYtGhR/pIDACjjNLoBALBZ/fv3j5122inat28fc+bMiTlz5sSCBQsi4pfmtjlz5uT716wAAAAAUFIqVaoUnTt3jmeeeSZ+/vnn+O9//xvjx4/f6N3cIn555Okbb7wRo0ePjjPOOCM++uij6NKlSxxxxBH5elJCfq19lOq6kiQpsnUAAJRmFUs6AAAAtsyOO+4YlStXjlmzZq03bkPDZs6cud6wGTNmRNWqVaNWrVoREZGRkbHBdc2dOzdmzZqV53Gka1188cUR8csvS2vVqhVVq1aN6dOnrzfdtGnTIjMzM+rXr7/pxAAAAACgGHXp0iUeeeSRGDNmTEydOjWSJNlko1tERGZmZhx++OFx+OGHxy233BJ/+ctf4s9//nO8/vrrkZubu970DRs2jIjYaJ1shx12iGrVqhVNQgAA5YRGNwCAUqpChQqRm5sbzz77bHz55ZdRr169iPilye2ll15ab/oJEybE5MmTo1WrVhERMW/evHjuuefiqKOOSv1adG1xbfHixXnmveaaa+Kbb77JM2zKlCnRr1+/6NOnT7Rp0yaqVasWFSpUiCOPPDKee+65mDNnTjRq1CgiIhYuXBiPPfZYHHzwwZGdnV2UmwEAAAAACiQ3Nzdq1qwZI0eOjKlTp8ZvfvObaNy48Uan/+6776JmzZp5hrVs2TIiIlauXLnBeerWrRstW7aMRx55JPr27Rs1atSIiF9qaq+88kqcfvrpRZILAEB5otENAKAUGzhwYLzyyivRtm3buOiii2L16tVx1113xd577x0ffPBBnmn33nvv6NixY/Ts2TMqVaoUQ4cOjYiIQYMGpabZb7/9IiLiz3/+c5x88smxzTbbRKdOneLggw9eb91ri3MHHHBAdO7cOTX8mmuuiVdffTUOPvjguPjii6NixYpx3333xcqVK+OGG24o2g0AAAAAAAW0zTbbxAknnBBPPPFELF++PG666aZNTj948OB444034phjjomGDRvGV199FUOHDo2dd955g3WztW688cY4+uijo02bNnHOOefEihUr4s4774ycnJwYOHBgEWcFAFD2aXQDACjF9ttvv3jppZeid+/e0a9fv6hfv34MHjw4pk6dGtOmTcszbbt27aJNmzYxaNCgmDt3buy5554xfPjwaNGiRWqaAw44IK6++uq49957Y9SoUbFmzZqYPXt2gR6jsNdee8Wbb74Zffv2jSFDhsSaNWuidevW8be//S1at25dZLkDAAAAwJbq0qVLPPjgg5GRkREnnXTSJqf93e9+F3PmzImHH344vvnmm9hhhx2iXbt2MWjQoMjJydnofLm5uTFq1KgYMGBA9O/fP7bZZpto165dXH/99Zu8gxwAABuWkSRJUtJBAABQtDp37hyffPJJzJw5MyIiMjIyonv37nHXXXeVcGQAAAAAAAAABZdZ0gEAAFA4K1asyPN65syZ8eKLL0b79u1LJiAAAAAAAACAIubRpQAApdwuu+wS3bp1i1122SW++OKLuOeee2LbbbeNPn36lHRoAAAAAAAAAEVCoxsAQCl31FFHxeOPPx4LFiyISpUqRZs2beIvf/lLNGnSpKRDAwAAAAAAACgSGUmSJCUdBAAAAAAAAAAAAGxMZkkHAAAAAAAAAAAAAJui0Q0AAAAAAAAAAIC0VrGkA0gHa9asiS+//DKqV68eGRkZJR0OAAAAAGkiSZL4/vvvo169epGZ6Tejv6amBgAAAMCGFFdNTaNbRHz55ZdRv379kg4DAAAAgDQ1b9682HnnnUs6jLSipgYAAADAphR1TU2jW0RUr149In7ZuNnZ2SUcDQAAAADpYunSpVG/fv1U/Yj/UVMDAAAAYEOKq6am0S0i9WiF7OxsRTkAAAAA1uPRnOtTUwMAAABgU4q6plZ0D0EFAAAAAAAAAACAYqDRDQAAAAAAAAAAgLSm0Q0AAAAAAAAAAIC0ptENAAAAAAAAAACAtKbRDQAAAAAAAAAAgLSm0Q0AAAAAAAAAAIC0ptENAAAAAAAAAACAtKbRDQAAAAAAAAAAgLSm0Q0AAAAAAAAAAIC0ptENAAAAAAAAAACAtFaijW5vvPFGdOrUKerVqxcZGRnx7LPP5hmfJEn0798/6tatG1WqVInc3NyYOXNmnmm+++67OO200yI7Oztq1KgR55xzTixbtmwrZgEAAAAAW4+aGgAAAADlUYk2ui1fvjz22WefuPvuuzc4/oYbbog77rgj7r333njnnXeiWrVq0bFjx/jxxx9T05x22mnxySefxKuvvhrPP/98vPHGG3H++edvrRQAAAAAYKtSUwMAAACgPMpIkiQp6SAiIjIyMuKZZ56Jzp07R8QvvzytV69e/OEPf4jevXtHRMSSJUuidu3aMXz48Dj55JNj6tSpseeee8bEiRNj//33j4iIUaNGxW9/+9v4z3/+E/Xq1cvXupcuXRo5OTmxZMmSyM7OLpb8AAAAACh90r1upKYGAAAAQLoprrpRid7RbVNmz54dCxYsiNzc3NSwnJycaN26dUyYMCEiIiZMmBA1atRIFeQiInJzcyMzMzPeeeedrR4zAAAAAJQkNTUAAAAAyqqKJR3AxixYsCAiImrXrp1neO3atVPjFixYEDvuuGOe8RUrVoyaNWumptmQlStXxsqVK1Ovly5dWlRhAwAAAECJUVMDAAAAoKxK20a34jRkyJAYNGhQSYcBUO516TOypEPYYiNv6FLSIQAAAGxV5aWmVp6+q5bmXCN8N9+U8vbeyrf0KE+5RpSvfMtTrhHOQVAeOE4BpKe0fXRpnTp1IiJi4cKFeYYvXLgwNa5OnTrx1Vdf5Rn/888/x3fffZeaZkP69u0bS5YsSf3NmzeviKMHAAAAgK1PTQ0AAACAsiptG90aN24cderUiTFjxqSGLV26NN55551o06ZNRES0adMmFi9eHJMmTUpN89prr8WaNWuidevWG112pUqVIjs7O88fAAAAAJR2amoAAAAAlFUl+ujSZcuWxaxZs1KvZ8+eHR988EHUrFkzGjRoEL169YprrrkmmjRpEo0bN45+/fpFvXr1onPnzhER0axZszjqqKPivPPOi3vvvTdWrVoVPXr0iJNPPjnq1atXQlkBbDm3QaasKM37sv0YoHRzDgLKAzU1AADSVWn+Xh7huznlV2n+7PrcslZp3o8j7Mv5VaKNbu+9914cdthhqdeXX355RER07do1hg8fHn369Inly5fH+eefH4sXL46DDz44Ro0aFZUrV07NM2LEiOjRo0ccfvjhkZmZGSeeeGLccccdWz0XAAAAANga1NQAAAAAKI9KtNGtffv2kSTJRsdnZGTE4MGDY/DgwRudpmbNmvHYY48VR3gAAAAAkHbU1AAAAAAojzJLOgAAAAAAAAAAAADYlBK9oxsAlBeeCV92eW+BdOc4BaWPzy0AAJQtpfka3/U9AJBO3NENAAAAAAAAAACAtKbRDQAAAAAAAAAAgLTm0aVAWivNt/OOcEtvAAAAAAAAAICi4I5uAAAAAAAAAAAApDWNbgAAAAAAAAAAAKQ1jW4AAAAAAAAAAACktYolHQDFp0ufkSUdwhYbeUOXkg4BAAAAAAAAAKDU0jdCWeOObgAAAAAAAAAAAKQ1jW4AAAAAAAAAAACkNY1uAAAAAAAAAAAApDWNbgAAAAAAAAAAAKQ1jW4AAAAAAAAAAACkNY1uAAAAAAAAAAAApDWNbgAAAAAAAAAAAKQ1jW4AAAAAAAAAAACkNY1uAAAAAAAAAAAApLWKJR0AAABQ8rr0GVnSIRTKyBu6lHQIAAAAAAAAFCN3dAMAAAAAAAAAACCtaXQDAAAAAAAAAAAgrWl0AwAAAAAAAAAAIK1pdAMAAAAAAAAAACCtaXQDAAAAAAAAAAAgrWl0AwAAAAAAAAAAIK1VLOkAAAAgHXXpM7KkQyiUkTd0KekQAAAAAAAAoMi4oxsAAAAAAAAAAABpTaMbAAAAAAAAAAAAaU2jGwAAAAAAAAAAAGlNoxsAAAAAAAAAAABpTaMbAAAAAAAAAAAAaU2jGwAAAAAAAAAAAGlNoxsAAAAAAAAAAABpTaMbAAAAAAAAAAAAaU2jGwAAAAAAAAAAAGlNoxsAAAAAAAAAAABpTaMbAAAAAAAAAAAAaU2jGwAAAAAAAAAAAGlNoxsAAAAAAAAAAABpTaMbAAAAAAAAAAAAaU2jGwAAAAAAAAAAAGlNoxsAAAAAAAAAAABpTaMbAAAAAAAAAAAAaa1iSQcARaFLn5ElHUKhjLyhS0mHAAAAAAAAAAAAacsd3QAAAAAAAAAAAEhrGt0AAAAAAAAAAABIaxrdAAAAAAAAAAAASGsa3QAAAAAAAAAAAEhrGt0AAAAAAAAAAABIaxrdAAAAAAAAAAAASGsa3QAAAAAAAAAAAEhrGt0AAAAAAAAAAABIaxrdAAAAAAAAAAAASGsa3QAAAAAAAAAAAEhrGt0AAAAAAAAAAABIaxrdAAAAAAAAAAAASGsa3QAAAAAAAAAAAEhrGt0AAAAAAAAAAABIaxrdAAAAAAAAAAAASGtp3ei2evXq6NevXzRu3DiqVKkSu+66a1x99dWRJElqmiRJon///lG3bt2oUqVK5ObmxsyZM0swagAAAAAoOWpqAAAAAJRFFUs6gE25/vrr45577olHHnkk9tprr3jvvffirLPOipycnOjZs2dERNxwww1xxx13xCOPPBKNGzeOfv36RceOHePTTz+NypUrl3AGAAAAUDy69BlZ0iEUysgbupR0CFBmqakBAAAAUBaldaPbW2+9Fccdd1wcc8wxERHRqFGjePzxx+Pdd9+NiF9+eXrbbbfFVVddFccdd1xERPz1r3+N2rVrx7PPPhsnn3xyicUOAAAAACVBTQ0AAACAsiitH1160EEHxZgxY2LGjBkREfHhhx/Gv//97zj66KMjImL27NmxYMGCyM3NTc2Tk5MTrVu3jgkTJpRIzAAAAABQktTUAAAAACiL0vqObn/84x9j6dKlsccee0SFChVi9erVce2118Zpp50WERELFiyIiIjatWvnma927dqpcRuycuXKWLlyZer10qVLiyF6AAAAANj61NQAAAAAKIvS+o5uf//732PEiBHx2GOPxeTJk+ORRx6Jm266KR555JFCLXfIkCGRk5OT+qtfv34RRQwAAAAAJUtNDQAAAICyKK0b3a644or44x//GCeffHI0b948zjjjjLjssstiyJAhERFRp06diIhYuHBhnvkWLlyYGrchffv2jSVLlqT+5s2bV3xJAAAAAMBWpKYGAAAAQFmU1o1uP/zwQ2Rm5g2xQoUKsWbNmoiIaNy4cdSpUyfGjBmTGr906dJ45513ok2bNhtdbqVKlSI7OzvPHwAAAACUBWpqAAAAAJRFFUs6gE3p1KlTXHvttdGgQYPYa6+94v33349bbrklzj777IiIyMjIiF69esU111wTTZo0icaNG0e/fv2iXr160blz55INHgAAAABKgJoaAAAAAGVRWje63XnnndGvX7+4+OKL46uvvop69erFBRdcEP37909N06dPn1i+fHmcf/75sXjx4jj44INj1KhRUbly5RKMHAAAAABKhpoaAAAAAGVRWje6Va9ePW677ba47bbbNjpNRkZGDB48OAYPHrz1AgMAAACANKWmBgAAAEBZlFnSAQAAAAAAAAAAAMCmaHQDAAAAAAAAAAAgrWl0AwAAAAAAAAAAIK1pdAMAAAAAAAAAACCtaXQDAAAAAAAAAAAgrWl0AwAAAAAAAAAAIK1pdAMAAAAAAAAAACCtaXQDAAAAAAAAAAAgrWl0AwAAAAAAAAAAIK1pdAMAAAAAAAAAACCtaXQDAAAAAAAAAAAgrVUs6QAAAAAAAAAAgPTVpc/Ikg6hUEbe0KWkQwCgCLijGwAAAAAAAAAAAGlNoxsAAAAAAAAAAABpTaMbAAAAAAAAAAAAaU2jGwAAAAAAAAAAAGlNoxsAAAAAAAAAAABpTaMbAAAAAAAAAAAAaa1iSQcAFFyXPiNLOoQtNvKGLiUdAgAAAAAAAAAApYw7ugEAAAAAAAAAAJDWNLoBAAAAAAAAAACQ1jS6AQAAAAAAAAAAkNY0ugEAAAAAAAAAAJDWNLoBAAAAAAAAAACQ1jS6AQAAAAAAAAAAkNY0ugEAAAAAAAAAAJDWNLoBAAAAAAAAAACQ1jS6AQAAAAAAAAAAkNY0ugEAAAAAAAAAAJDWKpZ0AAAAAACb06XPyJIOYYuNvKFLSYcAAAAAAFDquaMbAAAAAAAAAAAAaU2jGwAAAAAAAAAAAGlNoxsAAAAAAAAAAABpTaMbAAAAAAAAAAAAaU2jGwAAAAAAAAAAAGlNoxsAAAAAAAAAAABprWJJBwAAQOnRpc/Ikg5hi428oUtJhwAAAAAAAABsIXd0AwAAAAAAAAAAIK1pdAMAAAAAAAAAACCtaXQDAAAAAAAAAAAgrWl0AwAAAAAAAAAAIK1pdAMAAAAAAAAAACCtaXQDAAAAAAAAAAAgrWl0AwAAAAAAAAAAIK1pdAMAAAAAAAAAACCtaXQDAAAAAAAAAAAgrWl0AwAAAAAAAAAAIK1pdAMAAAAAAAAAACCtaXQDAAAAAAAAAAAgrWl0AwAAAAAAAAAAIK1tUaPb4sWL48EHH4y+ffvGd999FxERkydPjv/+979FGhwAAAAAlBVqagAAAACw5SoWdIaPPvoocnNzIycnJ+bMmRPnnXde1KxZM55++umYO3du/PWvfy2OOAEAAACg1FJTAwAAAIDCKfAd3S6//PLo1q1bzJw5MypXrpwa/tvf/jbeeOONIg0OAAAAAMoCNTUAAAAAKJwCN7pNnDgxLrjggvWG77TTTrFgwYIiCQoAAAAAyhI1NQAAAAAonAI3ulWqVCmWLl263vAZM2ZErVq1iiQoAAAAAChL1NQAAAAAoHAK3Oj2u9/9LgYPHhyrVq2KiIiMjIyYO3duXHnllXHiiScWeYAAAAAAUNqpqQEAAABA4RS40e3mm2+OZcuWxY477hgrVqyIdu3axW677RbVq1ePa6+9tjhiBAAAAIBSTU0NAAAAAAqnYkFnyMnJiVdffTXGjx8fH374YSxbtixatWoVubm5xREfAAAAAJR6amoAAAAAUDgFanRbtWpVVKlSJT744INo27ZttG3btrjiAgAAAIAyQU0NAAAAAAqvQI8u3WabbaJBgwaxevXq4opnPf/973/j9NNPj+233z6qVKkSzZs3j/feey81PkmS6N+/f9StWzeqVKkSubm5MXPmzK0WHwAAAABsipoaAAAAABRegR9d+uc//zn+9Kc/xaOPPho1a9YsjphSFi1aFG3bto3DDjssXnrppahVq1bMnDkztttuu9Q0N9xwQ9xxxx3xyCOPROPGjaNfv37RsWPH+PTTT6Ny5crFGh8AAFD6dOkzsqRDKJSRN3Qp6RAA2AJqagAAAABQOAVudLvrrrti1qxZUa9evWjYsGFUq1Ytz/jJkycXWXDXX3991K9fP4YNG5Ya1rhx49S/kySJ2267La666qo47rjjIiLir3/9a9SuXTueffbZOPnkk4ssFgAAAADYUmpqAAAAAFA4BW5069y5czGEsWH//Oc/o2PHjvF///d/MW7cuNhpp53i4osvjvPOOy8iImbPnh0LFiyI3Nzc1Dw5OTnRunXrmDBhgqIcAAAAAGlBTQ0AAAAACqfAjW4DBgwojjg26PPPP4977rknLr/88vjTn/4UEydOjJ49e8a2224bXbt2jQULFkRERO3atfPMV7t27dS4DVm5cmWsXLky9Xrp0qXFkwAAAAAAhJoaAAAAABRWgRvd1po0aVJMnTo1IiL22muv2HfffYssqLXWrFkT+++/f/zlL3+JiIh99903pkyZEvfee2907dp1i5c7ZMiQGDRoUFGFCQAAAAD5oqYGAAAAAFsms6AzfPXVV9GhQ4c44IADomfPntGzZ8/Yb7/94vDDD4+vv/66SIOrW7du7LnnnnmGNWvWLObOnRsREXXq1ImIiIULF+aZZuHChalxG9K3b99YsmRJ6m/evHlFGjcAAAAA/JqaGgAAAAAUToEb3S655JL4/vvv45NPPonvvvsuvvvuu5gyZUosXbo0evbsWaTBtW3bNqZPn55n2IwZM6Jhw4YREdG4ceOoU6dOjBkzJjV+6dKl8c4770SbNm02utxKlSpFdnZ2nj8AAAAAKC5qagAAAABQOAV+dOmoUaNi9OjR0axZs9SwPffcM+6+++448sgjizS4yy67LA466KD4y1/+EieddFK8++67cf/998f9998fEREZGRnRq1evuOaaa6JJkybRuHHj6NevX9SrVy86d+5cpLEAAAAAwJZSUwMAAICS16XPyJIOoVBG3tClpEOAElXgRrc1a9bENttss97wbbbZJtasWVMkQa11wAEHxDPPPBN9+/aNwYMHR+PGjeO2226L0047LTVNnz59Yvny5XH++efH4sWL4+CDD45Ro0ZF5cqVizQWAAAAANhSamoAAAAAUDgFbnTr0KFDXHrppfH4449HvXr1IiLiv//9b1x22WVx+OGHF3mAxx57bBx77LEbHZ+RkRGDBw+OwYMHF/m6AQAAAKAoqKkBAAAAQOFkFnSGu+66K5YuXRqNGjWKXXfdNXbddddo3LhxLF26NO68887iiBEAAAAASjU1NQAAAAAonALf0a1+/foxefLkGD16dEybNi0iIpo1axa5ublFHhwAAAAAlAVqagAAAABQOAVudIv45dEGRxxxRBxxxBFFHQ8AAAAAlElqagAAAACw5Qr86NKePXvGHXfcsd7wu+66K3r16lUUMQEAAABAmaKmBgAAAACFU+BGt6eeeiratm273vCDDjoonnzyySIJCgAAAADKEjU1AAAAACicAje6ffvtt5GTk7Pe8Ozs7Pjmm2+KJCgAAAAAKEvU1AAAAACgcArc6LbbbrvFqFGj1hv+0ksvxS677FIkQQEAAABAWaKmBgAAAACFU7GgM1x++eXRo0eP+Prrr6NDhw4RETFmzJi4+eab47bbbivq+AAAAACg1FNTAwAAAIDCKXCj29lnnx0rV66Ma6+9Nq6++uqIiGjUqFHcc889ceaZZxZ5gAAAAABQ2qmpAQAAAEDhFLjRLSLioosuiosuuii+/vrrqFKlSmRlZRV1XAAAAABQpqipAQAAAMCWyyzMzLVq1YpJkybFSy+9FIsWLSqqmAAAAACgzFJTAwAAAICCy/cd3a6//vpYtmxZ6tEKSZLE0UcfHa+88kpEROy4444xZsyY2GuvvYonUgAAAAAoZdTUAAAAAKBo5PuObiNHjoy999479frJJ5+MN954I95888345ptvYv/9949BgwYVS5AAAAAAUBqpqQEAAABA0ch3o9vs2bOjRYsWqdcvvvhi/P73v4+2bdtGzZo146qrrooJEyYUS5AAAAAAUBqpqQEAAABA0ch3o9vPP/8clSpVSr2eMGFCHHTQQanX9erVi2+++aZoowMAAACAUkxNDQAAAACKRr4b3Xbdddd44403IiJi7ty5MWPGjDj00ENT4//zn//E9ttvX/QRAgAAAEAppaYGAAAAAEWjYn4n7N69e/To0SPefPPNePvtt6NNmzax5557psa/9tprse+++xZLkAAAAABQGqmpAQAAAEDRyHej23nnnRcVKlSIf/3rX3HooYfGgAED8oz/8ssv4+yzzy7yAAEAAACgtFJTAwAAAICike9Gt4iIs88+e6OFt6FDhxZJQAAAAABQlqipAQAAAEDhZZZ0AAAAAAAAAAAAALApGt0AAAAAAAAAAABIaxrdAAAAAAAAAAAASGsa3QAAAAAAAAAAAEhrBW50GzZsWPzwww/FEQsAAAAAlElqagAAAABQOAVudPvjH/8YderUiXPOOSfeeuut4ogJAAAAAMoUNTUAAAAAKJwCN7r997//jUceeSS++eabaN++feyxxx5x/fXXx4IFC4ojPgAAAAAo9dTUAAAAAKBwCtzoVrFixTj++OPjueeei3nz5sV5550XI0aMiAYNGsTvfve7eO6552LNmjXFESsAAAAAlEpqagAAAABQOAVudPu12rVrx8EHHxxt2rSJzMzM+Pjjj6Nr166x6667xtixY4soRAAAAAAoO9TUAAAAAKDgtqjRbeHChXHTTTfFXnvtFe3bt4+lS5fG888/H7Nnz47//ve/cdJJJ0XXrl2LOlYAAAAAKLXU1AAAAABgyxW40a1Tp05Rv379GD58eJx33nnx3//+Nx5//PHIzc2NiIhq1arFH/7wh5g3b16RBwsAAAAApZGaGgAAAAAUTsWCzrDjjjvGuHHjok2bNhudplatWjF79uxCBQYAAAAAZYWaGgAAAAAUToHv6DZgwIBo1arVesPXrFkTc+fOjYiIjIyMaNiwYeGjAwAAAIAyQE0NAAAAAAqnwI1ujRs3jlatWsVnn32WZ/jXX38djRs3LrLAAAAAAKCsUFMDAAAAgMIpcKNbkiTRrFmz+M1vfhNjxoxZbxwAAAAAkJeaGgAAAAAUToEb3TIyMmLo0KFx1VVXxTHHHBN33HFHnnEAAAAAQF5qagAAAABQOBULOsPaX5hedtllsccee8Qpp5wSH3/8cfTv37/IgwMAAACAskBNDQAAAAAKp8CNbr929NFHx1tvvRW/+93v4t133y2qmAAAAACgzFJTAwAAAICCK/CjS9u1axfbbrtt6vWee+4Z77zzTtSoUSP1y1QAAAAA4H/U1AAAAACgcAp8R7fXX399vWHbb799jBs3rkgCAgAAAICyRk0NAAAAAAqnwHd069ChQwwaNGi94YsWLYoOHToUSVAAAAAAUJaoqQEAAABA4RT4jm5jx46Njz/+ON5///0YMWJEVKtWLSIifvrpJ79ABQAAAIANUFMDAAAAgMIp8B3dIiJGjx4dCxYsiAMPPDDmzJlTxCEBAAAAQNmjpgYAAAAAW26LGt3q1q0b48aNi+bNm8cBBxwQY8eOLeKwAAAAAKBsUVMDAAAAgC1X4Ea3jIyMiIioVKlSPPbYY3HppZfGUUcdFUOHDi3y4AAAAACgLFBTAwAAAIDCqVjQGZIkyfP6qquuimbNmkXXrl2LLCgAAAAAKEvU1AAAAACgcArc6DZ79uzYYYcd8gw78cQTo2nTpjFp0qQiCwwAAAAAygo1NQAAAAAonAI3ujVs2HCDw/fee+/Ye++9Cx0QAAAAAJQ1amoAAAAAUDgFbnQ77LDDIiMjY6PjX3vttUIFBAAAAABljZoaAAAAABROgRvdWrZsmef1qlWr4oMPPogpU6ZE165diyouAAAAACgz1NQAAAAAoHAK3Oh26623bnD4wIEDY9myZYUOCAAAAADKGjU1AAAAACiczKJa0Omnnx4PP/xwUS0OAAAAAMo8NTUAAAAAyJ8ia3SbMGFCVK5cuagWBwAAAABlnpoaAAAAAORPgR9desIJJ+R5nSRJzJ8/P957773o169fkQUGAAAAAGWFmhoAAAAAFE6BG91ycnLyvM7MzIymTZvG4MGD48gjjyyywAAAAACgrFBTAwAAAIDCyXej2+effx6NGzeOYcOGFWc8AAAAAFBmqKkBAAAAQNHIzO+ETZo0ia+//jr1ukuXLrFw4cJiCQoAAAAAygI1NQAAAAAoGvludEuSJM/rF198MZYvX17kAQEAAABAWaGmBgAAAABFI9+NbgAAAAAAAAAAAFAS8t3olpGRERkZGesNAwAAAAA2TE0NAAAAAIpGgR5d2q1btzjhhBPihBNOiB9//DEuvPDC1Ou1f8Xpuuuui4yMjOjVq1dq2I8//hjdu3eP7bffPrKysuLEE0+MhQsXFmscAAAAAJAfamoAAAAAUDQq5nfCrl275nl9+umnF3kwmzJx4sS47777okWLFnmGX3bZZfHCCy/EP/7xj8jJyYkePXrECSecEOPHj9+q8QEAAADAutTUAAAAAKBo5LvRbdiwYcUZxyYtW7YsTjvttHjggQfimmuuSQ1fsmRJPPTQQ/HYY49Fhw4dIuKXOJs1axZvv/12HHjggSUVMgAAAACoqQEAAABAEcn3o0tLUvfu3eOYY46J3NzcPMMnTZoUq1atyjN8jz32iAYNGsSECRM2uryVK1fG0qVL8/wBAAAAQFmipgYAAABAWZLvO7qVlCeeeCImT54cEydOXG/cggULYtttt40aNWrkGV67du1YsGDBRpc5ZMiQGDRoUFGHCgAAAABpQU0NAAAAgLImre/oNm/e/2PvvqOsKMw+AP92QelFFMGCgB0VFUsUUFHEkESJqIlYothjgmL5LCH2kqCJorEnJoqxGzVqLFhQ1FiJ2AtFUYwFO4gFFeb7w+ONS110l72wz3POnsOd+r5z587MfXnvzOs55JBDcuWVV6Zx48Y1ttwhQ4ZkypQppb/XX3+9xpYNAAAAAHVJTQ0AAACAxVFZN7o98cQTeeedd7LBBhukYcOGadiwYe6///6cc845adiwYdq1a5cvvvgiH330UZX5Jk+enPbt2891uY0aNUrLli2r/AEAAADA4kBNDQAAAIDFUVk/unTrrbfOs88+W2XY3nvvnTXXXDNHH310OnTokCWWWCIjR47MTjvtlCQZO3ZsJk2alO7du9dFyAAAAABQp9TUAAAAAFgclXWjW4sWLbLOOutUGdasWbMsvfTSpeH77rtvDj/88LRp0yYtW7bMwQcfnO7du2fTTTeti5ABAAAAoE6pqQEAAACwOCrrRrfqOOuss1JZWZmddtop06dPT9++fXPBBRfUdVgAAAAAULbU1AAAAABY1CxyjW6jRo2q8rpx48Y5//zzc/7559dNQAAAAABQ5tTUAAAAAFjUVdZ1AAAAAAAAAAAAADAvGt0AAAAAAAAAAAAoaxrdAAAAAAAAAAAAKGsa3QAAAAAAAAAAAChrGt0AAAAAAAAAAAAoaxrdAAAAAAAAAAAAKGsa3QAAAAAAAAAAAChrGt0AAAAAAAAAAAAoaxrdAAAAAAAAAAAAKGsa3QAAAAAAAAAAAChrGt0AAAAAAAAAAAAoaxrdAAAAAAAAAAAAKGsa3QAAAAAAAAAAAChrGt0AAAAAAAAAAAAoaxrdAAAAAAAAAAAAKGsa3QAAAAAAAAAAAChrGt0AAAAAAAAAAAAoaxrdAAAAAAAAAAAAKGsa3QAAAAAAAAAAAChrGt0AAAAAAAAAAAAoaxrdAAAAAAAAAAAAKGsa3QAAAAAAAAAAAChrGt0AAAAAAAAAAAAoaxrdAAAAAAAAAAAAKGsa3QAAAAAAAAAAAChrGt0AAAAAAAAAAAAoaxrdAAAAAAAAAAAAKGsa3QAAAAAAAAAAAChrGt0AAAAAAAAAAAAoaxrdAAAAAAAAAAAAKGsa3QAAAAAAAAAAAChrGt0AAAAAAAAAAAAoaw3rOgAAAAAAAAAAWNQMOOraug7he7n2DwPqOgQAWCDu6AYAAAAAAAAAAEBZ0+gGAAAAAAAAAABAWdPoBgAAAAAAAAAAQFnT6AYAAAAAAAAAAEBZ0+gGAAAAAAAAAABAWdPoBgAAAAAAAAAAQFnT6AYAAAAAAAAAAEBZ0+gGAAAAAAAAAABAWdPoBgAAAAAAAAAAQFnT6AYAAAAAAAAAAEBZ0+gGAAAAAAAAAABAWdPoBgAAAAAAAAAAQFnT6AYAAAAAAAAAAEBZa1jXAQAAAAAAQG0bcNS1dR3Cd3btHwbUdQgAAABQ59zRDQAAAAAAAAAAgLKm0Q0AAAAAAAAAAICyptENAAAAAAAAAACAsqbRDQAAAAAAAAAAgLKm0Q0AAAAAAAAAAICyptENAAAAAAAAAACAsqbRDQAAAAAAAAAAgLKm0Q0AAAAAAAAAAICyptENAAAAAAAAAACAsqbRDQAAAAAAAAAAgLKm0Q0AAAAAAAAAAICyptENAAAAAAAAAACAslbWjW5Dhw7NxhtvnBYtWmTZZZdN//79M3bs2CrTfP755xk0aFCWXnrpNG/ePDvttFMmT55cRxEDAAAAQN1SUwMAAABgcVTWjW73339/Bg0alEcffTR33313vvzyy/zwhz/MJ598UprmsMMOy7/+9a/84x//yP33358333wzO+64Yx1GDQAAAAB1R00NAAAAgMVRw7oOYF5GjBhR5fXw4cOz7LLL5oknnsgWW2yRKVOm5G9/+1uuuuqq9O7dO0ly6aWXpkuXLnn00Uez6aab1kXYAAAAAFBn1NQAAAAAWByV9R3dZjVlypQkSZs2bZIkTzzxRL788sv06dOnNM2aa66ZlVZaKY888shclzN9+vRMnTq1yh8AAAAALI7U1AAAAABYHCwyjW4zZ87MoYcemp49e2adddZJkrz99ttZcskl07p16yrTtmvXLm+//fZclzV06NC0atWq9NehQ4faDB0AAAAA6oSaGgAAAACLi0Wm0W3QoEF57rnncs0113zvZQ0ZMiRTpkwp/b3++us1ECEAAAAAlBc1NQAAAAAWFw3rOoDqOOigg3LrrbfmgQceyIorrlga3r59+3zxxRf56KOPqvwCdfLkyWnfvv1cl9eoUaM0atSoNkMGAAAAgDqlpgYAAADA4qSs7+hWFEUOOuig/POf/8y9996bzp07Vxm/4YYbZokllsjIkSNLw8aOHZtJkyale/fuCztcAAAAAKhzamoAAAAALI7K+o5ugwYNylVXXZWbb745LVq0yNtvv50kadWqVZo0aZJWrVpl3333zeGHH542bdqkZcuWOfjgg9O9e/dsuummdRw9AAAAACx8amoAAAAALI7KutHtwgsvTJJsueWWVYZfeuml2WuvvZIkZ511ViorK7PTTjtl+vTp6du3by644IKFHCkAAAAAlAc1NQAAAAAWR2Xd6FYUxXynady4cc4///ycf/75CyEiAAAAAChvamoAAAAALI4q6zoAAAAAAAAAAAAAmBeNbgAAAAAAAAAAAJQ1jW4AAAAAAAAAAACUNY1uAAAAAAAAAAAAlDWNbgAAAAAAAAAAAJQ1jW4AAAAAAAAAAACUNY1uAAAAAAAAAAAAlDWNbgAAAAAAAAAAAJQ1jW4AAAAAAAAAAACUNY1uAAAAAAAAAAAAlDWNbgAAAAAAAAAAAJQ1jW4AAAAAAAAAAACUNY1uAAAAAAAAAAAAlDWNbgAAAAAAAAAAAJQ1jW4AAAAAAAAAAACUNY1uAAAAAAAAAAAAlDWNbgAAAAAAAAAAAJQ1jW4AAAAAAAAAAACUNY1uAAAAAAAAAAAAlDWNbgAAAAAAAAAAAJQ1jW4AAAAAAAAAAACUNY1uAAAAAAAAAAAAlDWNbgAAAAAAAAAAAJQ1jW4AAAAAAAAAAACUNY1uAAAAAAAAAAAAlDWNbgAAAAAAAAAAAJQ1jW4AAAAAAAAAAACUNY1uAAAAAAAAAAAAlDWNbgAAAAAAAAAAAJQ1jW4AAAAAAAAAAACUNY1uAAAAAAAAAAAAlDWNbgAAAAAAAAAAAJQ1jW4AAAAAAAAAAACUNY1uAAAAAAAAAAAAlDWNbgAAAAAAAAAAAJQ1jW4AAAAAAAAAAACUNY1uAAAAAAAAAAAAlDWNbgAAAAAAAAAAAJQ1jW4AAAAAAAAAAACUNY1uAAAAAAAAAAAAlDWNbgAAAAAAAAAAAJQ1jW4AAAAAAAAAAACUNY1uAAAAAAAAAAAAlDWNbgAAAAAAAAAAAJQ1jW4AAAAAAAAAAACUNY1uAAAAAAAAAAAAlDWNbgAAAAAAAAAAAJQ1jW4AAAAAAAAAAACUNY1uAAAAAAAAAAAAlDWNbgAAAAAAAAAAAJQ1jW4AAAAAAAAAAACUNY1uAAAAAAAAAAAAlDWNbgAAAAAAAAAAAJQ1jW4AAAAAAAAAAACUNY1uAAAAAAAAAAAAlDWNbgAAAAAAAAAAAJQ1jW4AAAAAAAAAAACUNY1uAAAAAAAAAAAAlDWNbgAAAAAAAAAAAJS1xabR7fzzz0+nTp3SuHHjbLLJJnn88cfrOiQAAAAAKGtqagAAAAAsKhaLRrdrr702hx9+eE444YSMGTMm6623Xvr27Zt33nmnrkMDAAAAgLKkpgYAAADAomSxaHQbNmxY9t9//+y9995Za621ctFFF6Vp06a55JJL6jo0AAAAAChLamoAAAAALEoa1nUA39cXX3yRJ554IkOGDCkNq6ysTJ8+ffLII4/McZ7p06dn+vTppddTpkxJkkydOrV2g13Ivpz+aV2H8J0t6HuxKOea1K9861OuiXznZ1HOtz7lmtSvfOtTrkn9yrc+5ZrId17qU66JfBcl9SnXpH7lW59yTRa/+so3+RRFUceR1Cw1tblblD+DjjfztijnW59yTeQ7P4tyvvUp16R+5Vufck3qV771KddEvvNSn3JN5LsoqU+5JvUr3/qUa7L41Vdqq6ZWUSziVbo333wzK6ywQh5++OF07969NPyoo47K/fffn8cee2y2eU488cScdNJJCzNMAAAAABZhr7/+elZcccW6DqPGqKkBAAAAUNtquqa2yN/R7bsYMmRIDj/88NLrmTNn5oMPPsjSSy+dioqKOoxs0TB16tR06NAhr7/+elq2bFnX4dQ6+S6+6lOuSf3Ktz7lmtSvfOtTrol8F2f1KdekfuVbn3JN6le+9SnXRL6Ls/qUa00piiIff/xxll9++boOpc6pqX0/9e3zJ9/FV33KNalf+danXJP6lW99yjWR7+KsPuWa1K9861OuSf3Ktz7lmsh3cVafcq0ptVVTW+Qb3ZZZZpk0aNAgkydPrjJ88uTJad++/RznadSoURo1alRlWOvWrWsrxMVWy5Yt69UHWL6Lr/qUa1K/8q1PuSb1K9/6lGsi38VZfco1qV/51qdck/qVb33KNZHv4qw+5VoTWrVqVdch1Dg1tbpT3z5/8l181adck/qVb33KNalf+danXBP5Ls7qU65J/cq3PuWa1K9861OuiXwXZ/Up15pQGzW1yhpf4kK25JJLZsMNN8zIkSNLw2bOnJmRI0dWeewCAAAAAPA1NTUAAAAAFjWL/B3dkuTwww/PwIEDs9FGG+UHP/hBzj777HzyySfZe++96zo0AAAAAChLamoAAAAALEoWi0a3AQMG5N13383xxx+ft99+O+uvv35GjBiRdu3a1XVoi6VGjRrlhBNOmO1RFYsr+S6+6lOuSf3Ktz7lmtSvfOtTrol8F2f1KdekfuVbn3JN6le+9SnXRL6Ls/qUK/OnprZw1bfPn3wXX/Up16R+5Vufck3qV771KddEvouz+pRrUr/yrU+5JvUr3/qUayLfxVl9yrXcVRRFUdR1EAAAAAAAAAAAADA3lXUdAAAAAAAAAAAAAMyLRjcAAAAAAAAAAADKmkY3AAAAAAAAAAAAyppGN763LbfcMoceeug8p+nUqVPOPvvsOo2hHLz66qupqKjIU089lSQZNWpUKioq8tFHH9X4sudk+PDhad269fde1+Jkfu/JrNvsxBNPzPrrr7/Q45yThbHfV1RU5KabbqrVddS2vfbaK/379y+9XpDtVlvbuCiKHHDAAWnTps18P7e1yTFh8VSb7+v3/UyU0zG0Jsxve9TEMbQ2zkOzHhfrs0XlGnJhqYntUd+36YIcg8vhPFxT30dq+/teXajtc9bidk4Evhs1tepTUys/amrzpqampsaiR01t4VFTW/QtKteQC4ua2venprb4UFNjYWhY1wFQP4wePTrNmjWr6zDKTo8ePfLWW2+lVatWC2V9AwYMyE9+8pOFsq5FRYcOHfLWW29lmWWWqdb0RxxxRA4++OBajqrmvfrqq+ncuXOefPLJen/yv/HGG7PEEkvUaQwjRozI8OHDM2rUqKy88srV3v+ARctbb72VpZZaqkaXWRPnoT/96U8piqKGIqK+GjVqVLbaaqt8+OGHVQpL5XCerUvlfr295ZZbZv3116/xAprvewtuQY/nrueh/nKMnTM1tbqnplb/lMO1vpoa1A9qaizO1NTmrNyvt9XUyoeaGolGN+bhyy+/rLETatu2bWtkOYubJZdcMu3bt19o62vSpEmaNGmy0NZX7r744osFfg+aN2+e5s2b12JU1LY2bdrUdQh5+eWXs9xyy6VHjx5zHP/NvkkyY8aMVFRUpLJy8b8Jrfd9zhbl7VIb5/iaOA8trP8MrG8W5X21JpXDebYu1dfr7UX5+15Nfu9dEL5XwOJNTa32qanVLTW1+qkcrvXV1KpPTY1FebuoqdUvi/K+WpPK4Txbl+rr9fai/H1PTY26tPhf4VIyYsSIbLbZZmndunWWXnrpbLfddnn55ZeT/O9W89dee2169eqVxo0b58orr8z777+fXXfdNSussEKaNm2arl275uqrr55t2V999VUOOuigtGrVKssss0yOO+64Kr9qmPW2mx999FF++ctfpl27dmncuHHWWWed3Hrrrd8rv3nFMH369BxxxBFZYYUV0qxZs2yyySYZNWpUad5vbnF65513pkuXLmnevHl+9KMf5a233qqy/MGDB5e239FHH52BAwdWuU3xvLbxnHyX25rOnDkzf/jDH7LqqqumUaNGWWmllfK73/2uNP6VV17JVlttlaZNm2a99dbLI488Mlue3/jm1p6XX355OnXqlFatWmWXXXbJxx9/XGV9Q4cOTefOndOkSZOst956uf7660vjP/zww+y+++5p27ZtmjRpktVWWy2XXnppafzrr7+enXfeOa1bt06bNm2y/fbb59VXX612vtXNv3fv3jnooIOqTPvuu+9mySWXzMiRI5N8vR+ecsop2XPPPdOyZcsccMAB1Xo8xbfN6Xaol1xySdZee+00atQoyy233Gxx1IRPPvkke+65Z5o3b57lllsuZ555ZpXxc7qVd+vWrTN8+PAkSefOnZMk3bp1S0VFRbbccstqx//ee+9lhx12SNOmTbPaaqvllltuqbG85rV/ffP5GDlyZDbaaKM0bdo0PXr0yNixY6ss49RTT82yyy6bFi1aZL/99stvfvObeXbkz3r75wsuuCCrrbZaGjdunHbt2uVnP/vZbDEeddRRadOmTdq3b58TTzzxe+W811575eCDD86kSZNSUVGRTp06Zcstt8xBBx2UQw89NMsss0z69u2bJHnuuefy4x//OM2bN0+7du2yxx575L333quSy+DBg+cZX3WOt/M69i2ojz/+OLvvvnuaNWuW5ZZbLmeddVaVbV7d4/Ett9yStdZaK40aNcqkSZPSqVOnnHrqqaXPQceOHXPLLbfk3Xffzfbbb5/mzZtn3XXXzX/+85/SsqpzDqvONqytbTGnY1KS/Pvf/87mm2+eJk2apEOHDhk8eHA++eST0nLntw1n9e6772ajjTbKDjvskOnTp3/vvOb1mfjoo4+y3377pW3btmnZsmV69+6dp59+erZl/PnPf06HDh3StGnT7LzzzpkyZUpp3DePAPjd736X5ZdfPmussUaSeZ9PnnvuuVRWVubdd99NknzwwQeprKzMLrvsUlruqaeems022+x7578g2+Pbx+Zvzjc33njjXM/TydefgZVWWilNmzbNDjvskPfff7/K+Jp+zML8rl2+ifuaa65Jjx49SseR+++/vzTNjBkzsu+++5aO5WussUb+9Kc/zXGdZ5xxRpZbbrksvfTSGTRoUL788svSNPPbt1977bX069cvSy21VJo1a5a11147t99+e2n8/I6Z1XHbbbelVatWufLKK/Pss8+md+/eadKkSZZeeukccMABmTZt2mw5Lci+mnz9K71tttkmyyyzTFq1apVevXplzJgxVeKoqKjIX//611o7/1bH5Zdfno022igtWrRI+/bts9tuu+Wdd95J8vV+sdVWWyVJllpqqVRUVGSvvfZKMvt5tlOnTvn973+fffbZJy1atMhKK62Uv/zlL7UW9/XXX5+uXbuW3rc+ffrkk08+Kb1fJ510UukYdeCBB+aLL74ozVvdz8O8PsezXm8//fTT2WqrrdKiRYu0bNkyG264YZVzVVKz5+F52WuvvXL//ffnT3/6UyoqKlJRUVHaN5944om5Xm+9/PLL2X777dOuXbs0b948G2+8ce65554qyy6nxyzMKZb111+/dHyuqKjIhRdemJ/+9Kdp1qxZ6bvUaaedlnbt2qVFixbZd9998/nnn1dZxpweIdK/f//Svj+rv/zlL1l++eUzc+bMKsO333777LPPPnM8nv/1r39Nly5d0rhx46y55pq54IILSuPmdj1fnePrvD7Pyf+uu++8885069YtTZo0Se/evfPOO+/kjjvuSJcuXdKyZcvstttu+fTTT0vzldt3RahNampqampqampqampqampqat+Xmlr1t4ea2uzrVFNTU1NTU1OrbWpqamqLlIJ64/rrry9uuOGGYvz48cWTTz5Z9OvXr+jatWsxY8aMYuLEiUWSolOnTsUNN9xQvPLKK8Wbb75Z/Pe//y3++Mc/Fk8++WTx8ssvF+ecc07RoEGD4rHHHistt1evXkXz5s2LQw45pHjppZeKK664omjatGnxl7/8pTRNx44di7POOqsoiqKYMWNGsemmmxZrr712cddddxUvv/xy8a9//au4/fbbv3Nu84thv/32K3r06FE88MADxYQJE4o//vGPRaNGjYpx48YVRVEUl156abHEEksUffr0KUaPHl088cQTRZcuXYrddtuttI5TTz21aNOmTXHjjTcWL774YnHggQcWLVu2LLbffvtqbeOiKErb+cknnyyKoijuu+++Iknx4YcfVjvXo446qlhqqaWK4cOHFxMmTCgefPDB4uKLLy4te8011yxuvfXWYuzYscXPfvazomPHjsWXX35ZyrNVq1alZZ1wwglF8+bNix133LF49tlniwceeKBo37598dvf/rZK3muuuWYxYsSI4uWXXy4uvfTSolGjRsWoUaOKoiiKQYMGFeuvv34xevToYuLEicXdd99d3HLLLUVRFMUXX3xRdOnSpdhnn32KZ555pnjhhReK3XbbrVhjjTWK6dOnVzvn6uR/5ZVXFksttVTx+eefl6YdNmxY0alTp2LmzJlFUXy9H7Zs2bI444wzigkTJhQTJkyY73syp2223nrrlV5fcMEFRePGjYuzzz67GDt2bPH444+X9vWa9Ktf/apYaaWVinvuuad45plniu22265o0aJFccghhxRFURRJin/+859V5mnVqlVx6aWXFkVRFI8//niRpLjnnnuKt956q3j//ferFX+SYsUVVyyuuuqqYvz48cXgwYOL5s2bl+b/vua1f33zXmyyySbFqFGjiueff77YfPPNix49epTmv+KKK4rGjRsXl1xySTF27NjipJNOKlq2bFnlPRo4cGCVz2mvXr1K22306NFFgwYNiquuuqp49dVXizFjxhR/+tOfqkzbsmXL4sQTTyzGjRtXXHbZZUVFRUVx1113feecP/roo+Lkk08uVlxxxeKtt94q3nnnndIx7Mgjjyxeeuml4qWXXio+/PDDom3btsWQIUOKF198sRgzZkyxzTbbFFtttVW145vf8bY6x74Ftd9++xUdO3Ys7rnnnuLZZ58tdthhhyr7anWPxz169Cgeeuih4qWXXio++eSTomPHjkWbNm2Kiy66qBg3blzxq1/9qmjZsmXxox/9qLjuuuuKsWPHFv379y+6dOlS+sxX9xxW0+9xdbfFnI5JEyZMKJo1a1acddZZxbhx44qHHnqo6NatW7HXXntVWe78tuE3x61JkyYVa6yxRjFw4MDiq6+++t45zW979enTp+jXr18xevToYty4ccX//d//FUsvvXTpmHHCCScUzZo1K3r37l08+eSTxf3331+suuqqVfa5gQMHFs2bNy/22GOP4rnnniuee+65+Z5PZs6cWSyzzDLFP/7xj6IoiuKmm24qlllmmaJ9+/al5fbp06c45phjvvc2WJDt8e1jc3XO048++mhRWVlZnH766cXYsWOLP/3pT0Xr1q3neR76Lr59XKzutcuKK65YXH/99cULL7xQ7LfffkWLFi2K9957ryiKr8/3xx9/fDF69OjilVdeKV2HXXvttVXW2bJly+LAAw8sXnzxxeJf//rXbNeL89u3t91222KbbbYpnnnmmdLx7P777y+KoqjWMXNOvn1OuPLKK4sWLVoU//rXv4pp06YVyy23XOkaaeTIkUXnzp2LgQMHVslpQffVoiiKkSNHFpdffnnx4osvFi+88EKx7777Fu3atSumTp1aWnZtn3+rsz3+9re/Fbfffnvx8ssvF4888kjRvXv34sc//nFRFEXx1VdfFTfccEORpBg7dmzx1ltvFR999NFsyyiKonT8Pv/884vx48cXQ4cOLSorK4uXXnqpxuN/8803i4YNGxbDhg0rJk6cWDzzzDPF+eefX3z88cel92vAgAHFc889V9x6661F27Ztq1z3VvfzsCDX22uvvXbxi1/8onjxxReLcePGFdddd13x1FNPlaat6fPwvHz00UdF9+7di/3337946623irfeequ455575nu99dRTTxUXXXRR8eyzzxbjxo0rjj322KJx48bFa6+9Vprm29/36tqcYllvvfWKE044oSiKrz9fyy67bHHJJZcUL7/8cvHaa68V1157bdGoUaPir3/9a/HSSy8VxxxzTNGiRYsqx9tZ9+2iKIrtt9++ynHh2z744INiySWXLO65557SsPfff780bNbj+RVXXFEst9xype/jN9xwQ9GmTZti+PDhRVHM/Xq+OsfXeX2ei+J/34E23XTT4t///ncxZsyYYtVVVy169epV/PCHPyzGjBlTPPDAA8XSSy9dnHbaaaX5yu27ItQmNTU1NTU1NTU1NTU1NTU1te9DTW3Btoeampqampqamprawqempqa2KNHoVo+9++67RZLi2WefLZ1gzj777PnOt+222xb/93//V3rdq1evKl+CiqIojj766KJLly6l198+MN55551FZWVlMXbs2BrLZV4xvPbaa0WDBg2KN954o8o8W2+9dTFkyJCiKL4+ISYpJkyYUBp//vnnF+3atSu9bteuXfHHP/6x9Pqrr74qVlpppSpf9mf17W1cFN+/KDd16tSiUaNGxcUXXzzbuG+W/de//rU07Pnnny+SFC+++GIpz1kv7Js2bVrlIvDII48sNtlkk6IoiuLzzz8vmjZtWjz88MNV1rXvvvsWu+66a1EURdGvX79i7733nmO8l19+ebHGGmtUeV+mT59eNGnSpLjzzjurlfO3zSv/zz77rFhqqaWqfAFYd911ixNPPLH0umPHjkX//v2rzPd9i3LLL798jX/Jm9XHH39cLLnkksV1111XGvb+++8XTZo0qXZRbtY8vzG/+JMUxx57bOn1tGnTiiTFHXfc8b1yKor571/fvBffvpC57bbbiiTFZ599VhRFUWyyySbFoEGDqszfs2fPahflbrjhhqJly5ZVPgPf1qtXr2KzzTarMmzjjTcujj766AVNt4qzzjqr6NixY5X1dOvWrco0p5xySvHDH/6wyrDXX3+99AWoOvHN73hbnWPfgpg6dWqxxBJLlAojRfH1F4CmTZsWhxxyyAIdj7/5wvKNjh07Fr/4xS9Kr996660iSXHccceVhj3yyCNFkuKtt96aa4xzOofVxns8v23xTU6zHpP23Xff4oADDqgy7MEHHywqKyuLzz77rNrbsFWrVsVLL71UdOjQoRg8eHCV4/D3Ma/t9eCDDxYtW7as8p8jRVEUq6yySvHnP/+5KIqvj6ENGjQo/vvf/5bG33HHHUVlZWXpfRs4cGDRrl27Khfk1Tmf7LjjjqXjwaGHHloceeSRxVJLLVW8+OKLxRdffFE0bdq0Roqt3za//WdORbl5nad33XXX4ic/+UmV5Q0YMKBWi3Kzmtu1y7e/hH355ZfFiiuuWJx++ulzXcegQYOKnXbaqco6O3bsWKU4/POf/7wYMGBAURRFtfbtrl27Vjmvf1t1jplz8s054bzzzitatWpV+iL5l7/8pVhqqaWKadOmlaa97bbbisrKyuLtt98u5fRd9tVZzZgxo1QM/EZtnn/nZU5Fh2+MHj26SFJ8/PHHRVHM/Tp2TkW5bx+/Z86cWSy77LLFhRdeWNPhF0888USRpHj11VdnGzdw4MCiTZs2xSeffFIaduGFFxbNmzcvFd1mNbfPw4Jcb7do0aJUVJlVTZ+Hq2PW96c611tzsvbaaxfnnntu6fWiVpQ79NBDq4zv3r178etf/7rKsE022eR7FeW+Gb/PPvuUXv/5z38ull9++WLGjBmzHc9XWWWV4qqrrqoy/ymnnFJ07969KIq5X8/P7/g6J3P7PH97Pxg6dGiRpHj55ZdLw375y18Wffv2LYqi/L4rwsKmpqampqampqampqampqamtiDU1KpSU1NTU1NTU1NT+5qa2pypqampzY9Hl9Yj48ePz6677pqVV145LVu2TKdOnZIkkyZNKk2z0UYbVZlnxowZOeWUU9K1a9e0adMmzZs3z5133lllniTZdNNNU1FRUXrdvXv3jB8/PjNmzJgtjqeeeiorrrhiVl999RrMbu4xPPvss5kxY0ZWX3310jObmzdvnvvvv7/KbVObNm2aVVZZpfR6ueWWK916csqUKZk8eXJ+8IMflMY3aNAgG264YZUYqrONv48XX3wx06dPz9Zbbz3XadZdd90qOSSpcgvNWXXq1CktWrSoMs8300+YMCGffvppttlmmyrb7u9//3tp2/3qV7/KNddck/XXXz9HHXVUHn744dKynn766UyYMCEtWrQozdumTZt8/vnn83z8xHfJv3Hjxtljjz1yySWXJEnGjBmT5557brbbns66j38f77zzTt588815vh814eWXX84XX3yRTTbZpDSsTZs2pds5f1fVjf/b+1SzZs3SsmXLee5T1VWd/WvW9c+6T48dO7bK5zLJbK/nZZtttknHjh2z8sorZ4899siVV15Z5daxs67/mxhqIv9ZzXo8efrpp3PfffdV2TZrrrlmksx1+8waX3WOt/M69i2oV155JV9++WWV96BVq1alfbW6x+Mll1xytrxmzbVdu3ZJkq5du8427Jv4q3sOq433eH7b4huzHpOefvrpDB8+vMr26du3b2bOnJmJEydWext+9tln2XzzzbPjjjuWbqddU+a2vZ5++ulMmzYtSy+9dJXYJk6cWCW2lVZaKSussELpdffu3TNz5swqt/Tu2rVrllxyySrbZX7nk169epVuyX///fend+/e2WKLLTJq1KiMHj06X375ZXr27Flj22F+26M60896THvxxRerHOuTr7dPbarutcu342jYsGE22mijvPjii6Vh559/fjbccMO0bds2zZs3z1/+8pfZlrH22munQYMGpdff3lbV2bcHDx6cU089NT179swJJ5yQZ555prSs6h4z5+T666/PYYcdlrvvvju9evVK8vV7sd5666VZs2al6Xr27Fkj++rkyZOz//77Z7XVVkurVq3SsmXLTJs2bZ7Hppo8/1bXE088kX79+mWllVZKixYtStvmu1zXfjuXioqKtG/fvlZyWW+99bL11luna9eu+fnPf56LL744H374YZXxTZs2Lb3u3r17pk2bltdffz1J9T8PC3K9ffjhh2e//fZLnz59ctppp822P9bkefj7mFdO06ZNyxFHHJEuXbqkdevWad68eV588cUa+45TF2Y9/9bW8Xf33XfPDTfcUHrM0ZVXXplddtkllZVVSzGffPJJXn755ey7775VjmOnnnpqtb43zev4mlT/8zzrtVbTpk2z8sorVxlWrt8VobapqampzYma2nenpvb9qKlVpaamppaoqX1DTe1/1NTU1BI1tepSU/vu1NTU1BI1tbrQsK4DYOHp169fOnbsmIsvvrj0XON11lmnyjO0v33hkSR//OMf86c//Slnn312unbtmmbNmuXQQw+tMs+CatKkyXee97uYNm1aGjRokCeeeKLKgSpJmjdvXvr3EkssUWVcRUVFiqJYoHVVZxt/H9XZdt/O45svYbM+w3pu038zzzfTT5s2LUly2223VfkClSSNGjVKkvz4xz/Oa6+9lttvvz133313tt566wwaNChnnHFGpk2blg033DBXXnnlbOtt27btfHOZ1fzy32+//bL++uvnv//9by699NL07t07HTt2rDLNrPv497Gw9+V5mdP++u1niM9JdeOf1z7yfcxv//rmZLyg+/SCaNGiRcaMGZNRo0blrrvuyvHHH58TTzwxo0ePTuvWrWdb/zcx1NT6v23WfXPatGnp169fTj/99Nmm/eZieX7xLegx45v5F/TYV13VPR43adJkjkWkOe0L89o/qnsOW1jv8ZzM6X3/5S9/mcGDB8827UorrZRnnnmmWtuwUaNG6dOnT2699dYceeSRs33Gvo+5ba9p06ZlueWWKxXGvu2bz1N1zWm7zO98suWWW+bQQw/N+PHj88ILL2SzzTbLSy+9lFGjRuXDDz/MRhttVOXLeE1Z0P2nNo9p30VNXLtcc801OeKII3LmmWeme/fuadGiRf74xz/mscceqzLd/K455rdv77fffunbt29uu+223HXXXRk6dGjOPPPMHHzwwdU+Zs5Jt27dMmbMmFxyySXZaKONFqiI/V321YEDB+b999/Pn/70p3Ts2DGNGjVK9+7dy+rY9Mknn6Rv377p27dvrrzyyrRt2zaTJk1K3759v9N17cLKpUGDBrn77rvz8MMP56677sq5556bY445ZrZ9cW6q+3lYkM/xiSeemN122y233XZb7rjjjpxwwgm55pprssMOO8y2rG+WV1vn4XmZV05HHHFE7r777pxxxhlZddVV06RJk/zsZz+rse84Na2ysnK+18Xf5TtBdZY7q379+qUoitx2223ZeOON8+CDD+ass86abbpvrosvvvji2YqDsx4T52Ren7EF+TzPuh8sSt8VobapqampzW/6b+Yp1+Okmtrcqal9N2pqamqzLuOb5aipzZ2aWlVqampq36amNmdqampqC5OampraokSjWz3x/vvvZ+zYsbn44ouz+eabJ0n+/e9/z3e+hx56KNtvv31+8YtfJPn6wDxu3ListdZaVaab9UT36KOPZrXVVpvjAWTdddfNf//734wbN65Gf4E6txi6deuWGTNm5J133inlvqBatWqVdu3aZfTo0dliiy2SfP2rpjFjxmT99ddP8t238YJYbbXV0qRJk4wcOTL77bdfjS57TtZaa600atQokyZNKnUoz0nbtm0zcODADBw4MJtvvnmOPPLInHHGGdlggw1y7bXXZtlll03Lli2/dzzzy79r167ZaKONcvHFF+eqq67Keeed973XOS8tWrRIp06dMnLkyGy11Va1tp5VVlklSyyxRB577LGstNJKSZIPP/ww48aNK70vbdu2zVtvvVWaZ/z48VV+RfnNL2O+/YvwhRX/3Mxv/6pO1/kaa6yR0aNHZ8899ywNGz169ALF0bBhw/Tp0yd9+vTJCSeckNatW+fee+/NjjvuuEDLqWkbbLBBbrjhhnTq1CkNG36303VtHW/nZuWVV84SSyyR0aNHl/bVKVOmZNy4cdliiy1q5Hi8IKp7DqsN89sWc7PBBhvkhRdeyKqrrjrH8dXdhpWVlbn88suz2267ZauttsqoUaOy/PLLf7+k5mODDTbI22+/nYYNG5Z+sTUnkyZNyptvvlmK59FHH01lZeU8f1FfnfNJ165ds9RSS+XUU0/N+uuvn+bNm2fLLbfM6aefng8//DBbbrnl90lvoejSpcscr2dqy4Jcuzz66KOlfferr77KE088kYMOOijJ15+1Hj165Ne//nVp+gX95VB19+0OHTrkwAMPzIEHHpghQ4bk4osvzsEHH/y9jpmrrLJKzjzzzGy55ZZp0KBBzjvvvHTp0iXDhw/PJ598Uvry/tBDD9XIvvrQQw/lggsuyE9+8pMkyeuvv5733ntvgWKubS+99FLef//9nHbaaenQoUOS5D//+U+VaeZ0bVEOKioq0rNnz/Ts2TPHH398OnbsmH/+859Jvv6122effVb6T6tHH300zZs3T4cOHWr1Wn711VfP6quvnsMOOyy77rprLr300lJRbmFbcsklF/g9e+ihh7LXXnuVYp42bVpeffXVWoiuZsx6XTx16tRMnDhxnvN8c/z99jXlrMffWZc7Y8aMPPfcc/O8jm7cuHF23HHHXHnllZkwYULWWGONbLDBBrNN165duyy//PJ55ZVXsvvuu89xWd/1M1edz/N3UW7fFaE2qampqX0X5XacVFNTU5uVmtq8qampqampqanNi5ra19TUZqempqb2bWpqc16umlp5fVdcVHl0aT2x1FJLZemll85f/vKXTJgwIffee28OP/zw+c632mqrlTq4X3zxxfzyl7/M5MmTZ5tu0qRJOfzwwzN27NhcffXVOffcc3PIIYfMcZm9evXKFltskZ122il33313Jk6cmDvuuCMjRoz4XjnOLYbVV189u+++e/bcc8/ceOONmThxYh5//PEMHTo0t912W7WXf/DBB2fo0KG5+eabM3bs2BxyyCH58MMPS93Z33UbL4jGjRvn6KOPzlFHHVW6feWjjz6av/3tbzW6nm+0aNEiRxxxRA477LBcdtllefnllzNmzJice+65ueyyy5Ikxx9/fG6++eZMmDAhzz//fG699dZ06dIlyde3FV1mmWWy/fbb58EHH8zEiRMzatSoDB48OP/9738XOJ7q5L/ffvvltNNOS1EUC+Vi58QTT8yZZ56Zc845J+PHjy9tn5rUvHnz7LvvvjnyyCNz7733lh4f8e3bs/bu3TvnnXdennzyyfznP//JgQceWKVbfNlll02TJk0yYsSITJ48OVOmTFlo8c9Ndfav+Tn44IPzt7/9LZdddlnGjx+fU089Nc8880y1fzl066235pxzzslTTz2V1157LX//+98zc+bM7/0Ii5owaNCgfPDBB9l1110zevTovPzyy7nzzjuz9957V/tirLaOt3PTokWLDBw4MEceeWTuu+++PP/889l3331TWVmZioqKGjseV1d1z2G1YX7bYm6OPvroPPzwwznooIPy1FNPZfz48bn55ptLxY8F2YYNGjTIlVdemfXWWy+9e/fO22+/Xas59+nTJ927d0///v1z11135dVXX83DDz+cY445psrFf+PGjTNw4MA8/fTTefDBBzN48ODsvPPOad++/VyXXZ3zSUVFRbbYYotceeWVpQLcuuuum+nTp2fkyJHz/MJQLgYPHpwRI0bkjDPOyPjx43PeeefV2uc1WbBrl/PPPz///Oc/89JLL2XQoEH58MMPs88++yT5+rP2n//8J3feeWfGjRuX4447boH/g6Q6+/ahhx6aO++8MxMnTsyYMWNy3333la45vu8xc/XVV899992XG264IYceemh233330r763HPP5b777svBBx+cPfbYo/RIlzmpzr662mqr5fLLL8+LL76Yxx57LLvvvntZ3dEi+frX7ksuuWTOPffcvPLKK7nllltyyimnVJmmY8eOqaioyK233pp333239Eu0uvTYY4/l97//ff7zn/9k0qRJufHGG/Puu++W9pMvvvgi++67b1544YXcfvvtOeGEE3LQQQelsrKyVq7lP/vssxx00EEZNWpUXnvttTz00EMZPXp0KZ660KlTpzz22GN59dVX895771XrV8CrrbZabrzxxjz11FN5+umns9tuu9Xpr+bnp3fv3rn88svz4IMP5tlnn83AgQPn+wvOQw45JJdcckkuvfTSjBs3LieccEKef/752ZZ722235bbbbstLL72UX/3qV/noo4/mG8/uu++e2267LZdccslcC25JctJJJ2Xo0KE555xzMm7cuDz77LO59NJLM2zYsCRzv56fn+p8nr+LcvuuCLVJTU1N7bsot+Okmpqa2qzU1OZNTU1NTU1NTW1e1NSqrl9N7X/U1NTUvk1N7X/LVVP7n3L7rrio0uhWT1RWVuaaa67JE088kXXWWSeHHXZY/vjHP853vmOPPTYbbLBB+vbtmy233DLt27dP//79Z5tuzz33zGeffZYf/OAHGTRoUA455JAccMABc13uDTfckI033ji77rpr1lprrRx11FHfu3N9XjFceuml2XPPPfN///d/WWONNdK/f/8qvwiqjqOPPjq77rpr9txzz3Tv3j3NmzdP375907hx4yTffRsvqOOOOy7/93//l+OPPz5dunTJgAEDavWZ46ecckqOO+64DB06NF26dMmPfvSj3HbbbencuXOSr7ughwwZknXXXTdbbLFFGjRokGuuuSbJ189Hf+CBB7LSSitlxx13TJcuXbLvvvvm888//84dxvPLf9ddd03Dhg2z6667lt6b2jRw4MCcffbZueCCC7L22mtnu+22y/jx42t8PX/84x+z+eabp1+/funTp08222yzbLjhhqXxZ555Zjp06JDNN988u+22W4444ogqtxNv2LBhzjnnnPz5z3/O8ssvn+23336hxj8389u/5mf33XfPkCFDcsQRR2SDDTbIxIkTs9dee1X7vW/dunVuvPHG9O7dO126dMlFF12Uq6++Omuvvfb3SatGLL/88nnooYcyY8aM/PCHP0zXrl1z6KGHpnXr1rM9g35eauN4Oy/Dhg1L9+7ds91226VPnz7p2bNnunTpUnpPauJ4XF3VPYfVlvltizlZd911c//992fcuHHZfPPN061btxx//PFVfjm6INuwYcOGpX26d+/etXq+qKioyO23354tttgie++9d1ZfffXssssuee2116oUMVZdddXsuOOO+clPfpIf/vCHWXfddXPBBRfMc9nVPZ/06tUrM2bMKBXlKisrs8UWW5R+jVbuNt1001x88cX505/+lPXWWy933XVXjj322Fpb34Jcu5x22mk57bTTst566+Xf//53brnlliyzzDJJkl/+8pfZcccdM2DAgGyyySZ5//33q/wStbrmt2/PmDEjgwYNKp0vVl999dK+UxPHzDXWWCP33ntvrr766hx33HG5884788EHH2TjjTfOz372s2y99dbzvbNFdfbVv/3tb/nwww+zwQYbZI899sjgwYOz7LLLLvD2qk1t27bN8OHD849//CNrrbVWTjvttJxxxhlVpllhhRVy0kkn5Te/+U3atWtX+s+DutSyZcs88MAD+clPfpLVV189xx57bM4888z8+Mc/TpJsvfXWWW211bLFFltkwIAB+elPf5oTTzwxSe1cyzdo0CDvv/9+9txzz6y++urZeeed8+Mf/zgnnXTS9031OzviiCPSoEGDrLXWWqXb7c/PsGHDstRSS6VHjx7p169f+vbtO8dfUJaLIUOGpFevXtluu+2y7bbbpn///llllVXmOc+AAQNy3HHH5aijjsqGG26Y1157Lb/61a+qTLPPPvtk4MCB2XPPPdOrV6+svPLK1bqDS+/evdOmTZuMHTs2u+2221yn22+//fLXv/41l156abp27ZpevXpl+PDhpeviuV3Pz091Ps/fVbl9V4TaoqampvZdldtxUk1NTe3b1NTmT01NTU1NTU1tbtTUqlJT+x81NTW1b1NT+5qa2uzK7bvioqiiqIuHFcNiYObMmenSpUt23nnnGunepWa8+uqrWWWVVTJ69Oiyvlig9myzzTZp3759Lr/88roOhXz9DPsVVlghZ555Zvbdd9+6DqdO2RaUi1133TUNGjTIFVdcMd9pX3311XTu3DlPPvlk6dFSsCjaa6+98tFHH+Wmm26q61AAoN5TUytPamqoqZUXdaT/sS0oF2pq1EdqakA5WrCHbUM99tprr+Wuu+5Kr169Mn369Jx33nmZOHHiPDuIWXi+/PLLvP/++zn22GOz6aabKsjVE59++mkuuuii9O3bNw0aNMjVV1+de+65J3fffXddh1ZvPfnkk3nppZfygx/8IFOmTMnJJ5+cJNX+hcTixLag3Hz11VcZN25cHnnkkfzyl7+s63AAAKgn1NTKm5pa/aSmVn7Ukf7HtqDcqKkBQHnR6AbVVFlZmeHDh+eII45IURRZZ511cs8999Tp88D5n4ceeihbbbVVVl999Vx//fV1HQ4LyTe3df/d736Xzz//PGussUZuuOGG9OnTp65Dq9fOOOOMjB07NksuuWQ23HDDPPjgg6Xbsdc3tgXl5LnnnkuPHj2y1VZb5cADD6zrcAAAqCfU1Mqbmlr9pKZWntSR/se2oJyoqQFAefHoUgAAAAAAAAAAAMpaZV0HAAAAAAAAAAAAAPOi0Q0AAAAAAAAAAICyptENAAAAAAAAAACAsqbRDQAAAAAAAAAAgLKm0Q0AAAAAAAAAAICyptENAAAAAAAAAACAsqbRDQCgju21117p379/XYcBAAAAAIsMNTUAgPpHoxsAAAAAAAAAAABlTaMbAEAZGzZsWLp27ZpmzZqlQ4cO+fWvf51p06aVxg8fPjytW7fOnXfemS5duqR58+b50Y9+lLfeeqs0zVdffZXBgwendevWWXrppXP00Udn4MCBVX7x2qlTp5x99tlV1r3++uvnxBNPrHYsSXLxxRenQ4cOadq0aXbYYYcMGzYsrVu3rjLNzTffnA022CCNGzfOyiuvnJNOOilfffVVkqQoipx44olZaaWV0qhRoyy//PIZPHjw99uIAAAAANQrampqagDA4kmjGwBAGausrMw555yT559/PpdddlnuvffeHHXUUVWm+fTTT3PGGWfk8ssvzwMPPJBJkybliCOOKI0//fTTc+WVV+bSSy/NQw89lKlTp+amm26q8VgeeuihHHjggTnkkEPy1FNPZZtttsnvfve7Kst48MEHs+eee+aQQw7JCy+8kD//+c8ZPnx4abobbrghZ511Vv785z9n/Pjxuemmm9K1a9cFjhUAAACA+ktNTU0NAFg8VRRFUdR1EAAA9dlee+2Vjz76qFqFsuuvvz4HHnhg3nvvvSRf//p07733zoQJE7LKKqskSS644IKcfPLJefvtt5Mk7du3zxFHHFEq1M2YMSMrr7xyunXrVlpnp06dcuihh+bQQw8trWv99ddP//79q/wCdV6x7LLLLpk2bVpuvfXW0jS/+MUvcuutt+ajjz5KkvTp0ydbb711hgwZUprmiiuuyFFHHZU333wzw4YNy5///Oc899xzWWKJJea7PQAAAACon9TU1NQAgPrHHd0AAMrYPffck6233jorrLBCWrRokT322CPvv/9+Pv3009I0TZs2LRXkkmS55ZbLO++8kySZMmVKJk+enB/84Ael8Q0aNMiGG25Y47GMHTu2ynqSzPb66aefzsknn5zmzZuX/vbff/+89dZb+fTTT/Pzn/88n332WVZeeeXsv//++ec//1l6BAMAAAAAVIeampoaALB40ugGAFCmXn311Wy33XZZd911c8MNN+SJJ57I+eefnyT54osvStPN+ivNioqKLOhNeysrK2eb58svv1zgWOZn2rRpOemkk/LUU0+V/p599tmMHz8+jRs3TocOHTJ27NhccMEFadKkSX79619niy22qBILAAAAAMyNmpqaGgCw+GpY1wEAADBnTzzxRGbOnJkzzzwzlZVf/z7huuuuW6BltGrVKu3atcvo0aOzxRZbJPn6MQtjxozJ+uuvX5qubdu2eeutt0qvp06dmokTJy5QLGussUZGjx5dZdisrzfYYIOMHTs2q6666lxjbtKkSfr165d+/fpl0KBBWXPNNfPss89mgw02WKDcAQAAAKh/1NTU1ACAxZdGNwCAMjBlypQ89dRTVYYts8wy+fLLL3PuueemX79+eeihh3LRRRct8LIPPvjgDB06NKuuumrWXHPNnHvuufnwww9TUVFRmqZ3794ZPnx4+vXrl9atW+f4449PgwYNSuNXXXXV+cZy8MEHZ4sttsiwYcPSr1+/3HvvvbnjjjuqrOf444/Pdtttl5VWWik/+9nPUllZmaeffjrPPfdcTj311AwfPjwzZszIJptskqZNm+aKK65IkyZN0rFjxwXOGwAAAIDFm5qamhoAUL94dCkAQBkYNWpUunXrVuXv8ssvz7Bhw3L66adnnXXWyZVXXpmhQ4cu8LKPPvro7Lrrrtlzzz3TvXv3NG/ePH379k3jxo1L0wwZMiS9evXKdtttl2233Tb9+/fPKqusUhq/3nrrzTeWnj175qKLLsqwYcOy3nrrZcSIETnssMOqrKdv37659dZbc9ddd2XjjTfOpptumrPOOqtUdGvdunUuvvji9OzZM+uuu27uueee/Otf/8rSSy+9wHkDAAAAsHhTU1NTAwDql4piQR82DwDAIm3mzJnp0qVLdt5555xyyim1uq79998/L730Uh588MFaXQ8AAAAA1CY1NQCAuufRpQAAi7nXXnstd911V3r16pXp06fnvPPOy8SJE7PbbrvV+LrOOOOMbLPNNmnWrFnuuOOOXHbZZbngggtqfD0AAAAAUJvU1AAAyo9GNwCAxVxlZWWGDx+eI444IkVRZJ111sk999yTLl261Pi6Hn/88fzhD3/Ixx9/nJVXXjnnnHNO9ttvvxpfDwAAAADUJjU1AIDy49GlAAAAAAAAAAAAlLXKug4AAAAAAAAAAAAA5kWjGwAAAAAAAAAAAGVNoxsAAAAAAAAAAABlTaMbAAAAAAAAAAAAZU2jGwAAAAAAAAAAAGVNoxsAAAAAAAAAAABlTaMbAAAAAAAAAAAAZU2jGwAAAAAAAAAAAGVNoxsAAAAAAAAAAABlTaMbAAAAAAAAAAAAZU2jGwAAAAAAAAAAAGVNoxsAAAAAAAAAAABlTaMbAAAAAAAAAAAAZU2jGwAAAAAAAAAAAGVNoxsAAAAAAAAAAABlTaMbAEAde/jhh3PiiSfmo48+qutQysoFF1yQ4cOH13UYAAAAAAAAQBnQ6AYAUMcefvjhnHTSSRrdZqHRDQAAAAAAAPiGRjcAAL6XmTNn5vPPP6/rMAAAAAAAAIDFmEY3AIA6dOKJJ+bII49MknTu3DkVFRWpqKjIq6++miS54oorsuGGG6ZJkyZp06ZNdtlll7z++utVljF+/PjstNNOad++fRo3bpwVV1wxu+yyS6ZMmVKa5u67785mm22W1q1bp3nz5lljjTXy29/+tspypk+fnhNOOCGrrrpqGjVqlA4dOuSoo47K9OnTq0xXUVGRgw46KFdeeWXWXnvtNGrUKCNGjEiSnHHGGenRo0eWXnrpNGnSJBtuuGGuv/76OeZ+xRVX5Ac/+EGaNm2apZZaKltssUXuuuuuJEmnTp3y/PPP5/777y9tky233PI7b2cAAAAAAABg0VZRFEVR10EAANRXzzzzTE477bRcffXVOeuss7LMMsskSXbYYYecffbZOe6447LzzjunV69eeffdd3PuueemefPmefLJJ9O6det88cUXWXPNNTN9+vT8+te/Tvv27fPGG2/k1ltvzT/+8Y907Ngxzz//fDbYYIOsu+662WOPPdKoUaNMmDAhjz/+eO6///4kX9+V7cc//nH+/e9/54ADDkiXLl3y7LPP5qKLLsq2226bm266qRRzRUVFunTpkvfeey8HHXRQlllmmfTo0SPrr79+OnTokJ/+9KdZa6218sUXX+Saa67J448/nltvvTXbbrttaRknnXRSTjzxxPTo0SM77LBDllxyyTz22GPp0KFDTjvttNx00005+OCD07x58xxzzDFJknbt2mWbbbZZeG8OAAAAAAAAUDY0ugEA1LEzzjgjRx55ZCZOnJhOnTolSV577bWsssoqOfnkk6vcee25555Lt27dctJJJ+W3v/1tnnrqqXTr1i3/+Mc/8rOf/WyOyz/77LNz2GGH5d133y010s3qiiuuyMCBA3P//fdns802Kw3/85//nAMPPDAPPfRQevTokeTrRrfKyso8++yzWWuttaos57PPPkuTJk1Kr7/88stssMEGWXbZZTNy5MgkyYQJE7LGGmtk++23z/XXX5/Kyv/dZLgoilRUVCRJ1llnnSyzzDIZNWpUNbckAAAAAAAAsLjy6FIAgDJ04403ZubMmdl5553z3nvvlf7at2+f1VZbLffdd1+SpFWrVkmSO++8M59++ukcl9W6deskyc0335yZM2fOcZp//OMf6dKlS9Zcc80q6+vdu3eSlNb3jV69es3W5JakSpPbhx9+mClTpmTzzTfPmDFjSsNvuummzJw5M8cff3yVJrckpSY3AAAAAAAAgG/T6AYAUIbGjx+foiiy2mqrpW3btlX+XnzxxbzzzjtJks6dO+fwww/PX//61yyzzDLp27dvzj///EyZMqW0rAEDBqRnz57Zb7/90q5du+yyyy657rrrqjS9jR8/Ps8///xs61p99dWTpLS+b3Tu3HmOcd96663ZdNNN07hx47Rp0yZt27bNhRdeWCWel19+OZWVlXNslAMAAAAAAACYk4Z1HQAAALObOXNmKioqcscdd6RBgwazjW/evHnp32eeeWb22muv3HzzzbnrrrsyePDgDB06NI8++mhWXHHFNGnSJA888EDuu+++3HbbbRkxYkSuvfba9O7dO3fddVcaNGiQmTNnpmvXrhk2bNgc4+nQoUOV19++c9s3Hnzwwfz0pz/NFltskQsuuCDLLbdcllhiiVx66aW56qqrvucWAQAAAAAAAOozjW4AAHVsTo/rXGWVVVIURTp37ly6q9q8dO3aNV27ds2xxx6bhx9+OD179sxFF12UU089NUlSWVmZrbfeOltvvXWGDRuW3//+9znmmGNy3333pU+fPllllVXy9NNPZ+utt/7Ojw+94YYb0rhx49x5551p1KhRafill146W24zZ87MCy+8kPXXX3+uy/MYUwAAAAAAAOAbHl0KAFDHmjVrliT56KOPSsN23HHHNGjQICeddFKKoqgyfVEUef/995MkU6dOzVdffVVlfNeuXVNZWZnp06cnST744IPZ1vlNg9k30+y888554403cvHFF8827WeffZZPPvlkvnk0aNAgFRUVmTFjRmnYq6++mptuuqnKdP37909lZWVOPvnkKo9P/Sa3bzRr1qzKNgEAAAAAAADqL3d0AwCoYxtuuGGS5Jhjjskuu+ySJZZYIv369cupp56aIUOG5NVXX03//v3TokWLTJw4Mf/85z9zwAEH5Igjjsi9996bgw46KD//+c+z+uqr56uvvsrll1+eBg0aZKeddkqSnHzyyXnggQey7bbbpmPHjnnnnXdywQUXZMUVV8xmm22WJNljjz1y3XXX5cADD8x9992Xnj17ZsaMGXnppZdy3XXX5c4778xGG200zzy23XbbDBs2LD/60Y+y22675Z133sn555+fVVddNc8880xpulVXXTXHHHNMTjnllGy++ebZcccd06hRo4wePTrLL798hg4dWtouF154YU499dSsuuqqWXbZZdO7d+/aeAsAAAAAAACAMldRzHqLEAAAFrpTTz01F110Ud56663MnDkzEydOTKdOnXLjjTfmrLPOypNPPpkk6dChQ7beeusMHjw4q6++eiZOnJhTTz01999/f9544400bdo06623Xo455phsvfXWSZJ7770355xzTkaPHp333nsvyyyzTHr16pWTTjopq622WimGL7/8MmeddVb+/ve/Z8KECWnatGlWXnnl/PSnP82hhx6ali1bJvn6kaKDBg3KeeedN1sel1xySU477bRMmjQpnTt3ztFHH51XX311jnemu/TSS3PuuefmhRdeSNOmTbPuuuvm2GOPTZ8+fZIkkydPzr777psHHnggH3/8cXr16pVRo0bVxuYHAAAAAAAAypxGNwAAAAAAAAAAAMpaZV0HAAAAAAAAAAAAAPOi0Q0AAAAAAAAAAICyptENAAAAABZhDzzwQPr165fll18+FRUVuemmm+Y7z6hRo7LBBhukUaNGWXXVVTN8+PBajxMAAAAAvg+NbgAAAACwCPvkk0+y3nrr5fzzz6/W9BMnTsy2226brbbaKk899VQOPfTQ7LfffrnzzjtrOVIAAAAA+O4qiqIo6joIAAAAAOD7q6ioyD//+c/0799/rtMcffTRue222/Lcc8+Vhu2yyy756KOPMmLEiIUQJQAAAAAsOHd0AwAAAIB65JFHHkmfPn2qDOvbt28eeeSROooIAAAAAOavYV0HUA5mzpyZN998My1atEhFRUVdhwMAAABAmSiKIh9//HGWX375VFYuHr8Zffvtt9OuXbsqw9q1a5epU6fms88+S5MmTeY43/Tp0zN9+vTS65kzZ+aDDz7I0ksvraYGAAAAQElt1dQ0uiV5880306FDh7oOAwAAAIAy9frrr2fFFVes6zDq1NChQ3PSSSfVdRgAAAAALCJquqam0S1JixYtkny9cVu2bFnH0QAAAABQLqZOnZoOHTqU6keLg/bt22fy5MlVhk2ePDktW7ac693ckmTIkCE5/PDDS6+nTJmSlVZaSU0NAAAAgCpqq6am0S0pPVqhZcuWinIAAAAAzGZxejRn9+7dc/vtt1cZdvfdd6d79+7znK9Ro0Zp1KjRbMPV1AAAAACYk5quqdXcQ1ABAAAAgIVu2rRpeeqpp/LUU08lSSZOnJinnnoqkyZNSvL1ndj23HPP0vQHHnhgXnnllRx11FF56aWXcsEFF+S6667LYYcdVhfhAwAAAEC1aHQDAAAAgEXYf/7zn3Tr1i3dunVLkhx++OHp1q1bjj/++CTJW2+9VWp6S5LOnTvntttuy91335311lsvZ555Zv7617+mb9++dRI/AAAAAFRHRVEURV0HUdemTp2aVq1aZcqUKR6zAAAAAECJutHc2TYAAAAAzElt1Y3c0Q0AAAAAAAAAAICyptENAAAAAAAAAACAsqbRDQAAAAAAAAAAgLKm0Q0AAAAAAAAAAICyptENAAAAAAAAAACAsqbRDQAAAAAAAAAAgLKm0Q0AAAAAAAAAAICyptENAAAAAAAAAACAsqbRDQAAAAAAAAAAgLKm0Q0AAAAAAAAAAICyptENAAAAAAAAAACAstawrgMAoP4acNS1dR3Cd3btHwbUdQgAAAAAAAAAUG+4oxsAAAAAAAAAAABlTaMbAAAAAAAAAAAAZU2jGwAAAAAAAAAAAGWtYV0HAAD1wYCjrq3rEL6Xa/8woK5DAAAAAAAAAKAec0c3AAAAAAAAAAAAyppGNwAAAAAAAAAAAMqaRjcAAAAAAAAAAADKmkY3AAAAAAAAAAAAyppGNwAAAAAAAAAAAMqaRjcAAAAAAAAAAADKmkY3AAAAAAAAAAAAyppGNwAAAAAAAAAAAMqaRjcAAAAAAAAAAADKmkY3AAAAAAAAAAAAyppGNwAAAAAAAAAAAMqaRjcAAAAAAAAAAADKmkY3AAAAAAAAAAAAyppGNwAAAAAAAAAAAMqaRjcAAAAAAAAAAADKmkY3AAAAAAAAAAAAyppGNwAAAAAAAAAAAMqaRjcAAAAAAAAAAADKWsO6DgAAAABqyoCjrq3rEL6za/8woK5DAAAAAACAsuWObgAAAAAAAAAAAJQ1jW4AAAAAAAAAAACUNY1uAAAAAAAAAAAAlDWNbgAAAAAAAAAAAJQ1jW4AAAAAAAAAAACUNY1uAAAAAAAAAAAAlLWGdR0AAP8z4Khr6zqE7+XaPwyo6xAAAAAAAAAAgMWQO7oBAAAAAAAAAABQ1jS6AQAAAAAAAAAAUNY0ugEAAAAAAAAAAFDWNLoBAAAAAAAAAABQ1jS6AQAAAAAAAAAAUNY0ugEAAAAAAAAAAFDWNLoBAAAAAAAAAABQ1jS6AQAAAAAAAAAAUNY0ugEAAAAAAAAAAFDWNLoBAAAAAAAAAABQ1jS6AQAAAAAAAAAAUNY0ugEAAAAAAAAAAFDWNLoBAAAAAAAAAABQ1jS6AQAAAAAAAAAAUNY0ugEAAAAAAAAAAFDWNLoBAAAAAAAAAABQ1jS6AQAAAAAAAAAAUNbKutFtxowZOe6449K5c+c0adIkq6yySk455ZQURVGapiiKHH/88VluueXSpEmT9OnTJ+PHj6/DqAEAAAAAAAAAAKhJZd3odvrpp+fCCy/MeeedlxdffDGnn356/vCHP+Tcc88tTfOHP/wh55xzTi666KI89thjadasWfr27ZvPP/+8DiMHAAAAAAAAAACgpjSs6wDm5eGHH87222+fbbfdNknSqVOnXH311Xn88ceTfH03t7PPPjvHHntstt9++yTJ3//+97Rr1y433XRTdtlllzqLHQAAAAAAAAAAgJpR1nd069GjR0aOHJlx48YlSZ5++un8+9//zo9//OMkycSJE/P222+nT58+pXlatWqVTTbZJI888shclzt9+vRMnTq1yh8AAAAAAAAAAADlqawb3X7zm99kl112yZprrpklllgi3bp1y6GHHprdd989SfL2228nSdq1a1dlvnbt2pXGzcnQoUPTqlWr0l+HDh1qLwkAAAAAWAjOP//8dOrUKY0bN84mm2xSeirC3Jx99tlZY4010qRJk3To0CGHHXZYPv/884UULQAAAAAsmLJudLvuuuty5ZVX5qqrrsqYMWNy2WWX5Ywzzshll132vZY7ZMiQTJkypfT3+uuv11DEAAAAALDwXXvttTn88MNzwgknZMyYMVlvvfXSt2/fvPPOO3Oc/qqrrspvfvObnHDCCXnxxRfzt7/9Lddee21++9vfLuTIAQAAAKB6GtZ1APNy5JFHlu7qliRdu3bNa6+9lqFDh2bgwIFp3759kmTy5MlZbrnlSvNNnjw566+//lyX26hRozRq1KhWYwcAAACAhWXYsGHZf//9s/feeydJLrrootx222255JJL8pvf/Ga26R9++OH07Nkzu+22W5KkU6dO2XXXXfPYY48t1LgBAAAAoLrK+o5un376aSorq4bYoEGDzJw5M0nSuXPntG/fPiNHjiyNnzp1ah577LF07959ocYKAAAAAHXhiy++yBNPPJE+ffqUhlVWVqZPnz555JFH5jhPjx498sQTT5Qeb/rKK6/k9ttvz09+8pO5rmf69OmZOnVqlT8AAAAAWFjK+o5u/fr1y+9+97ustNJKWXvttfPkk09m2LBh2WeffZIkFRUVOfTQQ3PqqadmtdVWS+fOnXPcccdl+eWXT//+/es2eAAAAABYCN57773MmDEj7dq1qzK8Xbt2eemll+Y4z2677Zb33nsvm222WYqiyFdffZUDDzxwno8uHTp0aE466aQajR0AAAAAqqus7+h27rnn5mc/+1l+/etfp0uXLjniiCPyy1/+MqecckppmqOOOioHH3xwDjjggGy88caZNm1aRowYkcaNG9dh5AAAAABQvkaNGpXf//73ueCCCzJmzJjceOONue2226rU3WY1ZMiQTJkypfT3+uuvL8SIAQAAAKjvyvqObi1atMjZZ5+ds88+e67TVFRU5OSTT87JJ5+88AIDAAAAgDKxzDLLpEGDBpk8eXKV4ZMnT0779u3nOM9xxx2XPfbYI/vtt1+SpGvXrvnkk09ywAEH5Jhjjkll5ey/j23UqFEaNWpU8wkAAAAAQDWU9R3dAAAAAIB5W3LJJbPhhhtm5MiRpWEzZ87MyJEj07179znO8+mnn87WzNagQYMkSVEUtRcsAAAAAHxHZX1HNwAAAABg/g4//PAMHDgwG220UX7wgx/k7LPPzieffJK99947SbLnnntmhRVWyNChQ5Mk/fr1y7Bhw9KtW7dssskmmTBhQo477rj069ev1PAGAAAAAOVEoxsAAAAALOIGDBiQd999N8cff3zefvvtrL/++hkxYkTatWuXJJk0aVKVO7gde+yxqaioyLHHHps33ngjbdu2Tb9+/fK73/2urlIAAAAAgHnS6AYAAAAAi4GDDjooBx100BzHjRo1qsrrhg0b5oQTTsgJJ5ywECIDAAAAgO+vcv6TAAAAAAAAAAAAQN3R6AYAAAAAAAAAAEBZ0+gGAAAAAAAAAABAWdPoBgAAAAAAAAAAQFlrWNcBAACLnwFHXVvXIXxn1/5hQF2HAAAAAAAAAMAs3NENAAAAAAAAAACAsqbRDQAAAAAAAAAAgLKm0Q0AAAAAAAAAAICy1rCuAwAAAKD2DDjq2roO4Xu59g8D6joEAAAAAACgDLijGwAAAAAAAAAAAGVNoxsAAAAAAAAAAABlTaMbAAAAAAAAAAAAZU2jGwAAAAAAAAAAAGVNoxsAAAAAAAAAAABlTaMbAAAAAAAAAAAAZU2jGwAAAAAAAAAAAGVNoxsAAAAAAAAAAABlTaMbAAAAAAAAAAAAZU2jGwAAAAAAAAAAAGVNoxsAAAAAAAAAAABlTaMbAAAAAAAAAAAAZU2jGwAAAAAAAAAAAGVNoxsAAAAAAAAAAABlTaMbAAAAAAAAAAAAZU2jGwAAAAAAAAAAAGVNoxsAAAAAAAAAAABlTaMbAAAAAAAAAAAAZU2jGwAAAAAAAAAAAGVNoxsAAAAAAAAAAABlTaMbAAAAAAAAAAAAZU2jGwAAAAAAAAAAAGVNoxsAAAAAAAAAAABlTaMbAAAAAAAAAAAAZU2jGwAAAAAAAAAAAGVNoxsAAAAAAAAAAABlTaMbAAAAAAAAAAAAZU2jGwAAAAAAAAAAAGVNoxsAAAAAAAAAAABlTaMbAAAAAAAAAAAAZU2jGwAAAAAAAAAAAGVNoxsAAAAAAAAAAABlTaMbAAAAAAAAAAAAZU2jGwAAAAAAAAAAAGVNoxsAAAAAAAAAAABlTaMbAAAAAAAAAAAAZU2jGwAAAAAAAAAAAGVNoxsAAAAAAAAAAABlTaMbAAAAAAAAAAAAZU2jGwAAAAAAAAAAAGVNoxsAAAAAAAAAAABlTaMbAAAAAAAAAAAAZU2jGwAAAAAAAAAAAGVNoxsAAAAAAAAAAABlTaMbAAAAAAAAAAAAZU2jGwAAAAAAAAAAAGVNoxsAAAAAAAAAAABlTaMbAAAAAAAAAAAAZU2jGwAAAAAAAAAAAGVNoxsAAAAAAAAAAABlrewb3d5444384he/yNJLL50mTZqka9eu+c9//lMaXxRFjj/++Cy33HJp0qRJ+vTpk/Hjx9dhxAAAAAAAAAAAANSksm50+/DDD9OzZ88sscQSueOOO/LCCy/kzDPPzFJLLVWa5g9/+EPOOeecXHTRRXnsscfSrFmz9O3bN59//nkdRg4AAAAAAAAAAEBNaVjXAczL6aefng4dOuTSSy8tDevcuXPp30VR5Oyzz86xxx6b7bffPkny97//Pe3atctNN92UXXbZZaHHDAAAAAAAAAAAQM0q6zu63XLLLdloo43y85//PMsuu2y6deuWiy++uDR+4sSJefvtt9OnT5/SsFatWmWTTTbJI488UhchAwAAAECdOP/889OpU6c0btw4m2yySR5//PF5Tv/RRx9l0KBBWW655dKoUaOsvvrquf322xdStAAAAACwYGqt0e2jjz7KX//61wwZMiQffPBBkmTMmDF54403qr2MV155JRdeeGFWW2213HnnnfnVr36VwYMH57LLLkuSvP3220mSdu3aVZmvXbt2pXFzMn369EydOrXKHwAAAAAsqq699tocfvjhOeGEEzJmzJist9566du3b9555505Tv/FF19km222yauvvprrr78+Y8eOzcUXX5wVVlhhIUcOAAAAANVTK48ufeaZZ9KnT5+0atUqr776avbff/+0adMmN954YyZNmpS///3v1VrOzJkzs9FGG+X3v/99kqRbt2557rnnctFFF2XgwIHfOb6hQ4fmpJNO+s7zAwAAAEA5GTZsWPbff//svffeSZKLLroot912Wy655JL85je/mW36Sy65JB988EEefvjhLLHEEkmSTp06LcyQAQAAAGCB1Mod3Q4//PDstddeGT9+fBo3blwa/pOf/CQPPPBAtZez3HLLZa211qoyrEuXLpk0aVKSpH379kmSyZMnV5lm8uTJpXFzMmTIkEyZMqX09/rrr1c7JgAAAAAoJ1988UWeeOKJ9OnTpzSssrIyffr0ySOPPDLHeW655ZZ07949gwYNSrt27bLOOuvk97//fWbMmLGwwgYAAACABVIrjW6jR4/OL3/5y9mGr7DCCvN8pOisevbsmbFjx1YZNm7cuHTs2DFJ0rlz57Rv3z4jR44sjZ86dWoee+yxdO/efa7LbdSoUVq2bFnlDwAAAAAWRe+9915mzJiRdu3aVRnerl27udbiXnnllVx//fWZMWNGbr/99hx33HE588wzc+qpp851PdOnT8/UqVOr/AEAAADAwlIrjW6NGjWaY6Fr3Lhxadu2bbWXc9hhh+XRRx/N73//+0yYMCFXXXVV/vKXv2TQoEFJkoqKihx66KE59dRTc8stt+TZZ5/NnnvumeWXXz79+/evqXQAAAAAYLEyc+bMLLvssvnLX/6SDTfcMAMGDMgxxxyTiy66aK7zDB06NK1atSr9dejQYSFGDAAAAEB9VyuNbj/96U9z8skn58svv0zydUPapEmTcvTRR2ennXaq9nI23njj/POf/8zVV1+dddZZJ6ecckrOPvvs7L777qVpjjrqqBx88ME54IADsvHGG2fatGkZMWJElUemAgAAAMDiaplllkmDBg0yefLkKsMnT56c9u3bz3Ge5ZZbLquvvnoaNGhQGtalS5e8/fbb+eKLL+Y4z5AhQzJlypTS3+uvv15zSQAAAADAfNRKo9uZZ56ZadOmZdlll81nn32WXr16ZdVVV02LFi3yu9/9boGWtd122+XZZ5/N559/nhdffDH7779/lfEVFRU5+eST8/bbb+fzzz/PPffck9VXX70m0wEAAACAsrXkkktmww03zMiRI0vDZs6cmZEjR6Z79+5znKdnz56ZMGFCZs6cWRo2bty4LLfccllyySXnOE+jRo3SsmXLKn8AAAAAsLA0rI2FtmrVKnfffXceeuihPP3005k2bVo22GCD9OnTpzZWBwAAAAD12uGHH56BAwdmo402yg9+8IOcffbZ+eSTT7L33nsnSfbcc8+ssMIKGTp0aJLkV7/6Vc4777wccsghOfjggzN+/Pj8/ve/z+DBg+syDQAAAACYqxpvdPvyyy/TpEmTPPXUU+nZs2d69uxZ06sAAAAAAL5lwIABeffdd3P88cfn7bffzvrrr58RI0akXbt2SZJJkyalsvJ/D3fo0KFD7rzzzhx22GFZd911s8IKK+SQQw7J0UcfXVcpAAAAAMA81Xij2xJLLJGVVlopM2bMqOlFAwAAAABzcdBBB+Wggw6a47hRo0bNNqx79+559NFHazkqAAAAAKgZlfOfZMEdc8wx+e1vf5sPPvigNhYPAAAAAAAAAABAPVLjd3RLkvPOOy8TJkzI8ssvn44dO6ZZs2ZVxo8ZM6Y2VgsAAAAAAAAAAMBiqFYa3fr3718biwUAAAAAAAAAAKAeqpVGtxNOOKE2FgsAAAAAAAAAAEA9VCuNbt944okn8uKLLyZJ1l577XTr1q02VwcAAAAAAAAAAMBiqFYa3d55553ssssuGTVqVFq3bp0k+eijj7LVVlvlmmuuSdu2bWtjtQAAAAAAAAAAACyGaqXR7eCDD87HH3+c559/Pl26dEmSvPDCCxk4cGAGDx6cq6++ujZWCwAAALDIG3DUtXUdwvdy7R8G1HUIAAAAAMBiqFYa3UaMGJF77rmn1OSWJGuttVbOP//8/PCHP6yNVQIAAAAAAAAAALCYqqyNhc6cOTNLLLHEbMOXWGKJzJw5szZWCQAAAAAAAAAAwGKqVhrdevfunUMOOSRvvvlmadgbb7yRww47LFtvvXVtrBIAAAAAAAAAAIDFVK00up133nmZOnVqOnXqlFVWWSWrrLJKOnfunKlTp+bcc8+tjVUCAAAAAAAAAACwmGpYGwvt0KFDxowZk3vuuScvvfRSkqRLly7p06dPbawOAAAAAAAAAACAxVitNLolSUVFRbbZZptss802tbUKAAAAAAAAAAAA6oFaeXTp4MGDc84558w2/Lzzzsuhhx5aG6sEAAAAAAAAAABgMVUrjW433HBDevbsOdvwHj165Prrr6+NVQIAAAAAAAAAALCYqpVGt/fffz+tWrWabXjLli3z3nvv1cYqAQAAAAAAAAAAWEzVSqPbqquumhEjRsw2/I477sjKK69cG6sEAAAAAAAAAABgMdWwNhZ6+OGH56CDDsq7776b3r17J0lGjhyZM888M2effXZtrBIAAAAAAAAAAIDFVK00uu2zzz6ZPn16fve73+WUU05JknTq1CkXXnhh9txzz9pYJQAAAAAAAAAAAIupWml0S5Jf/epX+dWvfpV33303TZo0SfPmzWtrVQAAAAAAAAAAACzGKmt7BW3bts0TTzyRO+64Ix9++GFtrw4AAAAAAAAAAIDFTI3e0e3000/PtGnTSo8rLYoiP/7xj3PXXXclSZZddtmMHDkya6+9dk2uFgAAAAAAAAAAgMVYjd7R7dprr80666xTen399dfngQceyIMPPpj33nsvG220UU466aSaXCUAAAAAAAAAAACLuRptdJs4cWLWXXfd0uvbb789P/vZz9KzZ8+0adMmxx57bB555JGaXCUAAAAAAAAAAACLuRptdPvqq6/SqFGj0utHHnkkPXr0KL1efvnl895779XkKgEAAAAAAAAAAFjM1Wij2yqrrJIHHnggSTJp0qSMGzcuW2yxRWn8f//73yy99NI1uUoAAAAAAAAAAAAWcw1rcmGDBg3KQQcdlAcffDCPPvpounfvnrXWWqs0/t577023bt1qcpUAAAAAAAAAAAAs5mq00W3//fdPgwYN8q9//StbbLFFTjjhhCrj33zzzeyzzz41uUoAAAAAAAAAAAAWczXa6JYk++yzz1yb2S644IKaXh0AAAAAAAAAAACLucq6DgAAAAAAAAAAAADmRaMbAAAAAAAAAAAAZU2jGwAAAAAAAAAAAGVNoxsAAAAAAAAAAABlrVYa3S699NJ8+umntbFoAAAAAAAAAAAA6plaaXT7zW9+k/bt22fffffNww8/XBurAAAAAAAAAAAAoJ6olUa3N954I5dddlnee++9bLnllllzzTVz+umn5+23366N1QEAAAAAAAAAALAYq5VGt4YNG2aHHXbIzTffnNdffz37779/rrzyyqy00kr56U9/mptvvjkzZ86sjVUDAAAAAAAAAACwmKmVRrdva9euXTbbbLN07949lZWVefbZZzNw4MCsssoqGTVqVG2vHgAAAAAAAAAAgEVcrTW6TZ48OWeccUbWXnvtbLnllpk6dWpuvfXWTJw4MW+88UZ23nnnDBw4sLZWDwDA/7d353FVlP3/x98sAiIIrriE4i6mouKGpihS2EKiVkamuGeBay5555rmUq7lrrnchmmLWbeWG4mZWikuqSmaiXrfiZm54S7M749+nq9HtgNy4Aiv5+PBHzNzzcznmjPXNXMOn7kGAAAAAAAAAAAAAPIJqyS6hYaGytvbW8uWLVPv3r31v//9T5988omCg4MlSUWKFNGbb76pM2fOWGP3AAAAAAAAAAAAAAAAAIB8xNEaGy1durS2bdumgICAdMuUKlVKJ0+etMbuAQAAAAAAAAAAAAAAAAD5iFVGdBszZowaNGiQan5KSopOnz4tSbKzs1PFihWtsXsAAAAAAAAAAAAAAAAAQD5ilUS3SpUqqUGDBjpx4oTZ/PPnz6tSpUrW2CUAAAAAAAAAAAAAAAAAIJ+ySqKbYRjy9fVV48aNFRMTk2oZAAAAAAAAAAAAAAAAAACWskqim52dnebOnauRI0fq2Wef1QcffGC2DAAAAAAAAAAAAAAAAAAASzlaY6P3Rm0bNGiQatasqfDwcB08eFCjR4+2xu4AAAAAAAAAAAAAAAAAAPmYVRLd7vf0009r586dev755/Xzzz9be3cAAAAAAAAAAAAAAAAAgHzGKq8uDQwMlJOTk2m6Vq1a+umnn+Tp6Wka7Q0AAAAAAAAAAAAAAAAAAEtYZUS3rVu3pppXokQJbdu2zRq7AwAAAAAAAAAAAAAAAADkY1YZ0S0oKEjjxo1LNf/ixYsKCgqyxi4BAAAAAAAAAAAAAAAAAPmUVUZ0i42N1cGDB7Vv3z5FR0erSJEikqTbt28zqhsAAAAAAAAAAAAAAAAAIEusMqKbJG3ZskWJiYlq2rSpEhISrLUbAAAAAAAAAAAAAAAAAEA+Z7VEt7Jly2rbtm2qU6eOGjVqpNjYWGvtCgAAAAAAAAAAAAAAAACQj1kl0c3Ozk6S5OzsrJUrV2rAgAFq27at5s6da43dAQAAAAAAAAAAAAAAAADyMUdrbNQwDLPpkSNHytfXVxEREdbYHQAAAAAAAAAAAAAAAAAgH7NKotvJkydVsmRJs3kdO3ZUjRo1FBcXZ41dAgAAAAAAAAAAAAAAAADyKaskulWsWDHN+bVr11bt2rWtsUsAAAAAAAAAAAAAAAAAQD5llUS31q1by87OLt3l3333nTV2CwAAAAAAAAAAAAAAAADIh6yS6FavXj2z6Tt37mj//v06dOiQIiIirLFLAAAAAAAAAAAAAAAAAEA+ZZVEtxkzZqQ5f+zYsUpKSrLGLgEAAAAAAAAAAAAAAAAA+ZR9bu7s1Vdf1ZIlS3JzlwAAAAAAAAAAAAAAAACAR1yuJrrt2rVLLi4u2V5/8uTJsrOz08CBA03zbt68qcjISJUoUUJubm7q2LGjzp07lwPRAgAAAAAAAAAAAAAAAABsgVUS3Tp06GD21759ezVt2lTdu3fXa6+9lq1t7t69WwsWLFDdunXN5g8aNEj/+c9/9Nlnn2nbtm36448/1KFDh5yoBgAAAAAAAPDImDNnjnx8fOTi4qImTZro559/tmi9VatWyc7OTmFhYdYNEAAAAAAAAHgIVkl08/DwMPsrXry4WrVqpW+++UZjxozJ8vaSkpLUuXNnLVq0SMWKFTPNv3z5sj766CNNnz5dQUFB8vf319KlS7Vz5079+OOPOVklAAAAAAAAwGatXr1agwcP1pgxY7R37175+fkpJCREf/75Z4brJSQkaMiQIWrRokUuRQoAAAAAAABkj2NObuz3339XpUqVtHTp0pzcrCIjI/Xss88qODhYEyZMMM2Pi4vTnTt3FBwcbJpXs2ZNVahQQbt27VLTpk3T3N6tW7d069Yt0/SVK1dyNF4AAAAAAAAgN02fPl29e/dW9+7dJUnz58/X+vXrtWTJEr311ltprpOcnKzOnTtr3Lhx2r59uy5dupSLEQMAAAAAAABZk6MjulWrVk3nz583TXfq1Ennzp17qG2uWrVKe/fu1aRJk1ItS0xMlJOTkzw9Pc3me3l5KTExMd1tTpo0yWzEOW9v74eKEQAAAAAAAMgrt2/fVlxcnNnDoPb29goODtauXbvSXe+dd95R6dKl1bNnz9wIEwAAAAAAAHgoOZroZhiG2fQ333yja9euZXt7Z86c0YABAxQdHS0XF5eHDc9kxIgRunz5sunvzJkzObZtAAAAAAAAIDf99ddfSk5OlpeXl9n8jB4G/eGHH/TRRx9p0aJFFu/n1q1bunLlitkfAAAAAAAAkFtyNNEtp8XFxenPP/9UgwYN5OjoKEdHR23btk0ffPCBHB0d5eXlpdu3b6d6rcK5c+dUpkyZdLfr7OysokWLmv0BAAAAAAAABcHVq1fVpUsXLVq0SCVLlrR4Pd6SAAAAAAAAgLzkmJMbs7Ozk52dXap52dWmTRsdPHjQbF737t1Vs2ZNDR8+XN7e3ipUqJBiYmLUsWNHSVJ8fLxOnz6tgICAbO8XAAAAAAAAeFSULFlSDg4OOnfunNn89B4GPXHihBISEhQaGmqal5KSIklydHRUfHy8qlSpkmq9ESNGaPDgwabpK1eukOwGAAAAAACAXJOjiW6GYahbt25ydnaWJN28eVN9+/ZVkSJFzMqtWbPGou25u7urdu3aZvOKFCmiEiVKmOb37NlTgwcPVvHixVW0aFH169dPAQEBatq0aQ7UCAAAAAAAALBtTk5O8vf3V0xMjMLCwiT9k7gWExOjqKioVOVr1qyZ6uHSkSNH6urVq5o1a1a6yWvOzs6m3/0AAAAAAACA3JajiW4RERFm06+++mpObj5NM2bMkL29vTp27Khbt24pJCREc+fOtfp+AQAAAAAAAFsxePBgRUREqGHDhmrcuLFmzpypa9euqXv37pKkrl27qnz58po0aZJcXFxSPVzq6ekpSanmAwAAAAAAALYiRxPdli5dmpObS1NsbKzZtIuLi+bMmaM5c+ZYfd8AAAAAAACALerUqZPOnz+v0aNHKzExUfXq1dOGDRvk5eUlSTp9+rTs7e3zOEoAAAAAAAAg+3I00Q0AAAAAAABA3oiKikrzVaVS6odHH7Rs2bKcDwgAAAAAAADIQTzGCQAAAAAAAAAAAAAAAACwaSS6AQAAAAAAAAAAAAAAAABsGoluAAAAAAAAAAAAAAAAAACbRqIbAAAAAAAAAAAAAAAAAMCmkegGAAAAAAAAAAAAAAAAALBpJLoBAAAAAAAAAAAAAAAAAGwaiW4AAAAAAAAAAAAAAAAAAJtGohsAAAAAAAAAAAAAAAAAwKaR6AYAAAAAAAAAAAAAAAAAsGkkugEAAAAAAAAAAAAAAAAAbBqJbgAAAAAAAAAAAAAAAAAAm0aiGwAAAAAAAAAAAAAAAADAppHoBgAAAAAAAAAAAAAAAACwaSS6AQAAAAAAAAAAAAAAAABsGoluAAAAAAAAAAAAAAAAAACbRqIbAAAAAAAAAAAAAAAAAMCmkegGAAAAAAAAAAAAAAAAALBpJLoBAAAAAAAAAAAAAAAAAGwaiW4AAAAAAAAAAAAAAAAAAJtGohsAAAAAAAAAAAAAAAAAwKaR6AYAAAAAAAAAAAAAAAAAsGkkugEAAAAAAAAAAAAAAAAAbBqJbgAAAAAAAAAAAAAAAAAAm0aiGwAAAAAAAAAAAAAAAADAppHoBgAAAAAAAAAAAAAAAACwaSS6AQAAAAAAAAAAAAAAAABsGoluAAAAAAAAAAAAAAAAAACbRqIbAAAAAAAAAAAAAAAAAMCmkegGAAAAAAAAAAAAAAAAALBpJLoBAAAAAAAAAAAAAAAAAGwaiW4AAAAAAAAAAAAAAAAAAJtGohsAAAAAAAAAAAAAAAAAwKaR6AYAAAAAAAAAAAAAAAAAsGkkugEAAAAAAAAAAAAAAAAAbBqJbgAAAAAAAAAAAAAAAAAAm0aiGwAAAAAAAAAAAAAAAADAppHoBgAAAAAAAAAAAAAAAACwaSS6AQAAAAAAAAAAAAAAAABsGoluAAAAAAAAAAAAAAAAAACbRqIbAAAAAAAAAAAAAAAAAMCmkegGAAAAAAAAAAAAAAAAALBpJLoBAAAAAAAAAAAAAAAAAGwaiW4AAAAAAAAAAAAAAAAAAJtGohsAAAAAAAAAAAAAAAAAwKaR6AYAAAAAAAAAAAAAAAAAsGkkugEAAAAAAAAAAAAAAAAAbBqJbgAAAAAAAAAAAAAAAAAAm0aiGwAAAAAAAAAAAAAAAADAppHoBgAAAAAAAAAAAAAAAACwaSS6AQAAAAAAAAAAAAAAAABsGoluAAAAAAAAAAAAAAAAAACbRqIbAAAAAAAAAAAAAAAAAMCmOeZ1AAAAAACQmzoNW53XITyU1e91yusQAAAAAAAAAAAAch0jugEAAAAAAAAAAAAAAAAAbBqJbgAAAAAAAAAAAAAAAAAAm0aiGwAAAAAAAAAAAAAAAADAppHoBgAAAAAAAAAAAAAAAACwaSS6AQAAAAAAAAAAAAAAAABsGoluAAAAAAAAAAAAAAAAAACbRqIbAAAAAAAAAAAAAAAAAMCmkegGAAAAAAAAAAAAAAAAALBpJLoBAAAAAAAAAAAAAAAAAGyaTSe6TZo0SY0aNZK7u7tKly6tsLAwxcfHm5W5efOmIiMjVaJECbm5ualjx446d+5cHkUMAAAAAAAAAAAAAAAAAMhpjnkdQEa2bdumyMhINWrUSHfv3tW//vUvPfXUU/r1119VpEgRSdKgQYO0fv16ffbZZ/Lw8FBUVJQ6dOigHTt25HH0AAAA+U+nYavzOoRsW/1ep7wOAQAAwKrmzJmj999/X4mJifLz89OHH36oxo0bp1l20aJF+ve//61Dhw5Jkvz9/TVx4sR0ywMAAAAAAAB5zaYT3TZs2GA2vWzZMpUuXVpxcXFq2bKlLl++rI8++kgrV65UUFCQJGnp0qXy9fXVjz/+qKZNm+ZF2AAAAAAAAECuWr16tQYPHqz58+erSZMmmjlzpkJCQhQfH6/SpUunKh8bG6vw8HA1a9ZMLi4umjJlip566ikdPnxY5cuXz4MaAAAAAAAAABmz6VeXPujy5cuSpOLFi0uS4uLidOfOHQUHB5vK1KxZUxUqVNCuXbvS3c6tW7d05coVsz8AAAAAAADgUTV9+nT17t1b3bt3V61atTR//ny5urpqyZIlaZaPjo7WG2+8oXr16qlmzZpavHixUlJSFBMTk8uRAwAAAAAAAJZ5ZBLdUlJSNHDgQDVv3ly1a9eWJCUmJsrJyUmenp5mZb28vJSYmJjutiZNmiQPDw/Tn7e3tzVDBwAAAAAAAKzm9u3biouLM3sY1N7eXsHBwRk+DHq/69ev686dO6YHTNPCw6MAAAAAAADIS49MoltkZKQOHTqkVatWPfS2RowYocuXL5v+zpw5kwMRAgAAAAAAALnvr7/+UnJysry8vMzmZ/Yw6P2GDx+ucuXKmSXLPYiHRwEAAAAAAJCXHolEt6ioKK1bt05bt27VY489ZppfpkwZ3b59W5cuXTIrf+7cOZUpUybd7Tk7O6to0aJmfwAAAAAAAEBBNHnyZK1atUpffvmlXFxc0i3Hw6MAAAAAAADISzad6GYYhqKiovTll1/qu+++U6VKlcyW+/v7q1ChQoqJiTHNi4+P1+nTpxUQEJDb4QIAAAAAAAC5rmTJknJwcNC5c+fM5mf2MKgkTZ06VZMnT9amTZtUt27dDMvy8CgAAAAAAADykk0nukVGRurjjz/WypUr5e7ursTERCUmJurGjRuSJA8PD/Xs2VODBw/W1q1bFRcXp+7duysgIEBNmzbN4+gBAAAAAAAA63NycpK/v7/Zw6ApKSmKiYnJ8GHQ9957T+PHj9eGDRvUsGHD3AgVAAAAAAAAyDbHvA4gI/PmzZMktWrVymz+0qVL1a1bN0nSjBkzZG9vr44dO+rWrVsKCQnR3LlzczlSAAAAAAAAIO8MHjxYERERatiwoRo3bqyZM2fq2rVr6t69uySpa9euKl++vCZNmiRJmjJlikaPHq2VK1fKx8dHiYmJkiQ3Nze5ubnlWT0AAAAAAACA9Nh0opthGJmWcXFx0Zw5czRnzpxciAgAAAAAAACwPZ06ddL58+c1evRoJSYmql69etqwYYO8vLwkSadPn5a9/f+93GHevHm6ffu2XnjhBbPtjBkzRmPHjs3N0AEAAAAAAACL2HSiGwAAAAAAAADLREVFKSoqKs1lsbGxZtMJCQnWDwgAAAAAAADIQSS65WOdhq3O6xCybfV7nbJU/lGuq5T1+gIAAOvj/gIAAAAAAAAAAACwHfaZFwEAAAAAAAAAAAAAAAAAIO+Q6AYAAAAAAAAAAAAAAAAAsGkkugEAAAAAAAAAAAAAAAAAbBqJbgAAAAAAAAAAAAAAAAAAm0aiGwAAAAAAAAAAAAAAAADAppHoBgAAAAAAAAAAAAAAAACwaY55HQAAAMCjrNOw1XkdwkNZ/V6nvA4BAAAAAAAAAAAAADLFiG4AAAAAAAAAAAAAAAAAAJtGohsAAAAAAAAAAAAAAAAAwKaR6AYAAAAAAAAAAAAAAAAAsGmOeR0AAGSk07DVeR3CQ1n9Xqe8DgEAAItwzQUAAAAAAAAAAIAtY0Q3AAAAAAAAAAAAAAAAAIBNI9ENAAAAAAAAAAAAAAAAAGDTSHQDAAAAAAAAAAAAAAAAANg0Et0AAAAAAAAAAAAAAAAAADaNRDcAAAAAAAAAAAAAAAAAgE0j0Q0AAAAAAAAAAAAAAAAAYNNIdAMAAAAAAAAAAAAAAAAA2DQS3QAAAAAAAAAAAAAAAAAANo1ENwAAAAAAAAAAAAAAAACATSPRDQAAAAAAAAAAAAAAAABg00h0AwAAAAAAAAAAAAAAAADYNBLdAAAAAAAAAAAAAAAAAAA2jUQ3AAAAAAAAAAAAAAAAAIBNI9ENAAAAAAAAAAAAAAAAAGDTSHQDAAAAAAAAAAAAAAAAANg0Et0AAAAAAAAAAAAAAAAAADaNRDcAAAAAAAAAAAAAAAAAgE0j0Q0AAAAAAAAAAAAAAAAAYNMc8zoAAFnXadjqvA4h21a/1ymvQwAAAADwCOJ7EAAAAAAAAAAUbIzoBgAAAAAAAAAAAAAAAACwaSS6AQAAAAAAAAAAAAAAAABsGoluAAAAAAAAAAAAAAAAAACbRqIbAAAAAAAAAAAAAAAAAMCmkegGAAAAAAAAAAAAAAAAALBpJLoBAAAAAAAAAAAAAAAAAGwaiW4AAAAAAAAAAAAAAAAAAJtGohsAAAAAAAAAAAAAAAAAwKaR6AYAAAAAAAAAAAAAAAAAsGkkugEAAAAAAAAAAAAAAAAAbJpjXgcAAAAAAACyrtOw1XkdwkNZ/V6nvA4BAAAAAAAAAPAIYUQ3AAAAAAAAAAAAAAAAAIBNI9ENAAAAAAAAAAAAAAAAAGDTSHQDAAAAAAAAAAAAAAAAANg0Et0AAAAAAAAAAAAAAAAAADaNRDcAAAAAAAAAAAAAAAAAgE0j0Q0AAAAAAAAAAAAAAAAAYNNIdAMAAAAAAAAAAAAAAAAA2DQS3QAAAAAAAAAAAAAAAAAANo1ENwAAAAAAAAAAAAAAAACATSPRDQAAAAAAAAAAAAAAAABg00h0AwAAAAAAAAAAAAAAAADYNBLdAAAAAAAAAAAAAAAAAAA2jUQ3AAAAAAAAAAAAAAAAAIBNI9ENAAAAAAAAAAAAAAAAAGDTSHQDAAAAAAAAAAAAAAAAANg0Et0AAAAAAAAAAAAAAAAAADaNRDcAAAAAAAAAAAAAAAAAgE0j0Q0AAAAAAAAAAAAAAAAAYNNIdAMAAAAAAAAAAAAAAAAA2DQS3QAAAAAAAAAAAAAAAAAANi3fJLrNmTNHPj4+cnFxUZMmTfTzzz/ndUgAAAAAAABArsnq72OfffaZatasKRcXF9WpU0fffPNNLkUKAAAAAAAAZF2+SHRbvXq1Bg8erDFjxmjv3r3y8/NTSEiI/vzzz7wODQAAAAAAALC6rP4+tnPnToWHh6tnz57at2+fwsLCFBYWpkOHDuVy5AAAAAAAAIBl8kWi2/Tp09W7d291795dtWrV0vz58+Xq6qolS5bkdWgAAAAAAACA1WX197FZs2apbdu2Gjp0qHx9fTV+/Hg1aNBAs2fPzuXIAQAAAAAAAMs88olut2/fVlxcnIKDg03z7O3tFRwcrF27duVhZAAAAAAAAID1Zef3sV27dpmVl6SQkBB+TwMAAAAAAIDNcszrAB7WX3/9peTkZHl5eZnN9/Ly0tGjR9Nc59atW7p165Zp+vLly5KkK1euWC/QPHDn1vW8DiHbsvpZPMp1lQpWfQtSXSXqm5lHub4Fqa5SwapvQaqrVLDqW5DqKlHfjBSkukrU91FSkOoqFaz6FqS6Svnv95V79TEMI48jSV92fh9LTExMs3xiYmK6+ykov6kBAAAAAADg4VjrNzU7w5Z/pbPAH3/8ofLly2vnzp0KCAgwzR82bJi2bdumn376KdU6Y8eO1bhx43IzTAAAAAAAADzCzpw5o8ceeyyvw0hTdn4fc3Jy0vLlyxUeHm6aN3fuXI0bN07nzp1Lcz/8pgYAAAAAAICsOHHihCpXrpxj23vkR3QrWbKkHBwcUv0Ad+7cOZUpUybNdUaMGKHBgwebplNSUvT333+rRIkSsrOzs2q8+cGVK1fk7e2tM2fOqGjRonkdjtVR3/yrINVVKlj1LUh1lQpWfQtSXSXqm58VpLpKBau+BamuUsGqb0Gqq0R987OCVNecYhiGrl69qnLlyuV1KOnKzu9jZcqUyVJ5KfVvapcuXVLFihV1+vRpeXh4PEQNAFgDfT5g22ijgG2jjQK2j3YK2LbLly+rQoUKKl68eI5u95FPdHNycpK/v79iYmIUFhYm6Z/EtZiYGEVFRaW5jrOzs5ydnc3meXp6WjnS/Kdo0aIF6oJBffOvglRXqWDVtyDVVSpY9S1IdZWob35WkOoqFaz6FqS6SgWrvgWprhL1zc8KUl1zgq0ncWXn97GAgADFxMRo4MCBpnmbN282GxHuQWn9pib9c3w4nwDbRZ8P2DbaKGDbaKOA7aOdArbN3t4+R7f3yCe6SdLgwYMVERGhhg0bqnHjxpo5c6auXbum7t2753VoAAAAAAAAgNVl9vtY165dVb58eU2aNEmSNGDAAAUGBmratGl69tlntWrVKu3Zs0cLFy7My2oAAAAAAAAA6coXiW6dOnXS+fPnNXr0aCUmJqpevXrasGGDvLy88jo0AAAAAAAAwOoy+33s9OnTZk/QNmvWTCtXrtTIkSP1r3/9S9WqVdPatWtVu3btvKoCAAAAAAAAkKF8kegmSVFRUem+igE5y9nZWWPGjEnzVRX5EfXNvwpSXaWCVd+CVFepYNW3INVVor75WUGqq1Sw6luQ6ioVrPoWpLpK1Dc/K0h1LYgy+n0sNjY21bwXX3xRL774Yrb3x/kE2DbaKGDbaKOAbaONAraPdgrYNmu1UTvDMIwc3SIAAAAAAAAAAAAAAAAAADnIPvMiAAAAAAAAAAAAAAAAAADkHRLdAAAAAAAAAAAAAAAAAAA2jUQ3PLRWrVpp4MCBGZbx8fHRzJkz8zQGW5CQkCA7Ozvt379fkhQbGys7OztdunQpx7edlmXLlsnT0/Oh95WfZPaZPHjMxo4dq3r16uV6nGnJjfPezs5Oa9euteo+rK1bt24KCwszTWfluFnrGBuGoT59+qh48eKZtltrok/In6z5uT5sm7ClPjQnZHY8cqIPtcZ16MF+sSB7VO4hc0tOHI+Cfkyz0gfbwnU4p76PWPv7Xl6w9jUrv10TAQAAAAAAACA3kOiGXLF792716dMnr8OwOc2aNdPZs2fl4eGRK/vr1KmTjh07liv7elR4e3vr7Nmzql27tkXlhwwZopiYGCtHlfMsSYQsKNasWaPx48fnaQwbNmzQsmXLtG7duiydfwAeLWfPntXTTz+do9vMievQrFmztGzZspwJCAVWeglStnCdzUu2fr9trUREvu9lXVb7c+7nkZfmzJkjHx8fubi4qEmTJvr5558zLP/ZZ5+pZs2acnFxUZ06dfTNN9/kUqRAwZSVNrpo0SK1aNFCxYoVU7FixRQcHJxpmwbwcLJ6Hb1n1apVsrOz40E1wMqy2kYvXbqkyMhIlS1bVs7OzqpevTr3u4CVZbWdzpw5UzVq1FDhwoXl7e2tQYMG6ebNm7kULVCwfP/99woNDVW5cuUsHvwhNjZWDRo0kLOzs6pWrZqt/1eR6IZ03blzJ8e2VapUKbm6uubY9vILJycnlSlTRnZ2drmyv8KFC6t06dK5sq9Hwe3bt+Xg4KAyZcrI0dHRonXc3NxUokQJK0cGaypevLjc3d3zNIYTJ06obNmyatasWZrn3+3bt/MoMtuTnJyslJSUvA4jV/C5p+1RPi5lypSRs7Nzjm4zJ65DHh4eeT6KVH70KJ+rOckWrrN5qaDebz/K3/dy8ntvVvC9Ao+K1atXa/DgwRozZoz27t0rPz8/hYSE6M8//0yz/M6dOxUeHq6ePXtq3759CgsLU1hYmA4dOpTLkQMFQ1bbaGxsrMLDw7V161bt2rVL3t7eeuqpp/S///0vlyMHCoasttF7EhISNGTIELVo0SKXIgUKpqy20du3b+vJJ59UQkKCPv/8c8XHx2vRokUqX758LkcOFBxZbacrV67UW2+9pTFjxujIkSP66KOPtHr1av3rX//K5ciBguHatWvy8/PTnDlzLCp/8uRJPfvss2rdurX279+vgQMHqlevXtq4cWOW9kuiWwGyYcMGPfHEE/L09FSJEiX03HPP6cSJE5L+7+nw1atXKzAwUC4uLoqOjtaFCxcUHh6u8uXLy9XVVXXq1NEnn3ySatt3795VVFSUPDw8VLJkSY0aNUqGYZiWP/gqm0uXLum1116Tl5eXXFxcVLt2ba1bt+6h6pdRDLdu3dKQIUNUvnx5FSlSRE2aNFFsbKxp3XuvDdq4caN8fX3l5uamtm3b6uzZs2bb79+/v+n4DR8+XBEREWZPVGV0jNOSnVcFpaSk6L333lPVqlXl7OysChUq6N133zUt//3339W6dWu5urrKz89Pu3btSlXPe+69LmfFihXy8fGRh4eHXn75ZV29etVsf5MmTVKlSpVUuHBh+fn56fPPPzctv3jxojp37qxSpUqpcOHCqlatmpYuXWpafubMGb300kvy9PRU8eLF1a5dOyUkJFhcX0vrHxQUpKioKLOy58+fl5OTk2mkBB8fH40fP15du3ZV0aJF1adPnyyPjJDWK4aWLFmixx9/XM7OzipbtmyqOHLCtWvX1LVrV7m5uals2bKaNm2a2fK0MqQ9PT1NGdCVKlWSJNWvX192dnZq1aqVxfH/9ddfat++vVxdXVWtWjV9/fXXOVavjM6ve+0jJiZGDRs2lKurq5o1a6b4+HizbUyYMEGlS5eWu7u7evXqpbfeeivD10A9OJLJ3LlzVa1aNbm4uMjLy0svvPBCqhiHDRum4sWLq0yZMho7duxD1blbt27q16+fTp8+LTs7O/n4+KhVq1aKiorSwIEDVbJkSYWEhEiSDh06pKefflpubm7y8vJSly5d9Ndff5nVpX///hnGZ0l/m1Hfl1VXr15V586dVaRIEZUtW1YzZswwO+aW9sdff/21atWqJWdnZ50+fVo+Pj6aMGGCqR1UrFhRX3/9tc6fP6927drJzc1NdevW1Z49e0zbsuQaZskxtNaxSKtPkqQffvhBLVq0MD1t1L9/f127ds203cyO4YPOnz+vhg0bqn379rp169ZD1yujNnHp0iX16tVLpUqVUtGiRRUUFKQDBw6k2saCBQvk7e0tV1dXvfTSS7p8+bJp2b3Xar777rsqV66catSoISnj68mhQ4dkb2+v8+fPS5L+/vtv2dvb6+WXXzZtd8KECXriiSceuv5ZOR739833rjdr1qxJ9zot/dMGKlSoIFdXV7Vv314XLlwwW57Try7N7N7lXtyrVq1Ss2bNTP3Itm3bTGWSk5PVs2dPU19eo0YNzZo1K819Tp06VWXLllWJEiUUGRlplmCS2bl96tQphYaGqlixYipSpIgef/xxsydmM+szLbF+/Xp5eHgoOjpaBw8eVFBQkAoXLqwSJUqoT58+SkpKSlWnrJyr0j8jXz355JMqWbKkPDw8FBgYqL1795rFYWdnp8WLF1vt+muJFStWqGHDhnJ3d1eZMmX0yiuvmH5ASkhIUOvWrSVJxYoVk52dnbp16yYp9XXWx8dHEydOVI8ePeTu7q4KFSpo4cKFVov7888/V506dUyfW3BwsK5du2b6vMaNG2fqo/r27WuWoGhpe8ioHT94v33gwAG1bt1a7u7uKlq0qPz9/c2uVVLOXocz0q1bN23btk2zZs2SnZ2d7OzsTOdmXFxcuvdbJ06cULt27eTl5SU3Nzc1atRIW7ZsMdu2Lb26NK1Y6tWrZ+qf7ezsNG/ePD3//PMqUqSI6bvU5MmT5eXlJXd3d/Xs2TPVk75pjYYXFhZmOvcftHDhQpUrVy5Vwn67du3Uo0ePNPvzxYsXy9fXVy4uLqpZs6bmzp1rWpbe/bwl/WtG7Vn6v/vujRs3qn79+ipcuLCCgoL0559/6ttvv5Wvr6+KFi2qV155RdevXzetZ2vfFWEd06dPV+/evdW9e3fVqlVL8+fPl6urq5YsWZJm+VmzZqlt27YaOnSofH19NX78eDVo0ECzZ8/O5ciBgiGrbTQ6OlpvvPGG6tWrp5o1a2rx4sVKSUl5JN9eADwKstpGpX++Y3fu3Fnjxo1T5cqVczFaoODJahtdsmSJ/v77b61du1bNmzeXj4+PAgMD5efnl8uRAwVHVtvpzp071bx5c73yyivy8fHRU089pfDwcEYxBqzk6aef1oQJE9S+fXuLys+fP1+VKlXStGnT5Ovrq6ioKL3wwguaMWNGlvZLolsBcu3aNQ0ePFh79uxRTEyM7O3t1b59e7Mf3t966y0NGDBAR44cUUhIiG7evCl/f3+tX79ehw4dUp8+fdSlS5dUF4Ply5fL0dFRP//8s2bNmqXp06dr8eLFacaRkpKip59+Wjt27NDHH3+sX3/9VZMnT5aDg8ND1S+jGKKiorRr1y6tWrVKv/zyi1588UW1bdtWx48fN61//fp1TZ06VStWrND333+v06dPa8iQIablU6ZMUXR0tJYuXaodO3boypUrqRKLLDnGD2vEiBGaPHmyRo0apV9//VUrV66Ul5eXafnbb7+tIUOGaP/+/apevbrCw8N19+7ddLd34sQJrV27VuvWrdO6deu0bds2TZ482bR80qRJ+ve//6358+fr8OHDGjRokF599VXTP7jvxfHtt9/qyJEjmjdvnkqWLCnpn9ERQkJC5O7uru3bt2vHjh2mf+Bld9ST9Orfq1cvrVy50iyJ4+OPP1b58uUVFBRkmjd16lT5+flp3759GjVqVLZiuN+8efMUGRmpPn366ODBg/r6669VtWrVh97ug4YOHapt27bpq6++0qZNmxQbG5vqn+IZuddmt2zZorNnz2rNmjUWxz9u3Di99NJL+uWXX/TMM8+oc+fO+vvvv3OkXpmdX9I/5/S0adO0Z88eOTo6qkePHqZl0dHRevfddzVlyhTFxcWpQoUKmjdvnsX737Nnj/r376933nlH8fHx2rBhg1q2bGlWZvny5SpSpIh++uknvffee3rnnXe0efPmbNd51qxZeuedd/TYY4/p7Nmz2r17t2k/Tk5O2rFjh+bPn69Lly4pKChI9evX1549e7RhwwadO3dOL730ksXxWdLfZtb3ZdXgwYO1Y8cOff3119q8ebO2b99udq5a2h9PmTJFixcv1uHDh00j48yYMUPNmzfXvn379Oyzz6pLly7q2rWrXn31Ve3du1dVqlRR165dTUnOWbmG5eRnbOmxkFL3SSdOnFDbtm3VsWNH/fLLL1q9erV++OEHswRUS47hPWfOnFGLFi1Uu3Ztff755zkyulhGx+vFF180/VM8Li5ODRo0UJs2bcz6jN9++02ffvqp/vOf/2jDhg3at2+f3njjDbN9xMTEKD4+Xps3b9a6desyvZ48/vjjKlGihKnv2L59u9m0JG3bts0syTenZPX8yeg6/dNPP6lnz56KiorS/v371bp1a02YMCHHY76fpfcuQ4cO1Ztvvql9+/YpICBAoaGhpiS8lJQUPfbYY/rss8/066+/avTo0frXv/6lTz/91GwbW7du1YkTJ7R161YtX75cy5YtMxuSOrNzOzIyUrdu3dL333+vgwcPasqUKXJzc5Mki/vMjKxcuVLh4eGKjo5WWFiYQkJCVKxYMe3evVufffaZtmzZkioZPKvnqvRPEmxERIR++OEH/fjjj6pWrZqeeeYZswcNJOtefy1x584djR8/XgcOHNDatWuVkJBgSujx9vbWF198IUmKj4/X2bNnUyU33m/atGlq2LChqb2//vrrqRLXc8LZs2cVHh6uHj166MiRI4qNjVWHDh1M14WYmBjT/E8++URr1qzRuHHjTOtb2h6ycr/duXNnPfbYY9q9e7fi4uL01ltvqVChQqblOX0dzsisWbMUEBCg3r176+zZszp79qy8vb1NdUrvfispKUnPPPOMYmJitG/fPrVt21ahoaE6ffq0VeLMDWPHjlX79u118OBB9ejRQ59++qnGjh2riRMnas+ePSpbtqxZkll2vPjii7pw4YK2bt1qmvf3339rw4YN6ty5c6ry0dHRGj16tN59910dOXJEEydO1KhRo7R8+XJJ6d/PS5n3rxm15wePy+zZs7Vz505TEtrMmTO1cuVKrV+/Xps2bdKHH35oKm9r3xWR827fvq24uDgFBweb5tnb2ys4ODhVsv49u3btMisvSSEhIemWB5B92WmjD7p+/bru3Lmj4sWLWytMoMDKbht95513VLp0afXs2TM3wgQKrOy00a+//loBAQGKjIyUl5eXateurYkTJyo5OTm3wgYKlOy002bNmikuLs70O8rvv/+ub775Rs8880yuxAwgYzn2u5GBAuv8+fOGJOPgwYPGyZMnDUnGzJkzM13v2WefNd58803TdGBgoOHr62ukpKSY5g0fPtzw9fU1TVesWNGYMWOGYRiGsXHjRsPe3t6Ij4/PsbpkFMOpU6cMBwcH43//+5/ZOm3atDFGjBhhGIZhLF261JBk/Pbbb6blc+bMMby8vEzTXl5exvvvv2+avnv3rlGhQgWjXbt26cZ1/zE2DMN0nPft22cYhmFs3brVkGRcvHjRonpeuXLFcHZ2NhYtWpRq2b1tL1682DTv8OHDhiTjyJEjpnp6eHiYlo8ZM8ZwdXU1rly5Ypo3dOhQo0mTJoZhGMbNmzcNV1dXY+fOnWb76tmzpxEeHm4YhmGEhoYa3bt3TzPeFStWGDVq1DD7XG7dumUULlzY2Lhxo0V1vl9G9b9x44ZRrFgxY/Xq1aZ5devWNcaOHWuarlixohEWFma2XmafSVrHzM/PzzRdrlw54+23385yXbLi6tWrhpOTk/Hpp5+a5l24cMEoXLiwMWDAAMMwDEOS8eWXX5qt5+HhYSxdutQwjNT1vCez+CUZI0eONE0nJSUZkoxvv/32oepkGJmfX/c+iy1btpiWrV+/3pBk3LhxwzAMw2jSpIkRGRlptn7z5s3NPqOIiAizdhoYGGg6bl988YVRtGhRszZwv8DAQOOJJ54wm9eoUSNj+PDhWa2umRkzZhgVK1Y020/9+vXNyowfP9546qmnzOadOXPGkGTqPzOLL7P+1pK+LyuuXLliFCpUyPjss89M8y5dumS4uroaAwYMyFJ/vH//frMyFStWNF599VXT9NmzZw1JxqhRo0zzdu3aZUgyzp49m26MaV3DrPEZZ3Ys7tXpwT6pZ8+eRp8+fczmbd++3bC3tzdu3Lhh8TH08PAwjh49anh7exv9+/c364cfRkbHa/v27UbRokWNmzdvmi2vUqWKsWDBAsMw/ulDHRwcjP/+97+m5d9++61hb29v+twiIiIMLy8v49atW6YyllxPOnToYOoPBg4caAwdOtQoVqyYceTIEeP27duGq6ursWnTphw5Dvdkdv7c3zdbcp0ODw83nnnmGbPtderUKcPrUHY82C/eL717l8mTJ5vK3Llzx3jssceMKVOmpLuPyMhIo2PHjmb7rFixonH37l3TvBdffNHo1KmTYRiGRed2nTp1zK7r97Okz0zLvWvC7NmzDQ8PDyM2NtYwDMNYuHChUaxYMSMpKclUdv369Ya9vb2RmJhoqlN2ztUHJScnG+7u7sZ//vMf0zxrXn8zcv818kG7d+82JBlXr141DCP9+9gHt/Fg/52SkmKULl3amDdvXk6Hb8TFxRmSjISEhFTLIiIijOLFixvXrl0zzZs3b57h5uZmJCcnp7m99NpDVu633d3djWXLlqW5/Zy+Dlviwc/HkvuttDz++OPGhx9+aJq+//teXksrFj8/P2PMmDGGYfzTvgYOHGi2PCAgwHjjjTfM5jVp0sSsv02rfbRr186IiIhIN5Z27doZPXr0ME0vWLDAKFeunJGcnJyqP69SpYqxcuVKs/XHjx9vBAQEGIaR/v18Zv1rWtJrz/efB5MmTTIkGSdOnDDNe+2114yQkBDDMGzvuyKs43//+58hKdXnPHToUKNx48ZprlOoUKFU5/KcOXOM0qVLWy1OoKDKTht90Ouvv25Urlw5w+s+gOzJThvdvn27Ub58eeP8+fOGYWT8/R3Aw8lOG61Ro4bh7Oxs9OjRw9izZ4+xatUqo3jx4un+XgXg4WT3fnfWrFlGoUKFDEdHR0OS0bdvX2uHCsBIO1/hQdWqVTMmTpxoNu/e79HXr1+3eF+M6FaAHD9+XOHh4apcubKKFi0qHx8fSTJ7Er9hw4Zm6yQnJ2v8+PGqU6eOihcvLjc3N23cuDHV0/tNmzaVnZ2daTogIEDHjx9P8ymG/fv367HHHlP16tVzsHbpx3Dw4EElJyerevXqcnNzM/1t27bN7FVErq6uqlKlimm6bNmypte5XL58WefOnVPjxo1Nyx0cHOTv728WgyXH+GEcOXJEt27dUps2bdItU7duXbM6SEr3PeXSP6/2cXd3N1vnXvnffvtN169f15NPPml27P7973+bjt3rr7+uVatWqV69eho2bJh27txp2taBAwf022+/yd3d3bRu8eLFdfPmzQxf6Zqd+ru4uKhLly6moWr37t2rQ4cOpRqp4MFz/GH8+eef+uOPPzL8PHLCiRMndPv2bTVp0sQ0r3jx4qZXpGWXpfHff04VKVJERYsWzfCcspQl59eD+3/wnI6Pjzdrl5JSTWfkySefVMWKFVW5cmV16dJF0dHRZq9jenD/92LIifo/6MH+5MCBA9q6davZsalZs6YkpXt8HozPkv42o74vq37//XfduXPH7DPw8PAwnauW9sdOTk6p6vVgXe+NZFmnTp1U8+7Fb+k1zBqfcWbH4p4H+6QDBw5o2bJlZscnJCREKSkpOnnypMXH8MaNG2rRooU6dOhgekVdTknveB04cEBJSUkqUaKEWWwnT540i61ChQoqX768aTogIEApKSlmozvVqVNHTk5OZscls+tJYGCg6TWX27ZtU1BQkFq2bKnY2Fjt3r1bd+7cUfPmzXPsOGR2PCwp/2CfduTIEbO+Xvrn+FiTpfcu98fh6Oiohg0b6siRI6Z5c+bMkb+/v0qVKiU3NzctXLgw1TYef/xxsxEl7z9Wlpzb/fv314QJE9S8eXONGTNGv/zyi2lblvaZafn88881aNAgbd68WYGBgZL++Sz8/PxUpEgRU7nmzZvnyLl67tw59e7dW9WqVZOHh4eKFi2qpKSkDPumnLz+WiouLk6hoaGqUKGC3N3dTccmO/e199fFzs5OZcqUsUpd/Pz81KZNG9WpU0cvvviiFi1apIsXL5otd3V1NU0HBAQoKSlJZ86ckWR5e8jK/fbgwYPVq1cvBQcHa/LkyanOx5y8Dj+MjOqUlJSkIUOGyNfXV56ennJzc9ORI0ce6RHdHrz+Wqv/7dy5s7744gvTqNPR0dF6+eWXZW9v/lPMtWvXdOLECfXs2dOsH5swYYJF35sy6l8ly9vzg/darq6uZq/L8vLystnvigCArJs8ebJWrVqlL7/8Ui4uLnkdDlDgXb16VV26dNGiRYtMo+ACsC0pKSkqXbq0Fi5cKH9/f3Xq1Elvv/225s+fn9ehAfj/YmNjNXHiRM2dO1d79+7VmjVrtH79eo0fPz6vQwOQgxzzOgDkntDQUFWsWFGLFi1SuXLllJKSotq1a5u9FuT+f+ZJ0vvvv69Zs2Zp5syZqlOnjooUKaKBAwc+1KtEChcunO11syMpKUkODg6Ki4tL9XrUe6+7kmT2CiHpn3/CGf//NUeWsuQYPwxLjt399biX2JDRq1PTqve98klJSZKk9evXmyUlSDK9/u7pp5/WqVOn9M0332jz5s1q06aNIiMjNXXqVCUlJcnf31/R0dGp9luqVKlM6/KgzOrfq1cv1atXT//973+1dOlSBQUFqWLFimZlHjzHH0Zun8sZSet8vXPnTobrWBp/RufIw8js/Lr3D66sntNZ4e7urr179yo2NlabNm3S6NGjNXbsWO3evVuenp6p9n8vhpx8HfE9D56bSUlJCg0N1ZQpU1KVvfcP6Mziy2qfcW/9rPZ9lrK0Py5cuHCaiVlpnQsZnR+WXsNy6zNOS1qf+2uvvab+/funKluhQgX98ssvFh1DZ2dnBQcHa926dRo6dGiqNvYw0jteSUlJKlu2rCnZ7H732pOl0joumV1PWrVqpYEDB+r48eP69ddf9cQTT+jo0aOKjY3VxYsX1bBhQ7MEl5yS1fPHmn1aduTEvcuqVas0ZMgQTZs2TQEBAXJ3d9f777+vn376yaxcZvccmZ3bvXr1UkhIiOn1eZMmTdK0adPUr18/i/vMtNSvX1979+7VkiVL1LBhwywlhmbnXI2IiNCFCxc0a9YsVaxYUc7OzgoICLCpvunatWsKCQlRSEiIoqOjVapUKZ0+fVohISHZuq/Nrbo4ODho8+bN2rlzp+kVi2+//XaqczE9lraHrLTjsWPH6pVXXtH69ev17bffasyYMVq1apXat2+falv3tmet63BGMqrTkCFDtHnzZk2dOlVVq1ZV4cKF9cILL9js6yXt7e0zvS/OzncCS7b7oNDQUBmGofXr16tRo0bavn27ZsyYkarcvfviRYsWpUq4e7BPTEtGbSwr7fnB8+BR+q4I6yhZsqQcHBx07tw5s/nnzp1TmTJl0lynTJkyWSoPIPuy00bvmTp1qiZPnqwtW7ak+aAZgIeX1TZ64sQJJSQkKDQ01DTv3r2Xo6Oj4uPjzR6SAfBwsnMdLVu2rAoVKmT2Pc3X11eJiYm6ffu22cOQAB5edtrpqFGj1KVLF/Xq1UvSPw8qX7t2TX369NHbb7+d6uFDALkrvd+NihYtmqXcC1pyAXHhwgXFx8dr5MiRatOmjXx9fc1GN0jPjh071K5dO7366qvy8/NT5cqVdezYsVTlHvzn0Y8//qhq1aql+aN83bp19d///jfN7TyM9GKoX7++kpOT9eeff6pq1apmf5b+0Orh4SEvLy/t3r3bNC85OVl79+41TWf3GGdFtWrVVLhwYcXExOTodtNTq1YtOTs76/Tp06mOnbe3t6lcqVKlFBERoY8//lgzZ87UwoULJUkNGjTQ8ePHVbp06VTre3h4ZDmezOpfp04dNWzYUIsWLdLKlSvVo0eP7FXcQu7u7vLx8bH651GlShUVKlTI7By/ePGiWRsqVaqUzp49a5o+fvy42chk975g3T/KYm7Fnx5Lz6+M1KhRw6xdSko1nRlHR0cFBwfrvffe0y+//KKEhAR99913WdqGNTRo0ECHDx+Wj49PquNj6T9nrdXfpqdy5coqVKiQ2Wdw+fJl0/5zoj/OCkuvYdaQ2bFIT4MGDfTrr7+mOj5Vq1aVk5OTxcfQ3t5eK1askL+/v1q3bq0//vjDanW9P/bExEQ5Ojqmiu3+J5FPnz5tFs+PP/4oe3v7DEeptOR6UqdOHRUrVkwTJkxQvXr15ObmplatWmnbtm2KjY1Vq1atrFb3nOLr65vm/Yy1ZOXe5f447t69q7i4OPn6+kr6p601a9ZMb7zxhurXr6+qVatmeTQeS89tb29v9e3bV2vWrNGbb76pRYsWSXq4PrNKlSraunWrvvrqK/Xr10/SP5/FgQMHdO3aNVO5HTt25Mi5umPHDvXv31/PPPOMHn/8cTk7O+uvv/7K0vGytqNHj+rChQuaPHmyWrRooZo1a6YaZSytewtbYGdnp+bNm2vcuHHat2+fnJyc9OWXX0r6ZwSpGzdumMr++OOPcnNzk7e3t1Xv5atXr65BgwZp06ZN6tChg5YuXZoj280OJyenLH9mO3bsULdu3dS+fXvVqVNHZcqUUUJCgnUCzAEP3hdfuXJFJ0+ezHAdS/rfB7ebnJysQ4cOZbhdFxcXdejQQdHR0frkk09Uo0YNNWjQIFU5Ly8vlStXTr///nuqvqNSpUqSst/mLGnP2WFr3xVhHU5OTvL39zf7zpiSkqKYmJh0Rz0MCAhI9R1z8+bNVh+lFiiIstNGJem9997T+PHjtWHDhhx98wEAc1ltozVr1tTBgwe1f/9+09/zzz+v1q1ba//+/Rb/XgrAMtm5jjZv3ly//fab2cNux44dU9myZUlyA6wgO+30+vXrqZLZ7uUr5MXDpQDM5dTvRiS6FRDFihVTiRIltHDhQv3222/67rvvNHjw4EzXq1atmmlUhCNHjui1115LlWEp/fNP68GDBys+Pl6ffPKJPvzwQw0YMCDNbQYGBqply5bq2LGjNm/erJMnT+rbb7/Vhg0bHqqO6cVQvXp1de7cWV27dtWaNWt08uRJ/fzzz5o0aZLWr19v8fb79eunSZMm6auvvlJ8fLwGDBigixcvmkY8yO4xzgoXFxcNHz5cw4YNM70S5scff9RHH32Uo/u5x93dXUOGDNGgQYO0fPlynThxQnv37tWHH36o5cuXS5JGjx6tr776Sr/99psOHz6sdevWmf7x3blzZ5UsWVLt2rXT9u3bdfLkScXGxqp///7673//m+V4LKl/r169NHnyZBmGYRopw5rGjh2radOm6YMPPtDx48dNxycnubm5qWfPnho6dKi+++470ytZ779RCwoK0uzZs7Vv3z7t2bNHffv2NRuBoXTp0ipcuLA2bNigc+fO6fLly7kWf3osOb8y069fP3300Udavny5jh8/rgkTJuiXX36xeDSedevW6YMPPtD+/ft16tQp/fvf/1ZKSspDvxY2J0RGRurvv/9WeHi4du/erRMnTmjjxo3q3r27xf/gtFZ/mx53d3dFRERo6NCh2rp1qw4fPqyePXvK3t5ednZ2OdYfW8rSa5g1ZHYs0jN8+HDt3LlTUVFR2r9/v44fP66vvvpKUVFRkpSlY+jg4KDo6Gj5+fkpKChIiYmJVq1zcHCwAgICFBYWpk2bNikhIUE7d+7U22+/rT179pjKubi4KCIiQgcOHND27dvVv39/vfTSSxkmO1pyPbGzs1PLli0VHR1tSmqrW7eubt26pZiYGNNr2mxZ//79tWHDBk2dOlXHjx/X7NmzrdZepazdu8yZM0dffvmljh49qsjISF28eNGUUF6tWjXt2bNHGzdu1LFjxzRq1KgsJx1bcm4PHDhQGzdu1MmTJ7V3715t3brVdM/xsH1m9erVtXXrVn3xxRcaOHCgOnfubDpXDx06pK1bt6pfv37q0qWL6TXJabHkXK1WrZpWrFihI0eO6KefflLnzp1tapRY6Z8RJJ2cnPThhx/q999/19dff51qeP+KFSvKzs5O69at0/nz502jO+Wln376SRMnTtSePXt0+vRprVmzRufPnzedJ7dv31bPnj3166+/6ptvvtGYMWMUFRUle3t7q9zL37hxQ1FRUYqNjdWpU6e0Y8cO7d692xRPXvDx8dFPP/2khIQE/fXXXxaNrFetWjWtWbNG+/fv14EDB/TKK6/k6UiUmQkKCtKKFSu0fft2HTx4UBEREZmOijZgwAAtWbJES5cu1bFjxzRmzBgdPnw41XbXr1+v9evX6+jRo3r99dd16dKlTOPp3Lmz1q9fryVLlqhz587plhs3bpwmTZqkDz74QMeOHdPBgwe1dOlSTZ8+XVL69/OZsaQ9Z4etfVeE9QwePFiLFi3S8uXLdeTIEb3++uu6du2aunfvLknq2rWrRowYYSo/YMAAbdiwQdOmTdPRo0c1duxY7dmzx3Q/CyBnZbWNTpkyRaNGjdKSJUvk4+OjxMREJSYm2sS9HJAfZaWNuri4qHbt2mZ/np6ecnd3V+3atUmiAawgq9fR119/XX///bcGDBigY8eOaf369Zo4caIiIyPzqgpAvpfVdhoaGqp58+Zp1apVOnnypDZv3qxRo0YpNDTUolHzAWRNUlKS6SENSTp58qT279+v06dPS5JGjBihrl27msr37dtXv//+u4YNG6ajR49q7ty5+vTTTzVo0KAs7ZdEtwLC3t5eq1atUlxcnGrXrq1Bgwbp/fffz3S9kSNHqkGDBgoJCVGrVq1UpkwZhYWFpSrXtWtX3bhxQ40bN1ZkZKQGDBigPn36pLvdL774Qo0aNVJ4eLhq1aqlYcOGPfRoEBnFsHTpUnXt2lVvvvmmatSoobCwMO3evVsVKlSwePvDhw9XeHi4unbtqoCAALm5uSkkJEQuLi6Ssn+Ms2rUqFF68803NXr0aPn6+qpTp0458kR+esaPH69Ro0Zp0qRJ8vX1Vdu2bbV+/XqzkQVGjBihunXrqmXLlnJwcNCqVaskSa6urvr+++9VoUIFdejQQb6+vurZs6du3rypokWLZiuezOofHh4uR0dHhYeHmz4ba4qIiNDMmTM1d+5cPf7443ruued0/PjxHN/P+++/rxYtWig0NFTBwcF64okn5O/vb1o+bdo0eXt7q0WLFnrllVc0ZMgQs1f0OTo66oMPPtCCBQtUrlw5tWvXLlfjT09m51dmOnfurBEjRmjIkCFq0KCBTp48qW7duln82Xt6emrNmjUKCgqSr6+v5s+fr08++USPP/74w1QrR5QrV047duxQcnKynnrqKdWpU0cDBw6Up6dnloZWtkZ/m5Hp06crICBAzz33nIKDg9W8eXP5+vqaPpOc6I8tZek1zFoyOxZpqVu3rrZt26Zjx46pRYsWql+/vkaPHq1y5cqZymTlGDo6OprO6aCgIKteL+zs7PTNN9+oZcuW6t69u6pXr66XX35Zp06dMksMqlq1qjp06KBnnnlGTz31lOrWrau5c+dmuG1LryeBgYFKTk42JbrZ29urZcuWphGebF3Tpk21aNEizZo1S35+ftq0aZNGjhxptf1l5d5l8uTJmjx5svz8/PTDDz/o66+/No3U99prr6lDhw7q1KmTmjRpogsXLuiNN97IcjyZndvJycmKjIw0XS+qV69uOndyos+sUaOGvvvuO33yyScaNWqUNm7cqL///luNGjXSCy+8oDZt2mj27NkZbsOSc/Wjjz7SxYsX1aBBA3Xp0kX9+/dX6dKls3y8rKlUqVJatmyZPvvsM9WqVUuTJ0/W1KlTzcqUL19e48aN01tvvSUvLy+bSGAoWrSovv/+ez3zzDOqXr26Ro4cqWnTpunpp5+WJLVp00bVqlVTy5Yt1alTJz3//PMaO3asJOvcyzs4OOjChQvq2rWrqlevrpdeeklPP/20xo0b97BVzbYhQ4bIwcFBtWrVMr3CMjPTp09XsWLF1KxZM4WGhiokJCTNUclsxYgRIxQYGKjnnntOzz77rMLCwjJ9xVOnTp00atQoDRs2TP7+/jp16pRef/11szI9evRQRESEunbtqsDAQFWuXFmtW7fONJ6goCAVL15c8fHxeuWVV9It16tXLy1evFhLly5VnTp1FBgYqGXLlpnui9O7n8+MJe05u2ztuyKso1OnTpo6dapGjx6tevXqaf/+/dqwYYPp/u706dNmox02a9ZMK1eu1MKFC+Xn56fPP/9ca9euVe3atfOqCkC+ltU2Om/ePN2+fVsvvPCCypYta/rLqWsDAHNZbaMAcldW26i3t7c2btyo3bt3q27duurfv78GDBigt956K6+qAOR7WW2nI0eO1JtvvqmRI0eqVq1a6tmzp0JCQrRgwYK8qgKQr+3Zs0f169dX/fr1Jf2TnHrvf5uSdPbsWbPfoCtVqqT169dr8+bN8vPz07Rp07R48WKFhIRkab92BmM0AtmSkpIiX19fvfTSSznyRDxyRkJCgqpUqaLdu3fb9D/gYD1PPvmkypQpoxUrVuR1KJB07do1lS9fXtOmTVPPnj3zOpw8xbGArQgPD5eDg4M+/vjjTMsmJCSoUqVK2rdvn+rVq2f94AAr6datmy5duqS1a9fmdSgAAAAAAAAAACCbHPM6AOBRcerUKW3atEmBgYG6deuWZs+erZMnT2b4VD5yz507d3ThwgWNHDlSTZs2JcmtgLh+/brmz5+vkJAQOTg46JNPPtGWLVu0efPmvA6twNq3b5+OHj2qxo0b6/Lly3rnnXckyeJRR/ITjgVszd27d3Xs2DHt2rVLr732Wl6HAwAAAAAAAAAAAGQJiW6Ahezt7bVs2TINGTJEhmGodu3a2rJli3x9ffM6NEjasWOHWrdurerVq+vzzz/P63CQS+69KvHdd9/VzZs3VaNGDX3xxRcKDg7O69AKtKlTpyo+Pl5OTk7y9/fX9u3bTa84LGg4FrAlhw4dUrNmzdS6dWv17ds3r8MBAAAAAAAAAAAAsoRXlwIAAAAAAAAAAAAAAAAAbJp9XgcAAAAAAAAAAAAAAAAAAEBGSHQDAAAAAAAAAAAAAAAAANg0Et0AAAAAAAAAAAAAAAAAADaNRDcAAAAAAAAAAAAAAAAAgE0j0Q0AAAAAAAAAAAAAAAAAYNNIdAMAAAAAAAAAAAAAAAAA2DQS3QAAAPJYt27dFBYWltdhAAAAAAAAAAAAAIDNItENAAAAAAAAAAAAAAAAAGDTSHQDAACwYdOnT1edOnVUpEgReXt764033lBSUpJp+bJly+Tp6amNGzfK19dXbm5uatu2rc6ePWsqc/fuXfXv31+enp4qUaKEhg8froiICLNR5Hx8fDRz5kyzfderV09jx461OBZJWrRokby9veXq6qr27dtr+vTp8vT0NCvz1VdfqUGDBnJxcVHlypU1btw43b17V5JkGIbGjh2rChUqyNnZWeXKlVP//v0f7iACAAAAAAAAAAAAeOSR6AYAAGDD7O3t9cEHH+jw4cNavny5vvvuOw0bNsyszPXr1zV16lStWLFC33//vU6fPq0hQ4aYlk+ZMkXR0dFaunSpduzYoStXrmjt2rU5HsuOHTvUt29fDRgwQPv379eTTz6pd99912wb27dvV9euXTVgwAD9+uuvWrBggZYtW2Yq98UXX2jGjBlasGCBjh8/rrVr16pOnTpZjhUAAAAAAAAAAABA/mJnGIaR10EAAAAUZN26ddOlS5csSj77/PPP1bdvX/3111+S/hnRrXv37vrtt99UpUoVSdLcuXP1zjvvKDExUZJUpkwZDRkyxJT8lpycrMqVK6t+/fqmffr4+GjgwIEaOHCgaV/16tVTWFiY2ahuGcXy8ssvKykpSevWrTOVefXVV7Vu3TpdunRJkhQcHKw2bdpoxIgRpjIff/yxhg0bpj/++EPTp0/XggULdOjQIRUqVCjT4wEAAAAAAAAAAACgYGBENwAAABu2ZcsWtWnTRuXLl5e7u7u6dOmiCxcu6Pr166Yyrq6upiQ3SSpbtqz+/PNPSdLly5d17tw5NW7c2LTcwcFB/v7+OR5LfHy82X4kpZo+cOCA3nnnHbm5uZn+evfurbNnz+r69et68cUXdePGDVWuXFm9e/fWl19+aXqtKQAAAAAAAAAAAICCi0Q3AAAAG5WQkKDnnntOdevW1RdffKG4uDjNmTNHknT79m1TuQdHPrOzs1NWB+21t7dPtc6dO3eyHEtmkpKSNG7cOO3fv9/0d/DgQR0/flwuLi7y9vZWfHy85s6dq8KFC+uNN95Qy5YtzWIBAAAAAAAAAAAAUPA45nUAAAAASFtcXJxSUlI0bdo02dv/83zCp59+mqVteHh4yMvLS7t371bLli0l/fPq0r1796pevXqmcqVKldLZs2dN01euXNHJkyezFEuNGjW0e/dus3kPTjdo0EDx8fGqWrVqujEXLlxYoaGhCg0NVWRkpGrWrKmDBw+qQYMGWao7AAAAAAAAAAAAgPyDRDcAAAAbcPnyZe3fv99sXsmSJXXnzh19+OGHCg0N1Y4dOzR//vwsb7tfv36aNGmSqlatqpo1a+rDDz/UxYsXZWdnZyoTFBSkZcuWKTQ0VJ6enho9erQcHBxMy6tWrZppLP369VPLli01ffp0hYaG6rvvvtO3335rtp/Ro0frueeeU4UKFfTCCy/I3t5eBw4c0KFDhzRhwgQtW7ZMycnJatKkiVxdXfXxxx+rcOHCqlixYpbrDQAAAAAAAAAAACD/4NWlAAAANiA2Nlb169c3+1uxYoWmT5+uKVOmqHbt2oqOjtakSZOyvO3hw4crPDxcXbt2VUBAgNzc3BQSEiIXFxdTmREjRigwMFDPPfecnn32WYWFhalKlSqm5X5+fpnG0rx5c82fP1/Tp0+Xn5+fNmzYoEGDBpntJyQkROvWrdOmTZvUqFEjNW3aVDNmzDAlsnl6emrRokVq3ry56tatqy1btug///mPSpQokeV6AwAAAAAAAAAAAMg/7AzDMPI6CAAAAOSelJQU+fr66qWXXtL48eOtuq/evXvr6NGj2r59u1X3AwAAAAAAAAAAACB/49WlAAAA+dypU6e0adMmBQYG6tatW5o9e7ZOnjypV155Jcf3NXXqVD355JMqUqSIvv32Wy1fvlxz587N8f0AAAAAAAAAAAAAKFhIdAMAAMjn7O3ttWzZMg0ZMkSGYah27drasmWLfH19c3xfP//8s9577z1dvXpVlStX1gcffKBevXrl+H4AAAAAAAAAAAAAFCy8uhQAAAAAAAAAAAAAAAAAYNPs8zoAAAAAAAAAAAAAAAAAAAAyQqIbAAAAAAAAAAAAAAAAAMCmkegGAAAAAAAAAAAAAAAAALBpJLoBAAAAAAAAAAAAAAAAAGwaiW4AAAAAAAAAAAAAAAAAAJtGohsAAAAAAAAAAAAAAAAAwKaR6AYAAAAAAAAAAAAAAAAAsGkkugEAAAAAAAAAAAAAAAAAbBqJbgAAAAAAAAAAAAAAAAAAm/b/ALDxhbw2EbI9AAAAAElFTkSuQmCC\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plot_languages(evaluation_results, \"Fuzzy Score\")"
]
},
{
"cell_type": "code",
"source": [
"plot_languages(evaluation_results, \"Fuzzy Score\")"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 943
},
"collapsed": true,
"id": "kFi32CB1Bvt8",
"outputId": "7e4cbfef-0d86-4849-fb23-09a921742d28"
},
"execution_count": 31,
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
""
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAACbkAAAdxCAYAAAA3/AKOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADdfklEQVR4nOzdebTVVf0//udlJhAQZEwmzUQ051ICZxQ1RZM+Yg6BmqYf8YNTpuaApPnRSA3HNEUcSMKxnD4qCiQSKkYOmJqBkgqITIqA6D2/P/xxv94uIMPF+zYej7XOWr333u99Xvuc97mtxXq6d1mpVCoFAAAAAAAAAAAACqhWTRcAAAAAAAAAAAAAKyLkBgAAAAAAAAAAQGEJuQEAAAAAAAAAAFBYQm4AAAAAAAAAAAAUlpAbAAAAAAAAAAAAhSXkBgAAAAAAAAAAQGEJuQEAAAAAAAAAAFBYQm4AAAAAAAAAAAAUlpAbAAAAAAAAAAAAhSXkBgAAAKxUp06dUlZWttLXlVdeWdNlfumWLFmSoUOHZtddd03z5s1Tt27dbLTRRtliiy1y6KGH5je/+U3ee++9mi7zSzds2LDsuOOOadSoUcXzMW3atBqrZ9q0aVWe19q1a6dZs2bZZJNNcuCBB+aXv/xl3nzzzZXOs+ze5Xn66aezzz77pHnz5qlVq1bKyspyyy23VPT/6U9/yi677JImTZpUzDNmzJhqXOV/jqVLl+bGG2/Mfvvtl7Zt26ZevXpp0aJFdtppp1x44YWZPXv2Ks0zffr0nHvuudl5553TsmXL1K1bN82aNcv222+fgQMH5tlnn61yz/L+tjVs2DCdOnXKYYcdlqeeemqN1jRo0KCK+Vq2bJmlS5eucOy7776bOnXqVIy//fbb1+g9V9fuu+9erc/lyn4vAAAAAGuiTk0XAAAAAHw1dO/ePd/4xjeW29e1a9cvuZqaNXPmzOy999558cUXU7t27XznO99J+/btU15entdeey133313Ro0alU033TQHHHBATZf7pXnwwQdzzDHHpEGDBunZs2datGiRJGncuHENV/aZPn36VNTywQcf5N13383jjz+eBx54IOeee26OP/74DBkyZLXqfeedd/K9730v8+fPT48ePdKpU6fUqlWr4rcyefLk9OnTJ+Xl5dlzzz3Ttm3blJWVpU2bNutkjTWlU6dOefPNNzN16tR06tRpjeZ45ZVXctBBB+X1119P7dq1s/POO2ePPfbI3LlzM378+DzzzDO5/PLLM2zYsBxyyCErnOeyyy7Leeedl48//jiNGzfOTjvtlFatWuWDDz7Iiy++mKFDh2bo0KH56U9/mssuu6zK/b169ar4fmbPnp3nnnsuI0eOzB/+8IdcccUVGThw4Bqtb9l8f/zjH9OnT5/l9g8fPjyffvrpGs8PAAAA8J9KyA0AAABYJT/+8Y/Tv3//mi6jEAYMGJAXX3wxW265ZR588MF07NixUv+sWbPy+9//Pq1bt66hCmvGqFGjkiRDhw7NcccdV8PVVDVkyJAqAaxFixZl2LBhOeuss/Lb3/42U6ZMyWOPPZb69etXGvfKK68sd85HH3008+bNy+GHH5477rijSv99992XpUuX5pxzzsnFF19cbWv5TzN16tT06NEjc+bMSc+ePXPTTTelQ4cOFf2LFi3K+eefnyFDhuS//uu/cvfdd+fggw+uMs9ZZ52VSy+9NHXr1s2QIUMyYMCAKt/lX/7yl/z85z/Pa6+9ttxazjrrrOy+++4V1x999FGOOuqo3HPPPTnzzDPzgx/8IF//+tdXe4077rhjnnvuudx8880rDLkNGzYs9evXz+abb54XXnhhtd8DAAAA4D+V40oBAAAAVsPixYtz//33J0kuv/zyKgG3JGnVqlUGDhyYb3/72192eTXqrbfeSpJsttlmNVzJqmvYsGH++7//O2PGjEmDBg3y5z//ebm7e3Xp0iVdunSp0v5Fa/4qfiY14aijjsqcOXOy884754EHHqgUcEs++55+9atf5Ywzzkh5eXn69++f999/v9KY0aNH59JLL02SjBw5MqeffnqVgFuS7Lzzznn88cdz+umnr1JtX/va13LVVVclST7++OP83//935osMdtss0223377/N///V/eeeedKv1//vOf89prr+Xggw/OhhtuuEbvAQAAAPCfSsgNAAAAqDb9+/dPWVlZbrnlluX233LLLSkrK6u0I9y0adNSVlb2ha9lcy6b44te06ZNy4IFC9KkSZPUqVMn06dPX2Hd+++/f8rKynLttdd+4RrnzJmTpUuXJvkszLYmJk2alH79+qVz585p0KBBmjdvnm222SY//elP8+abb1YZ/8wzz+TQQw9Nu3btUq9evbRq1SoHHnhgHnvsseXO//nv4aWXXkrfvn3Ttm3b1K5dO4MGDaoY98knn+R3v/tddt999zRv3jz169dP586dc+KJJ67081rR+z355JNJkj322KPie/j33f/W1VrW1vbbb5+TTz45SXLFFVfkk08+qdS/bD3LLHsOL7jggiTJhRdeWDGmU6dOGTRoUMrKyjJs2LAkydFHH13R//ldwpJk7ty5ueCCC7Lttttmgw02yNe+9rV861vfykUXXZSPPvqoSq3L5h40aFDeeuutHHvssWnfvn3q1q1b5fO+6667su+++6Zly5apV69evv71r+fII4/MlClTqsy77LfYqVOnlEql3HDDDdlhhx3SqFGjNG3aNPvss08mTJhQ6Z5ln8Oy57Zz586Vfodjxoz5ws9+7NixGT9+fJLk6quvXm4wbZlf/OIXadWqVebPn5+rr766Ut9FF12UJOndu3e+//3vr/Q9y8rKsssuu3xhbcu0a9eu4vjdmTNnrvJ9/+6YY47Jp59+muHDh1fpu/nmmyvGfJE777wze+21V8XvtmPHjjnmmGNWuDtdkkyfPj3HHHNM2rZtmwYNGmSzzTbLz3/+8yxatOgL3291nqOVeffddzNw4MB885vfTIMGDfK1r30t7du3z1577ZUhQ4as1lwAAADA+sVxpQAAAECNaty4cfr167fcvo8//jgjR45MeXl5ateunST5xje+scLxb7/9dh5//PEkSe3atdOkSZP0798/V111Va6//vrlHhf5xhtv5JFHHkmTJk3yox/96Avr3WijjfK1r30tH330Ua666qrceOONqVVr1f87wl/96lc566yzUl5enm9+85s56KCDsmjRovzjH//IkCFDsuWWW1YKKt1444054YQTUl5enu222y6777573nzzzTzwwAN54IEHMmjQoIqg1b97+umnc8IJJ6Rt27bZdddds2jRomywwQZJkg8++CC9e/fOmDFj0rhx4+ywww5p2bJlXnzxxVx//fUZNWpUHnvssWy33XZfuKYePXokSR555JHMnDkzvXr1Sps2bSr1rcu1VJcjjzwyv/rVrzJ37tw899xz2XnnnVc4dtlzOHny5Pztb3/LNttsk2233TbJZ8/Itttum379+uWpp57KG2+8ke7du+cb3/hGklTaEW7KlCnZd999M3369LRt2zY9evRI3bp188wzz+S8887L3XffnTFjxqRp06ZVanj99dez3XbbpV69eunevXtKpVI22mijJJ8FGI844oj84Q9/SP369bPDDjvk61//el577bXccccdueeee3LPPfdk3333Xe76jj766IwYMSK77LJLDjjggEyePDmPPfZYxo0bl7Fjx2annXaq9DncddddWbhwYfr06ZPGjRtXzLPsOViZ++67L0my5ZZbZocddljp2AYNGuTQQw/N1VdfnT/+8Y8Vz8u8efMybty4JFnh34e1UV5eng8//DBJ1uoY4sMPPzxnnHFGhg0blrPPPrui/YMPPsioUaPSoUOH9OzZM7/85S+Xe3+pVEr//v1z6623pk6dOtl1113TqlWrPP/88xk2bFhGjhyZu+++u8r3+ve//z277bZbZs2albZt26Z3795ZuHBhrrjiiopw6vKs7XP0eTNmzMiOO+6Yd955Jx06dMi+++6bBg0a5J133snkyZMzadKknHHGGav4SQIAAADrnRIAAADASnTs2LGUpDRs2LAvHNuvX7+Vjh02bFgpSalfv35fOFd5eXnpiCOOKCUp9ejRo7Ro0aKVjp87d25pyy23LCUpnXHGGRXtr732WqmsrKzUqlWr0uLFi6vcd/rpp5eSlE4++eQvrGmZgQMHlpKUkpQ6depUOvnkk0u33XZb6eWXXy6Vl5ev8L7777+/lKTUoEGD0siRI6v0v/zyy6UpU6ZUXL/wwgulOnXqlMrKykq33nprpbEPPfRQqV69eqUkpUcffbRS37LvIUnprLPOKn366adV3uvwww8vJSkdcMABpZkzZ1bqu+KKK0pJSptttlnpk08+WaXPpFQqlXbbbbdSktKTTz5ZpW9drmVlpk6dWnH/1KlTVzr2008/rajjd7/7XaW+ZXP8uwsuuKCUpHTBBRcsd86V/SY++uij0qabblpKUjr33HNLS5YsqehbuHBh6Yc//GEpSenoo49e7nsmKR155JHLfa7POeecUpLSTjvtVPrnP/9ZqW/UqFGl2rVrlzbccMPS3LlzK9o//1l17Nix9Oqrr1b0ffLJJ6VjjjmmlKS0zz77VHm/ZX8nvugzXp5ddtlluetckeHDh5eSlGrVqlVaunRpqVQqlUaPHl1R+1tvvbXaNZRK/+87Xt7z++ijj5aSlOrVq1d6++23V2veZd/XscceWyqVShXf67hx4yrG3HjjjaUkpfPPP79UKv2/39Jtt91Waa7rrruulKS00UYblf76179WtJeXl1e8T7NmzUqzZs2qdN+3v/3tUpLSoYceWulv6ZtvvlnxDC5v7WvyHJVKy/+9XHjhhaUkpeOPP77K38mPP/649Pjjj6/gEwQAAAAolRxXCgAAAKySzx+3+PnXvx+9WF1+/vOf54477kiXLl1y//33p0GDBisc+/HHH+f73/9+Xn755fTt2zeXXXZZRd9mm22W/fbbL7NmzcqoUaMq3bdo0aLcfPPNKSsry0knnbTKtf3qV7/KKaeckrp162batGm56qqrctRRR2XLLbdMq1atMmDAgLz99ttV7lu269TFF1+cQw89tEp/165ds8UWW1Rc/+Y3v8knn3yS73//+znqqKMqjd1vv/1y/PHHV9SzPN/85jdz0UUXVdlp7pVXXsnvf//7tGvXLiNGjKhy7Oopp5yS/fffP6+//noefvjhVfhEvti6Wkt1qlWrVpo3b54kef/999fZ+ywzfPjwvPHGGznggAPyi1/8IvXq1avo+9rXvpYbbrghrVq1ym233Za5c+dWub958+bLPd5zzpw5ueKKK9KgQYPcfffd6dy5c6X+H/zgB/nJT36SuXPn5vbbb19ubVdddVW++c1vVlzXrl27YifEsWPHVhzZWx3ee++9JKu+Q9qyceXl5ZkzZ06lOZI1P0Z4eWbPnp277ror/fv3T61atXL11VenXbt2azXnsuNIlx1PmiQ33XRTysrKcvTRR6/03mVHep5//vkVOwcmqTg6d+utt868efNy4403VvSNHz8+zz77bBo1apRrr7220t/SDh06rPCY0Op4jj5v2TGv++67b6Wjf5Okbt262Wuvvb5wDgAAAGD9JeQGAAAArJLu3bunX79+VV6rckzd6vrtb3+bSy65JK1bt87DDz9cETxantL/f3zfmDFjsuuuu2b48OFVAhQDBw5Mklx99dWV2keMGJG5c+emZ8+e2XzzzVe5vrp16+aKK67IW2+9leuuuy6HH354unTpkrKyssyePTvXXHNNtt5660yaNKninhkzZmTy5MmpVatWjj322FV6nzFjxiRJpeNLP2/ZPH/+85/z6aefVuk/+OCDK455/byHHnoopVIp++233wqP/FwWXnz66adXqdYvsq7WUt3Ky8uTpMoztC48+OCDSZK+ffsut79x48bZcccd88knn+TZZ5+t0t+zZ8/lHmP65JNPZtGiRenevXu+/vWvL3fulX2/derUWe7vuk2bNtlwww2zZMmSLyUEuCKlUmmdzr/HHntUhHhbtmyZ//qv/8rcuXPz6KOP5rjjjlvr+ffaa6907Ngxo0aNyocffphXXnklf/nLX7LHHnukU6dOK7zvX//6V954440kyz+S9fMhuc8fQbrst7fvvvumRYsWVe476KCD1slz9O++853vJEnOOuus3HPPPRXHvwIAAACsijo1XQAAAADw1fDjH/94hQGl6vTggw/mpJNOSqNGjfLggw+uNPSRJGeffXZ+//vfp2vXrrnvvvuq7GqVJHvvvXe22GKLTJw4MZMmTcoOO+yQJLnmmmuSJAMGDFijWtu0aZMTTjghJ5xwQpLPdioaMWJELrzwwsyZMyc/+tGP8vLLLydJ3nrrrSRJ27ZtlxsoWZ5lu8H9+w5Ky2y66aZJksWLF+f999+vsoPVij67f/7zn0k+2z3qpptuWmkNn98ha22sq7VUp08//TTz5s1LkpUGK6vLsu/hqKOOqrK73b9b3vfwRd/v6NGjvzCst7x527Ztm7p16y53fJMmTTJ37twsXrx4pfOujo022ijJ/9vp64vMmjUrSeWd91q2bFmpv3379mtcT69evdKmTZuUl5dnxowZGTduXBYtWpQjjzwy48ePzyabbLLGcyefhdH69++fCy+8MCNHjszf//73JP9vh7cVWfYbatGiRZo0abLcMct+R5/fSfJf//pXkhX/9srKytKpU6f87W9/q9S+ts/RvzvqqKPy2GOP5Y477kifPn1Su3btdO3aNT169MgPfvCD7Lnnnl84BwAAALD+EnIDAAAAvjTLdslakeeeey59+/ZNWVlZRo0aVRFGW5Hrrrsul156adq2bZuHHnooG2644XLHlZWV5eSTT85///d/5+qrr86wYcMyYcKE/PWvf02nTp1ywAEHrPGaPq9169Y59dRT06lTpxxyyCGZMmVKXn/99Wy22WbVMv/qatiw4XLbl30P2267bbbZZpuVzrHTTjtVe11rYkVrqU4vvfRSPv744yTJt771rXX+fsu+h3333fcLj+rs2LFjlbYv+n6/8Y1vpHv37iudt0uXLlXa1uWRsMuzww475KmnnsrEiRNXafwzzzyTJNlmm21Sp85n/7y53XbbpVatWikvL8+zzz67ViG3s846q9IxzO+880569eqVl156KYcffngmTJiw1jv9HX300Rk8eHBuuOGGvPnmm2natGkOOeSQtZqzuq3tc/TvatWqldtvvz3nnHNOHnzwwYwfPz7jx4/Pddddl+uuuy4HHnhg7r333i9lx0YAAADgq0fIDQAAAKg29erVS5J88MEHy+1/8803V3jv1KlTc8ABB2ThwoW58cYbs99++630vf70pz/l5JNPzgYbbJAHH3xwuSGgz/vRj36Uc845J3feeWeGDBlScXTpiSeeWO2hnn322afif8+ePTubbbZZOnTokCR59913M3/+/FXaze3rX/963njjjfzzn//MVlttVaV/2U5LDRo0WK2dx5YFgLp3717lCNd1ZV2tpTrdfvvtST7bKeuLApbVoX379vn73/+eY489Nj/4wQ+qdd4k2XzzzXPLLbdU27zrykEHHZTf/OY3mTJlSqWdFpdn8eLF+cMf/pAk6d27d0X7hhtumF122SVjx47N8OHDqzUw1q5du4waNSpbb711Jk6cmDvuuCNHHnnkWs3ZsWPH7Lnnnhk9enSS5IQTTvjCIOeyI0Pff//9LFiwYLm7uS37HX3+eNFl/3vatGkrnHt5f5vX1XPUtWvXdO3aNT/96U9TKpXyxBNP5PDDD8+f/vSn3HrrrRVHrgIAAAB83pf7n2UCAAAA/9GWhSleeeWVKn2lUikPP/zwcu+bM2dO9ttvv8ycOTPnnXdefvzjH6/0fZ599tkcdthhFTu+bbfddl9YW6NGjXLsscdm8eLF+eUvf5m77rorDRo0yLHHHrsKK6u8ji+y7GjS5P99Jm3atMk222yT8vLy3Hzzzav0Xst2k1pRwGTZPLvsskvFjlarYlmA8I9//GO1Hju5MutqLdXl+eefrwj8nXbaaV/KblLLvodloa3qstdee6VevXoZM2ZMxdGe69qygOsnn3yy2vfuscce2XnnnZMkJ510UpYsWbLCseedd17ee++9NGnSJCeddFKlvp///OdJPnuu77333pW+Z6lUylNPPbXKNXbp0iUnnnhikmTQoEFrtM5/d/zxx6dFixZp0aLFKv0d2njjjSuOI13e76hUKlW077HHHhXtu+22W5LkkUceyZw5c6rc98c//rHimN7P+zKeo7Kysuy11145/PDDkySTJ09eJ+8DAAAAfPUJuQEAAADVpmfPnkmS2267LVOmTKloX7p0aX72s5/l2WefrXLP4sWL07t377z66qvp169fBg8evNL3+Oc//5kDDjggH330UW644Yb06tVrlesbMGBAatWqlcsvvzwff/xxfvjDH6ZFixarfH+SzJ8/P9tvv31uu+22fPjhh8ut75hjjkmSfPe7363YwS1JLrjggiSfhXHuvvvuKvdOmTKlUkBw4MCBqVOnTu67776KXcaWefTRR/Pb3/42SXLGGWes1hq222679OnTJ9OnT88hhxyy3B2eFi5cmDvuuCMzZ85crblXZF2tZW0tWrQo1113XXbfffcsXrw4u++++5dWw/HHH5+OHTtm1KhR+dnPfrbcHRBnzJiRG2+8cbXmbd26dU4++eQsXLgwBx54YF588cUqY5YsWZI//vGP+fvf/77G9X/exhtvnCR5+eWX1+j+22+/Pc2aNcvEiRNzwAEHZPr06ZX6Fy1alDPPPDNDhgxJWVlZbr755rRs2bLSmL333junn356kuSwww7L5ZdfvtzA3KRJk9KrV68MGTJktWo899xz07hx47zxxhsZPnz4aq6wqkMPPTSzZ8/O7Nmzs+OOO67SPcuezV/84hf529/+VtFeKpVy0UUXZfLkyWnWrFmOO+64ir5ddtkl22+/fT788MMqIcLp06ev8Hmv7ufo1ltvzaRJk6q0f/DBBxkzZkyS5R/LCwAAAJA4rhQAAACoRt27d89BBx2U+++/PzvuuGN69OiRhg0b5vnnn8+CBQsycODA/OY3v6l0z6hRozJ+/PjUqlUrS5cuTf/+/Zc7949//OP06NEjF198cWbNmpWWLVtm7NixGTt27HLHDxkyJBtttFGltk6dOqV379657777knwWelsTf/3rX/OjH/0o9evXzzbbbJOOHTumVCpl+vTpefbZZ1NeXp6OHTtW2W3p+9//fi6++OKce+65+cEPfpAuXbpkm222yaJFi/KPf/wjU6ZMybBhw7LFFlskSb71rW/lmmuuyYknnpijjjoqV1xxRbp06ZI333wzTz/9dEqlUgYNGlTpeNRVNWzYsMybNy8PP/xwNt9882yzzTbp3LlzSqVSpk2blr/97W/5+OOP88orr6R169Zr9Dl93rpcy6o644wz0rhx4ySfhfjeeeedPP/881m8eHFq1aqVE044IUOGDKnYlWxda9SoUR588MEccMABueyyy3LDDTdk6623zsYbb5yPPvoor732Wl555ZW0atWqUmhpVfzv//5v3n333YwYMSLbbrttttlmm2yyySapU6dO/vWvf2Xy5MlZuHBhHn744XTp0mWt19KnT588+eSTOfLII7PPPvtkww03TJL89Kc/zeabb/6F92+66aZ56qmnctBBB+Xxxx/PJptskp133jnt27fPvHnzMn78+CxYsCCNGzfOzTffnD59+ix3niFDhqR58+YZNGhQTj/99AwaNCg77bRTWrVqlQ8//DAvvPBCRajzZz/72WqtsWXLljnttNMyePDgXHTRRfnRj36UunXrrtYca+snP/lJnn766dx2223Zcccds9tuu6VVq1Z5/vnn8+qrr6Zhw4YZMWJElQDgbbfdlt133z133nlnxo0blx49euSjjz7KE088ka233jobbbRRJkyYUOX9qvM5uueee9KvX7+0a9cu2267bTbccMPMnTs348ePz/z587PVVlut9nMOAAAArD+E3AAAAIBqNXLkyFx00UUZMWJExowZkw033DB77bVXfvGLX+TPf/5zlfGffvppkqS8vDwjRoxY4by77757evToUTH+vffeW+luSoMGDaoSckuSXr165b777ku3bt2y/fbbr+7y0rRp00ycODGjR4/OmDFjMnXq1LzyyitZvHhxNtxww+y222458MADc/zxx6dRo0ZV7j/nnHOy5557ZujQoRk3blzuueeebLDBBmnfvn3OPPPM7LnnnpXGH3/88dlmm20yZMiQPPXUU3nhhRfStGnT7L///hk4cGD23nvv1V5DkmywwQZ59NFHM3LkyNx+++2ZNGlSJk+enCZNmqRt27Y54ogj0rt374rjEavDulrLqlq2e16tWrXSuHHjNG/ePD179ky3bt1y5JFHVtp178uy5ZZb5oUXXsj111+fe++9Ny+88EImTJiQjTbaKBtvvHHOOOOMfP/731/teevUqZM77rgjRx55ZH73u99l4sSJeemll9KoUaO0bds2Bx54YHr37p1dd921WtZx4okn5oMPPsjtt9+ehx56qOIY3COPPHKVQm7JZ5/FlClTcsstt+Tuu+/O3/72t0ycODGNGzfON7/5zey///4ZMGBAlQDXvzvnnHNyxBFH5Le//W0ef/zx/PWvf838+fPTqFGjbLLJJjnooIPSr1+/VTrm+N+dccYZue666zJt2rTcfPPN+clPfrLac6yNsrKy3Hrrrdlvv/1yww03ZNKkSVm4cGHatGmT/v3756yzzlru5921a9c899xzueCCC/Lwww/nvvvuy8Ybb5yTTz45559/fvbff//lvl91Pkenn356OnfunKeffjrPP/985syZk+bNm6dr1645/PDDc/TRRy/3byYAAABAkpSVSqVSTRcBAAAA8GXp0aNHxo8fnxEjRuSHP/xhTZcDAAAAAMAXEHIDAAAA1hsPP/xw9t9//3To0CH/+Mc/vvSjBgEAAAAAWH2OKwUAAAD+o73//vv52c9+lrlz5+ahhx5Kklx22WUCbgAAAAAAXxF2cgMAAAD+o02bNi2dO3dOnTp1sskmm+T000/P8ccfX9NlAQAAAACwioTcAAAAAAAAAAAAKKxaNV0AAAAAAAAAAAAArIiQGwAAAAAAAAAAAIUl5AYAAAAAAAAAAEBhCbkBAAAAAAAAAABQWEJuAAAAAAAAAAAAFJaQGwAAAAAAAAAAAIUl5AYAAAAAAAAAAEBhCbkBAAAAAAAAAABQWEJuAAAAAAAAAAAAFJaQGwAAAAAAAAAAAIUl5AYAAAAAAAAAAEBhCbkBAAAAAAAAAABQWEJuAAAAAAAAAAAAFJaQGwAAAAAAAAAAAIUl5AYAAAAAAAAAAEBhCbkBAAAAAAAAAABQWEJuAAAAAAAAAAAAFJaQGwAAAAAAAAAAAIUl5AYAAAAAAAAAAEBhCbkBAAAAAAAAAABQWEJuAAAAAAAAAAAAFJaQGwAAAAAAAAAAAIUl5AYAAAAAAAAAAEBhCbkBAAAAAAAAAABQWEJuAAAAAAAAAAAAFJaQGwAAAAAAAAAAAIUl5AYAAAAAAAAAAEBhCbkBAAAAAAAAAABQWEJuAAAAAAAAAAAAFJaQGwAAAAAAAAAAAIUl5AYAAAAAAAAAAEBhCbkBAAAAAAAAAABQWEJuAAAAAAAAAAAAFJaQGwAAAAAAAAAAAIUl5AYAAAAAAAAAAEBhCbkBAAAAAAAAAABQWEJuAAAAAAAAAAAAFJaQGwAAAAAAAAAAAIUl5AYAAAAAAAAAAEBhCbkBAAAAAAAAAABQWEJuAAAAAAAAAAAAFJaQGwAAAAAAAAAAAIUl5AYAAAAAAAAAAEBhCbkBAAAAAAAAAABQWEJuAAAAAAAAAAAAFJaQGwAAAAAAAAAAAIUl5AYAAAAAAAAAAEBhCbkBAAAAAAAAAABQWEJuAAAAAAAAAAAAFJaQGwAAAAAAAAAAAIUl5AYAAAAAAAAAAEBhCbkBAAAAAAAAAABQWEJuAAAAAAAAAAAAFJaQGwAAAAAAAAAAAIUl5AYAAAAAAAAAAEBhCbkBAAAAAAAAAABQWEJuAAAAAAAAAAAAFJaQGwAAAAAAAAAAAIUl5AYAAAAAAAAAAEBhCbkBAAAAAAAAAABQWEJuAAAAAAAAAAAAFJaQGwAAAAAAAAAAAIUl5AYAAAAAAAAAAEBhCbkBAAAAAAAAAABQWEJuAAAAAAAAAAAAFJaQGwAAAAAAAAAAAIUl5AYAAAAAAAAAAEBhCbkBAAAAAAAAAABQWEJuAAAAAAAAAAAAFJaQGwAAAAAAAAAAAIUl5AYAAAAAAAAAAEBhCbkBAAAAAAAAAABQWEJuAAAAAAAAAAAAFJaQGwAAAAAAAAAAAIUl5AYAAAAAAAAAAEBhCbkBAAAAAAAAAABQWEJuAAAAAAAAAAAAFJaQGwAAAAAAAAAAAIUl5AYAAAAAAAAAAEBhCbkBAAAAAAAAAABQWEJuAAAAAAAAAAAAFJaQGwAAAAAAAAAAAIUl5AYAAAAAAAAAAEBhCbkBAAAAAAAAAABQWEJuAAAAAAAAAAAAFJaQGwAAAAAAAAAAAIUl5AYAAAAAAAAAAEBhCbkBAAAAAAAAAABQWEJuAAAAAAAAAAAAFJaQGwDAemLQoEEpKytbrXumTZuWsrKy3HLLLeumKAAAAAAAAIAvIOQGAAAAAAAAAABAYZWVSqVSTRcBAMC698knn+STTz5JgwYNVvmeUqmUJUuWpG7duqldu/Y6rA4AAAAAAABg+YTcAAAAAAAAAAAAKCzHlQIAfMXdddddKSsry9ixY6v0/fa3v01ZWVleeumlDBo0KGVlZZX6H3vssfTo0SPNmjVL48aNs/nmm+ecc86p6J82bVrKyspyyy23VLrviSeeyC677JJGjRqlWbNmOeigg/LKK69UGrPs/f7xj3+kf//+adasWZo2bZqjjz46H330UfV9AAAAAAAAAMB/NCE3AICvuO9973tp3Lhx/vCHP1TpGzlyZLbccststdVWVfpefvnlHHDAAVmyZEkGDx6cX//61+ndu3fGjx+/0vd7/PHH06tXr8yaNSuDBg3Kaaedlqeffjrdu3fPtGnTqow/9NBD88EHH+SSSy7JoYcemltuuSUXXnjhGq8XAAAAAAAAWL/UqekCAABYOw0bNsyBBx6Yu+66K0OHDk3t2rWTJDNmzMjYsWMzaNCg5d732GOP5eOPP87DDz+cjTbaaJXf76c//WmaN2+eCRMmpHnz5kmSgw8+ONttt10uuOCCDB8+vNL47bbbLjfddFPF9fvvv5+bbropl1566WquFAAAAAAAAFgf2ckNAOA/QN++fTNr1qyMGTOmou2uu+5KeXl5+vbtu9x7mjVrliS5//77U15evkrv8+6772by5Mnp379/RcAtSbbeeuvsvffeeeihh6rcc8IJJ1S63mWXXfL+++9nwYIFq/SeAAAAAAAAwPpNyA0A4D/Avvvum6ZNm2bkyJEVbSNHjsy2226bb37zm8u9p2/fvunevXt+/OMfp3Xr1jnssMPyhz/8YaWBtzfffDNJsvnmm1fp22KLLTJ79uwsXLiwUnuHDh0qXW+44YZJkrlz567a4gAAAAAAAID1mpAbAMB/gPr16+fggw/Ovffem08++SRvv/12xo8fv8Jd3JLPjjkdN25cHn/88Rx11FF54YUX0rdv3+y999759NNPq622Zcen/rtSqVRt7wEAAAAAAAD85xJyAwD4D9G3b9/Mnj07o0ePzqhRo1IqlVYackuSWrVqZa+99srll1+eKVOm5OKLL84TTzyRJ598crnjO3bsmCR59dVXq/T9/e9/z0YbbZRGjRqt/WIAAAAAAAAA/n9CbgAA/yF69uyZ5s2bZ+TIkRk5cmS+853vpHPnziscP2fOnCpt2267bZJkyZIly72nbdu22XbbbTN8+PDMmzevov2ll17Ko48+mv3333+t1gAAAAAAAADw7+rUdAEAAFSPunXr5pBDDsmdd96ZhQsXZsiQISsdP3jw4IwbNy7f+9730rFjx8yaNSvXXnttNt544/To0WOF9/3qV7/Kfvvtl27duuXYY4/NokWLctVVV6Vp06YZNGhQNa8KAAAAAAAAWN/ZyQ0A4D9I37598+GHHyZJDj300JWO7d27dzp06JCbb745J510Uq655prsuuuueeKJJ9K0adMV3tezZ8888sgjadGiRc4///wMGTIkO++8c8aPH7/SneMAAAAAAAAA1kRZqVQq1XQRAAAAAAAAAAAAsDx2cgMAAAAAAAAAAKCwhNwAAAAAAAAAAAAoLCE3AAAAAAAAAAAACkvIDQAAAAAAAAAAgMIScgMAAAAAAAAAAKCwhNwAAAAAAAAAAAAorDo1XUARlJeX55133skGG2yQsrKymi4HAAAAgIIrlUr54IMP0q5du9Sq5b8jBQAAAIB1ScgtyTvvvJP27dvXdBkAAAAAfMVMnz49G2+8cU2XAQAAAAD/0YTckmywwQZJPvtHySZNmtRwNQAAAAAU3YIFC9K+ffuKf1cCAAAAANYdIbek4ojSJk2aCLkBAAAAsMqW/bsSAAAAALDu1KrpAgAAAAAAAAAAAGBFhNwAAAAAAAAAAAAoLCE3AAAAAAAAAAAACkvIDQAAAAAAAAAAgMIScgMAAAAAAAAAAKCwhNwAAAAAAAAAAAAoLCE3AAAAAAAAAAAACkvIDQAAAAAAAAAAgMIScgMAAAAAAAAAAKCwhNwAAAAAAAAAAAAoLCE3AAAAAAAAAAAACqtGQ27jxo3LgQcemHbt2qWsrCz33Xdfpf5SqZTzzz8/bdu2TcOGDdOzZ8+8/vrrlcbMmTMnRxxxRJo0aZJmzZrl2GOPzYcffvglrgIAAAAAAAAAAIB1pUZDbgsXLsw222yTa665Zrn9l112WYYOHZrrr78+EydOTKNGjdKrV68sXry4YswRRxyRl19+OY899lgeeOCBjBs3Lscff/yXtQQAAAAAAAAAAADWobJSqVSq6SKSpKysLPfee28OPvjgJJ/t4tauXbucfvrpOeOMM5Ik8+fPT+vWrXPLLbfksMMOyyuvvJKuXbvm2WefzY477pgkeeSRR7L//vvnX//6V9q1a7dK771gwYI0bdo08+fPT5MmTdbJ+gAAAAD4z+HfkwAAAADgy1OjO7mtzNSpUzNjxoz07Nmzoq1p06bZaaedMmHChCTJhAkT0qxZs4qAW5L07NkztWrVysSJE7/0mgEAAAAAAAAAAKhedWq6gBWZMWNGkqR169aV2lu3bl3RN2PGjLRq1apSf506ddK8efOKMcuzZMmSLFmypOJ6wYIF1VU2AAAAAAAAAAAA1aiwIbd16ZJLLsmFF15Y02Wsc33PHFnTJayVkZf1Xa3x69t61zfr2/f7VV7v+rTWxHq/iPV+tfj/Ilh/+HsFAAAAAAB8lRT2uNI2bdokSWbOnFmpfebMmRV9bdq0yaxZsyr1f/LJJ5kzZ07FmOU5++yzM3/+/IrX9OnTq7l6AAAAAAAAAAAAqkNhQ26dO3dOmzZtMnr06Iq2BQsWZOLEienWrVuSpFu3bpk3b14mTZpUMeaJJ55IeXl5dtpppxXOXb9+/TRp0qTSCwAAAAAAAAAAgOKp0eNKP/zww/zjH/+ouJ46dWomT56c5s2bp0OHDjnllFNy0UUXZbPNNkvnzp1z3nnnpV27djn44IOTJFtssUX23XffHHfccbn++uuzdOnSDBgwIIcddljatWtXQ6sCAAAAAAAAAACgutRoyO25557LHnvsUXF92mmnJUn69euXW265JWeeeWYWLlyY448/PvPmzUuPHj3yyCOPpEGDBhX33HHHHRkwYED22muv1KpVK3369MnQoUO/9LUAAPCfre+ZI2u6hLUy8rK+NV0C1Jiv8u/Xb5fP+yo/y4nnGQAAAABYczUactt9991TKpVW2F9WVpbBgwdn8ODBKxzTvHnzjBgxYl2UBwAAAAAAAAAAQA2rVdMFAAAAAAAAAAAAwIrU6E5uAAB8dTkyDQAAAAAAAPgy2MkNAAAAAAAAAACAwhJyAwAAAAAAAAAAoLCE3AAAAAAAAAAAACgsITcAAAAAAAAAAAAKS8gNAAAAAAAAAACAwhJyAwAAAAAAAAAAoLCE3AAAAAAAAAAAACisOjVdAAAAAMCa6HvmyJouYa2MvKxvTZcAAAAAAPCVYCc3AAAAAAAAAAAACkvIDQAAAAAAAAAAgMIScgMAAAAAAAAAAKCwhNwAAAAAAAAAAAAoLCE3AAAAAAAAAAAACkvIDQAAAAAAAAAAgMIScgMAAAAAAAAAAKCwhNwAAAAAAAAAAAAoLCE3AAAAAAAAAAAACkvIDQAAAAAAAAAAgMIScgMAAAAAAAAAAKCwhNwAAAAAAAAAAAAoLCE3AAAAAAAAAAAACkvIDQAAAAAAAAAAgMIScgMAAAAAAAAAAKCwhNwAAAAAAAAAAAAoLCE3AAAAAAAAAAAACkvIDQAAAAAAAAAAgMIScgMAAAAAAAAAAKCwhNwAAAAAAAAAAAAoLCE3AAAAAAAAAAAACkvIDQAAAAAAAAAAgMIScgMAAAAAAAAAAKCwhNwAAAAAAAAAAAAoLCE3AAAAAAAAAAAACkvIDQAAAAAAAAAAgMIScgMAAAAAAAAAAKCwhNwAAAAAAAAAAAAoLCE3AAAAAAAAAAAACkvIDQAAAAAAAAAAgMIScgMAAAAAAAAAAKCwhNwAAAAAAAAAAAAoLCE3AAAAAAAAAAAACkvIDQAAAAAAAAAAgMIScgMAAAAAAAAAAKCwhNwAAAAAAAAAAAAoLCE3AAAAAAAAAAAACkvIDQAAAAAAAAAAgMIScgMAAAAAAAAAAKCwhNwAAAAAAAAAAAAoLCE3AAAAAAAAAAAACkvIDQAAAAAAAAAAgMIScgMAAAAAAAAAAKCwhNwAAAAAAAAAAAAoLCE3AAAAAAAAAAAACkvIDQAAAAAAAAAAgMIScgMAAAAAAAAAAKCwhNwAAAAAAAAAAAAoLCE3AAAAAAAAAAAACkvIDQAAAAAAAAAAgMIScgMAAAAAAAAAAKCwhNwAAAAAAAAAAAAoLCE3AAAAAAAAAAAACqvQIbdPP/005513Xjp37pyGDRtm0003zS9+8YuUSqWKMaVSKeeff37atm2bhg0bpmfPnnn99ddrsGoAAAAAAAAAAACqS6FDbpdeemmuu+66XH311XnllVdy6aWX5rLLLstVV11VMeayyy7L0KFDc/3112fixIlp1KhRevXqlcWLF9dg5QAAAAAAAAAAAFSHOjVdwMo8/fTTOeigg/K9730vSdKpU6f8/ve/zzPPPJPks13crrzyypx77rk56KCDkiS33nprWrdunfvuuy+HHXZYjdUOAAAAAAAAAADA2iv0Tm7f/e53M3r06Lz22mtJkr/97W956qmnst9++yVJpk6dmhkzZqRnz54V9zRt2jQ77bRTJkyYUCM1AwAAAAAAAAAAUH0KvZPbWWedlQULFqRLly6pXbt2Pv3001x88cU54ogjkiQzZsxIkrRu3brSfa1bt67oW54lS5ZkyZIlFdcLFixYB9UDAAAAAAAAAACwtgq9k9sf/vCH3HHHHRkxYkSef/75DB8+PEOGDMnw4cPXat5LLrkkTZs2rXi1b9++mioGAAAAAAAAAACgOhU65PbTn/40Z511Vg477LB861vfylFHHZVTTz01l1xySZKkTZs2SZKZM2dWum/mzJkVfctz9tlnZ/78+RWv6dOnr7tFAAAAAAAAAAAAsMYKHXL76KOPUqtW5RJr166d8vLyJEnnzp3Tpk2bjB49uqJ/wYIFmThxYrp167bCeevXr58mTZpUegEAAAAAAAAAAFA8dWq6gJU58MADc/HFF6dDhw7Zcsst89e//jWXX355jjnmmCRJWVlZTjnllFx00UXZbLPN0rlz55x33nlp165dDj744JotHgAAAAAAAAAAgLVW6JDbVVddlfPOOy///d//nVmzZqVdu3b5yU9+kvPPP79izJlnnpmFCxfm+OOPz7x589KjR4888sgjadCgQQ1WDgAAAAAAAAAAQHUodMhtgw02yJVXXpkrr7xyhWPKysoyePDgDB48+MsrDAAAAAAAAAAAgC9FrZouAAAAAAAAAAAAAFZEyA0AAAAAAAAAAIDCEnIDAAAAAAAAAACgsITcAAAAAAAAAAAAKCwhNwAAAAAAAAAAAApLyA0AAAAAAAAAAIDCEnIDAAAAAAAAAACgsITcAAAAAAAAAAAAKCwhNwAAAAAAAAAAAApLyA0AAAAAAAAAAIDCEnIDAAAAAAAAAACgsITcAAAAAAAAAAAAKKw6NV0AAABATet75siaLmGtjLysb02XAAAAAAAAsM7YyQ0AAAAAAAAAAIDCEnIDAAAAAAAAAACgsITcAAAAAAAAAAAAKCwhNwAAAAAAAAAAAApLyA0AAAAAAAAAAIDCEnIDAAAAAAAAAACgsITcAAAAAAAAAAAAKCwhNwAAAAAAAAAAAApLyA0AAAAAAAAAAIDCEnIDAAAAAAAAAACgsITcAAAAAAAAAAAAKCwhNwAAAAAAAAAAAApLyA0AAAAAAAAAAIDCEnIDAAAAAAAAAACgsITcAAAAAAAAAAAAKCwhNwAAAAAAAAAAAApLyA0AAAAAAAAAAIDCEnIDAAAAAAAAAACgsITcAAAAAAAAAAAAKCwhNwAAAAAAAAAAAApLyA0AAAAAAAAAAIDCEnIDAAAAAAAAAACgsITcAAAAAAAAAAAAKCwhNwAAAAAAAAAAAApLyA0AAAAAAAAAAIDCEnIDAAAAAAAAAACgsITcAAAAAAAAAAAAKCwhNwAAAAAAAAAAAApLyA0AAAAAAAAAAIDCEnIDAAAAAAAAAACgsITcAAAAAAAAAAAAKCwhNwAAAAAAAAAAAApLyA0AAAAAAAAAAIDCEnIDAAAAAAAAAACgsITcAAAAAAAAAAAAKCwhNwAAAAAAAAAAAApLyA0AAAAAAAAAAIDCEnIDAAAAAAAAAACgsITcAAAAAAAAAAAAKCwhNwAAAAAAAAAAAApLyA0AAAAAAAAAAIDCEnIDAAAAAAAAAACgsITcAAAAAAAAAAAAKKw1CrnNmzcvv/vd73L22Wdnzpw5SZLnn38+b7/9drUWBwAAAAAAAAAAwPqtzure8MILL6Rnz55p2rRppk2bluOOOy7NmzfPPffck7feeiu33nrruqgTAAAAAAAAAACA9dBq7+R22mmnpX///nn99dfToEGDivb9998/48aNq9biAAAAAAAAAAAAWL+tdsjt2WefzU9+8pMq7V//+tczY8aMaikKAAAAAAAAAAAAkjUIudWvXz8LFiyo0v7aa6+lZcuW1VIUAAAAAAAAAAAAJGsQcuvdu3cGDx6cpUuXJknKysry1ltv5Wc/+1n69OlT7QUCAAAAAAAAAACw/lrtkNuvf/3rfPjhh2nVqlUWLVqU3XbbLd/4xjeywQYb5OKLL14XNQIAAAAAAAAAALCeWu2QW9OmTfPYY4/lgQceyNChQzNgwIA89NBDGTt2bBo1alTtBb799ts58sgj06JFizRs2DDf+ta38txzz1X0l0qlnH/++Wnbtm0aNmyYnj175vXXX6/2OgAAAAAAAAAAAPjy1VmdwUuXLk3Dhg0zefLkdO/ePd27d19XdSVJ5s6dm+7du2ePPfbIww8/nJYtW+b111/PhhtuWDHmsssuy9ChQzN8+PB07tw55513Xnr16pUpU6akQYMG67Q+AAAAAAAAAAAA1q3VCrnVrVs3HTp0yKeffrqu6qnk0ksvTfv27TNs2LCKts6dO1f871KplCuvvDLnnntuDjrooCTJrbfemtatW+e+++7LYYcd9qXUCQAAAAAAAAAAwLqx2seV/vznP88555yTOXPmrIt6KvnjH/+YHXfcMf/1X/+VVq1aZbvttsuNN95Y0T916tTMmDEjPXv2rGhr2rRpdtppp0yYMGGd1wcAAAAAAAAAAMC6tVo7uSXJ1VdfnX/84x9p165dOnbsmEaNGlXqf/7556utuH/+85+57rrrctppp+Wcc87Js88+m//5n/9JvXr10q9fv8yYMSNJ0rp160r3tW7duqJveZYsWZIlS5ZUXC9YsKDaagYAAAAAAAAAAKD6rHbI7eCDD14HZSxfeXl5dtxxx/zyl79Mkmy33XZ56aWXcv3116dfv35rPO8ll1ySCy+8sLrKBAAAAAAAAAAAYB1Z7ZDbBRdcsC7qWK62bduma9euldq22GKL3H333UmSNm3aJElmzpyZtm3bVoyZOXNmtt122xXOe/bZZ+e0006ruF6wYEHat29fjZUDAAAAAAAAAABQHVY75LbMpEmT8sorryRJttxyy2y33XbVVtQy3bt3z6uvvlqp7bXXXkvHjh2TJJ07d06bNm0yevToilDbggULMnHixJx44okrnLd+/fqpX79+tdcLAAAAAAAAAABA9VrtkNusWbNy2GGHZcyYMWnWrFmSZN68edljjz1y5513pmXLltVW3Kmnnprvfve7+eUvf5lDDz00zzzzTG644YbccMMNSZKysrKccsopueiii7LZZpulc+fOOe+889KuXbsv9VhVAAAAAAAAAAAA1o3VDrmdfPLJ+eCDD/Lyyy9niy22SJJMmTIl/fr1y//8z//k97//fbUV9+1vfzv33ntvzj777AwePDidO3fOlVdemSOOOKJizJlnnpmFCxfm+OOPz7x589KjR4888sgjadCgQbXVAQAAAF8Ffc8cWdMlrJWRl/Wt6RIAAAAAACig1Q65PfLII3n88ccrAm5J0rVr11xzzTXZZ599qrW4JDnggANywAEHrLC/rKwsgwcPzuDBg6v9vQEAAAAAAAAAAKhZtVb3hvLy8tStW7dKe926dVNeXl4tRQEAAAAAAAAAAECyBiG3PffcMwMHDsw777xT0fb222/n1FNPzV577VWtxQEAAAAAAAAAALB+W+2Q29VXX50FCxakU6dO2XTTTbPpppumc+fOWbBgQa666qp1USMAAAAAAAAAAADrqTqre0P79u3z/PPP5/HHH8/f//73JMkWW2yRnj17VntxAAAAAAAAAAAArN9WO+SWJGVlZdl7772z9957V3c9AAAAAAAAAAAAUGG1jyv9n//5nwwdOrRK+9VXX51TTjmlOmoCAAAAAAAAAACAJGsQcrv77rvTvXv3Ku3f/e53c9ddd1VLUQAAAAAAAAAAAJCsQcjt/fffT9OmTau0N2nSJLNnz66WogAAAAAAAAAAACBZg5DbN77xjTzyyCNV2h9++OFssskm1VIUAAAAAAAAAAAAJEmd1b3htNNOy4ABA/Lee+9lzz33TJKMHj06v/71r3PllVdWd30AAAAAAAAAAACsx1Y75HbMMcdkyZIlufjii/OLX/wiSdKpU6dcd911+dGPflTtBQIAAAAAAAAAALD+Wu2QW5KceOKJOfHEE/Pee++lYcOGady4cXXXBQAAAAAAAAAAAKm1Nje3bNkykyZNysMPP5y5c+dWV00AAAAAAAAAAACQZDV2crv00kvz4YcfVhxRWiqVst9+++XRRx9NkrRq1SqjR4/OlltuuW4qBQAAAAAAAAAAYL2zyju5jRw5MltttVXF9V133ZVx48blz3/+c2bPnp0dd9wxF1544TopEgAAAAAAAAAAgPXTKofcpk6dmq233rri+qGHHsoPfvCDdO/ePc2bN8+5556bCRMmrJMiAQAAAAAAAAAAWD+tcsjtk08+Sf369SuuJ0yYkO9+97sV1+3atcvs2bOrtzoAAAAAAAAAAADWa6scctt0000zbty4JMlbb72V1157LbvuumtF/7/+9a+0aNGi+isEAAAAAAAAAABgvVVnVQeedNJJGTBgQP785z/nL3/5S7p165auXbtW9D/xxBPZbrvt1kmRAAAAAAAAAAAArJ9WOeR23HHHpXbt2vnTn/6UXXfdNRdccEGl/nfeeSfHHHNMtRcIAAAAAAAAAADA+muVQ25Jcswxx6wwyHbttddWS0EAAAAAAAAAAACwTK2aLgAAAAAAAAAAAABWRMgNAAAAAAAAAACAwhJyAwAAAAAAAAAAoLCE3AAAAAAAAAAAACis1Q65DRs2LB999NG6qAUAAAAAAAAAAAAqWe2Q21lnnZU2bdrk2GOPzdNPP70uagIAAAAAAAAAAIAkaxBye/vttzN8+PDMnj07u+++e7p06ZJLL700M2bMWBf1AQAAAAAAAAAAsB5b7ZBbnTp18v3vfz/3339/pk+fnuOOOy533HFHOnTokN69e+f+++9PeXn5uqgVAAAAAAAAAACA9cxqh9w+r3Xr1unRo0e6deuWWrVq5cUXX0y/fv2y6aabZsyYMdVUIgAAAAAAAAAAAOurNQq5zZw5M0OGDMmWW26Z3XffPQsWLMgDDzyQqVOn5u23386hhx6afv36VXetAAAAAAAAAAAArGdWO+R24IEHpn379rnlllty3HHH5e23387vf//79OzZM0nSqFGjnH766Zk+fXq1FwsAAAAAAAAAAMD6pc7q3tCqVauMHTs23bp1W+GYli1bZurUqWtVGAAAAAAAAAAAAKz2Tm4XXHBBtt9++yrt5eXleeutt5IkZWVl6dix49pXBwAAAAAAAAAAwHpttUNunTt3zvbbb5833nijUvt7772Xzp07V1thAAAAAAAAAAAAsNoht1KplC222CLf+c53Mnr06Cp9AAAAAAAAAAAAUF1WO+RWVlaWa6+9Nueee26+973vZejQoZX6AAAAAAAAAAAAoLrUWd0blu3Wduqpp6ZLly754Q9/mBdffDHnn39+tRcHAAAAAAAAAADA+m21Q26ft99+++Xpp59O796988wzz1RXTQAAAAAAAAAAAJBkDY4r3W233VKvXr2K665du2bixIlp1qxZxS5vAAAAAAAAAAAAUB1Weye3J598skpbixYtMnbs2GopCAAAAAAAAAAAAJZZ7Z3c9txzz1x44YVV2ufOnZs999yzWooCAAAAAAAAAACAZA12chszZkxefPHF/PWvf80dd9yRRo0aJUk+/vhju7kBAAAAAAAAAABQrVZ7J7ckefzxxzNjxozsvPPOmTZtWjWXBAAAAAAAAAAAAJ9Zo5Bb27ZtM3bs2HzrW9/Kt7/97YwZM6aaywIAAAAAAAAAAIA1CLmVlZUlSerXr58RI0Zk4MCB2XfffXPttddWe3EAAAAAAAAAAACs3+qs7g2lUqnS9bnnnpstttgi/fr1q7aiAAAAAAAAAAAAIFmDkNvUqVOz0UYbVWrr06dPNt9880yaNKnaCgMAAAAAAAAAAIDVDrl17Nhxue1bbbVVttpqq7UuCAAAAAAAAAAAAJZZ7ZDbHnvskbKyshX2P/HEE2tVEAAAAAAAAAAAACyz2iG3bbfdttL10qVLM3ny5Lz00kvp169fddUFAAAAAAAAAAAAqx9yu+KKK5bbPmjQoHz44YdrXRAAAAAAAAAAAAAsU6u6JjryyCNz8803V9d0AAAAAAAAAAAAUH0htwkTJqRBgwbVNR0AAAAAAAAAAACs/nGlhxxySKXrUqmUd999N88991zOO++8aisMAAAAAAAAAAAAVjvk1rRp00rXtWrVyuabb57Bgwdnn332qbbCAAAAAAAAAAAAYJVDbv/85z/TuXPnDBs2bF3WAwAAAAAAAAAAABVqrerAzTbbLO+9917Fdd++fTNz5sx1UhQAAAAAAAAAAAAkqxFyK5VKla4feuihLFy4sNoLAgAAAAAAAAAAgGVWOeQGAAAAAAAAAAAAX7ZVDrmVlZWlrKysShsAAAAAAAAAAACsK3VWdWCpVEr//v1Tv379JMnixYtzwgknpFGjRpXG3XPPPdVbIQAAAAAAAAAAAOutVQ659evXr9L1kUceWe3FAAAAAAAAAAAAwOetcsht2LBh67KOVfK///u/OfvsszNw4MBceeWVST7bUe7000/PnXfemSVLlqRXr1659tpr07p165otFgAAAAAAAAAAgLVWq6YLWFXPPvtsfvvb32brrbeu1H7qqafmT3/6U0aNGpWxY8fmnXfeySGHHFJDVQIAAAAAAAAAAFCdvhIhtw8//DBHHHFEbrzxxmy44YYV7fPnz89NN92Uyy+/PHvuuWd22GGHDBs2LE8//XT+8pe/1GDFAAAAAAAAAAAAVIevRMjtpJNOyve+97307NmzUvukSZOydOnSSu1dunRJhw4dMmHChC+7TAAAAAAAAAAAAKpZnZou4Ivceeedef755/Pss89W6ZsxY0bq1auXZs2aVWpv3bp1ZsyYscI5lyxZkiVLllRcL1iwoNrqBQAAAAAAAAAAoPoUeie36dOnZ+DAgbnjjjvSoEGDapv3kksuSdOmTSte7du3r7a5AQAAAAAAAAAAqD6FDrlNmjQps2bNyvbbb586deqkTp06GTt2bIYOHZo6deqkdevW+fjjjzNv3rxK982cOTNt2rRZ4bxnn3125s+fX/GaPn36Ol4JAAAAAAAAAAAAa6LQx5XutddeefHFFyu1HX300enSpUt+9rOfpX379qlbt25Gjx6dPn36JEleffXVvPXWW+nWrdsK561fv37q16+/TmsHAAAAAAAAAABg7RU65LbBBhtkq622qtTWqFGjtGjRoqL92GOPzWmnnZbmzZunSZMmOfnkk9OtW7fsvPPONVEyAAAAAAAAAAAA1ajQIbdVccUVV6RWrVrp06dPlixZkl69euXaa6+t6bIAAAAAAAAAAACoBl+5kNuYMWMqXTdo0CDXXHNNrrnmmpopCAAAAAAAAAAAgHWmVk0XAAAAAAAAAAAAACsi5AYAAAAAAAAAAEBhCbkBAAAAAAAAAABQWEJuAAAAAAAAAAAAFJaQGwAAAAAAAAAAAIUl5AYAAAAAAAAAAEBhCbkBAAAAAAAAAABQWEJuAAAAAAAAAAAAFJaQGwAAAAAAAAAAAIUl5AYAAAAAAAAAAEBhCbkBAAAAAAAAAABQWEJuAAAAAAAAAAAAFJaQGwAAAAAAAAAAAIUl5AYAAAAAAAAAAEBhCbkBAAAAAAAAAABQWEJuAAAAAAAAAAAAFJaQGwAAAAAAAAAAAIUl5AYAAAAAAAAAAEBhCbkBAAAAAAAAAABQWEJuAAAAAAAAAAAAFJaQGwAAAAAAAAAAAIUl5AYAAAAAAAAAAEBhCbkBAAAAAAAAAABQWEJuAAAAAAAAAAAAFJaQGwAAAAAAAAAAAIUl5AYAAAAAAAAAAEBhCbkBAAAAAAAAAABQWEJuAAAAAAAAAAAAFJaQGwAAAAAAAAAAAIUl5AYAAAAAAAAAAEBhCbkBAAAAAAAAAABQWEJuAAAAAAAAAAAAFJaQGwAAAAAAAAAAAIUl5AYAAAAAAAAAAEBhCbkBAAAAAAAAAABQWHVqugAAAKB4+p45sqZLWCsjL+tb0yUAAAAAAABQTezkBgAAAAAAAAAAQGEJuQEAAAAAAAAAAFBYQm4AAAAAAAAAAAAUlpAbAAAAAAAAAAAAhSXkBgAAAAAAAAAAQGEJuQEAAAAAAAAAAFBYQm4AAAAAAAAAAAAUlpAbAAAAAAAAAAAAhSXkBgAAAAAAAAAAQGEJuQEAAAAAAAAAAFBYQm4AAAAAAAAAAAAUlpAbAAAAAAAAAAAAhSXkBgAAAAAAAAAAQGEJuQEAAAAAAAAAAFBYQm4AAAAAAAAAAAAUlpAbAAAAAAAAAAAAhSXkBgAAAAAAAAAAQGHVqekCgDXT98yRNV3CWhl5Wd+aLgEAAAAAAAAAgK8AO7kBAAAAAAAAAABQWEJuAAAAAAAAAAAAFJaQGwAAAAAAAAAAAIUl5AYAAAAAAAAAAEBhCbkBAAAAAAAAAABQWEJuAAAAAAAAAAAAFJaQGwAAAAAAAAAAAIUl5AYAAAAAAAAAAEBhCbkBAAAAAAAAAABQWIUOuV1yySX59re/nQ022CCtWrXKwQcfnFdffbXSmMWLF+ekk05KixYt0rhx4/Tp0yczZ86soYoBAAAAAAAAAACoToUOuY0dOzYnnXRS/vKXv+Sxxx7L0qVLs88++2ThwoUVY0499dT86U9/yqhRozJ27Ni88847OeSQQ2qwagAAAAAAAAAAAKpLnZouYGUeeeSRSte33HJLWrVqlUmTJmXXXXfN/Pnzc9NNN2XEiBHZc889kyTDhg3LFltskb/85S/Zeeeda6JsAAAAAAAAAAAAqkmhd3L7d/Pnz0+SNG/ePEkyadKkLF26ND179qwY06VLl3To0CETJkyokRoBAAAAAAAAAACoPoXeye3zysvLc8opp6R79+7ZaqutkiQzZsxIvXr10qxZs0pjW7dunRkzZqxwriVLlmTJkiUV1wsWLFgnNQMAAAAAAAAAALB2vjI7uZ100kl56aWXcuedd671XJdcckmaNm1a8Wrfvn01VAgAAAAAAAAAAEB1+0qE3AYMGJAHHnggTz75ZDbeeOOK9jZt2uTjjz/OvHnzKo2fOXNm2rRps8L5zj777MyfP7/iNX369HVVOgAAAAAAAAAAAGuh0CG3UqmUAQMG5N57780TTzyRzp07V+rfYYcdUrdu3YwePbqi7dVXX81bb72Vbt26rXDe+vXrp0mTJpVeAAAAAAAAAAAAFE+dmi5gZU466aSMGDEi999/fzbYYIPMmDEjSdK0adM0bNgwTZs2zbHHHpvTTjstzZs3T5MmTXLyySenW7du2XnnnWu4egAAAAAAAAAAANZWoUNu1113XZJk9913r9Q+bNiw9O/fP0lyxRVXpFatWunTp0+WLFmSXr165dprr/2SKwUAAAAAAAAAAGBdKHTIrVQqfeGYBg0a5Jprrsk111zzJVQEAAAAAAAAAADAl6lWTRcAAAAAAAAAAAAAKyLkBgAAAAAAAAAAQGEJuQEAAAAAAAAAAFBYQm4AAAAAAAAAAAAUlpAbAAAAAAAAAAAAhSXkBgAAAAAAAAAAQGEJuQEAAAAAAAAAAFBYQm4AAAAAAAAAAAAUlpAbAAAAAAAAAAAAhSXkBgAAAAAAAAAAQGEJuQEAAAAAAAAAAFBYQm4AAAAAAAAAAAAUlpAbAAAAAAAAAAAAhSXkBgAAAAAAAAAAQGEJuQEAAAAAAAAAAFBYQm4AAAAAAAAAAAAUlpAbAAAAAAAAAAAAhSXkBgAAAAAAAAAAQGEJuQEAAAAAAAAAAFBYQm4AAAAAAAAAAAAUlpAbAAAAAAAAAAAAhSXkBgAAAAAAAAAAQGEJuQEAAAAAAAAAAFBYQm4AAAAAAAAAAAAUlpAbAAAAAAAAAAAAhSXkBgAAAAAAAAAAQGEJuQEAAAAAAAAAAFBYQm4AAAAAAAAAAAAUlpAbAAAAAAAAAAAAhSXkBgAAAAAAAAAAQGEJuQEAAAAAAAAAAFBYQm4AAAAAAAAAAAAUlpAbAAAAAAAAAAAAhSXkBgAAAAAAAAAAQGEJuQEAAAAAAAAAAFBYQm4AAAAAAAAAAAAUlpAbAAAAAAAAAAAAhSXkBgAAAAAAAAAAQGEJuQEAAAAAAAAAAFBYQm4AAAAAAAAAAAAUlpAbAAAAAAAAAAAAhSXkBgAAAAAAAAAAQGEJuQEAAAAAAAAAAFBYQm4AAAAAAAAAAAAUlpAbAAAAAAAAAAAAhSXkBgAAAAAAAAAAQGEJuQEAAAAAAAAAAFBYQm4AAAAAAAAAAAAUlpAbAAAAAAAAAAAAhSXkBgAAAAAAAAAAQGEJuQEAAAAAAAAAAFBYQm4AAAAAAAAAAAAUlpAbAAAAAAAAAAAAhSXkBgAAAAAAAAAAQGEJuQEAAAAAAAAAAFBYQm4AAAAAAAAAAAAUlpAbAAAAAAAAAAAAhSXkBgAAAAAAAAAAQGEJuQEAAAAAAAAAAFBYQm4AAAAAAAAAAAAUlpAbAAAAAAAAAAAAhSXkBgAAAAAAAAAAQGEJuQEAAAAAAAAAAFBY/zEht2uuuSadOnVKgwYNstNOO+WZZ/4/9u493qo5f/z4+5zS/YpEdFHKhC4qTKJIJoy+xYxLolAuoyQmjN9MyW3KqFzHLaNMchsMpkYhIrlMdyFJUzK/yS255JLU+v3h2/453c45OulTPZ+Phz/O3mvv/fmsvfZa+ziv1vrXlh4SAAAAAAAAAAAAm2ibiNwefPDBuOiii+Lyyy+PGTNmRLNmzaJjx47x4YcfbumhAQAAAAAAAAAAsAm2icht+PDhcdZZZ8UZZ5wR++yzT9x+++1RoUKFuPvuu7f00AAAAAAAAAAAANgEW33k9u2338b06dOjQ4cOudvy8/OjQ4cO8fLLL2/BkQEAAAAAAAAAALCpSm/pAWyqjz/+OFatWhU1a9YscHvNmjXjrbfeWu9jVqxYEStWrMj9/Nlnn0VExOeff775BroFrFzx1ZYewiYp7vthvlsX8924rXm+29NcI8y3MOa7dTHfjTPfrYv5bpz5bj22p7lGmG9htrf5pm7NfLIs28IjAQAAAIBtX162lf+fuP/+97+x++67x0svvRStW7fO3X7JJZfE888/H6+++uo6jxk0aFBcccUVP+UwAQAAANgGvffee7HHHnts6WEAAAAAwDZtqz+T28477xylSpWKDz74oMDtH3zwQey6667rfcxll10WF110Ue7n1atXxyeffBI77bRT5OXlbdbxbis+//zzqF27drz33ntRpUqVLT2czc58t23mu+3anuYaYb7bOvPdtpnvts18t23b03y3p7lGmC+Fy7Isvvjii6hVq9aWHgoAAAAAbPO2+sitTJky0bJly5g4cWJ06dIlIr6P1iZOnBh9+vRZ72PKli0bZcuWLXBbtWrVNvNIt01VqlTZrv7nt/lu28x327U9zTXCfLd15rttM99tm/lu27an+W5Pc40wXzauatWqW3oIAAAAALBd2Oojt4iIiy66KHr06BGtWrWKAw88MG644Yb48ssv44wzztjSQwMAAAAAAAAAAGATbBOR20knnRQfffRRDBw4MN5///1o3rx5jB8/PmrWrLmlhwYAAAAAAAAAAMAm2CYit4iIPn36bPDypJS8smXLxuWXX77OZV+3Vea7bTPfbdf2NNcI893Wme+2zXy3bea7bdue5rs9zTXCfAEAAAAAUpKXZVm2pQcBAAAAAAAAAAAA65O/pQcAAAAAAAAAAAAAGyJyAwAAAAAAAAAAIFkiNwAAAAAAAAAAAJIlcmOTHXbYYdGvX7+NLlOvXr244YYbtugYUrBo0aLIy8uLWbNmRUTEpEmTIi8vLz799NPN8vzrM2rUqKhWrVqJvN62orD3Ze11NmjQoGjevPlPPs4N+Sm2/7y8vHjsscc262tsbqeffnp06dIl93Nx1tvmXMdZlsXZZ58dO+64Y6Gf383JvmHbtLnf1039bKS2P91Uha2PktiXbo5j0tr7x+3Z1vKd8qdUEutke1+vxdkXp3A8LqnfUTb374Bbwk9x3NrWjo0AAAAAACWl9JYeANuHqVOnRsWKFbf0MJJz8MEHx5IlS6Jq1ao/2WuedNJJccwxx/xkr7c1qF27dixZsiR23nnnIi3fv3//OP/88zfzqDaPRYsWxZ577hkzZ87c7v949uijj8YOO+ywpYcR48ePj1GjRsWkSZOifv36Rd4Oga3PkiVLonr16iX6nCVxTLrxxhsjy7ISGhHbs0mTJsXhhx8ey5YtKxBqpXLM3VJS//592GGHRfPmzUs8SPM74I9T3P267/cAAAAAwPZC5MYGrVy5ssT+GFWjRo0SeZ5tTZkyZWLXXXf9SV+zfPnyUb58+Z/0NVP27bffFvt9qFSpUlSqVGkzjoqfwo477rilhxAREQsWLIjddtstDj744PXev2YbJWLVqlWRl5cX+fnb/olove8btjWvm81xzC+JY9JPGdtvT7bmbbWkpXLM3VK21+/fW/PvgCX5u3Bx+V0DAAAAAGD9tv2/EpMzfvz4OOSQQ6JatWqx0047xbHHHhsLFiyIiP9/ucYHH3ww2rVrF+XKlYsxY8bE0qVLo2vXrrH77rtHhQoVokmTJnH//fev89zfffdd9OnTJ6pWrRo777xzDBgwoMAZQda+VM2nn34a55xzTtSsWTPKlSsX++23X4wdO3aT5rexMaxYsSL69+8fu+++e1SsWDEOOuigmDRpUu6xay4LNGHChGjcuHFUqlQpjjrqqFiyZEmB5+/bt29u/V166aXRo0ePApf32tg6Xp8feymg1atXx5/+9KfYa6+9omzZslGnTp245pprcvf/+9//jsMPPzwqVKgQzZo1i5dffnmdua6x5nI4o0ePjnr16kXVqlXj5JNPji+++KLA6w0ePDj23HPPKF++fDRr1iwefvjh3P3Lli2Lbt26RY0aNaJ8+fLRsGHDGDlyZO7+9957L0488cSoVq1a7LjjjtG5c+dYtGhRseZclPm3b98++vTpU2DZjz76KMqUKRMTJ06MiO+3xauuuiq6d+8eVapUibPPPrtIl3n9ofVdQujuu++OfffdN8qWLRu77bbbOuMoKV9++WV07949KlWqFLvttlsMGzaswP3ruxRetWrVYtSoURERseeee0ZExP777x95eXlx2GGHFXkOH3/8cRx33HFRoUKFaNiwYTzxxBMlNq+NbWNrPicTJ06MVq1aRYUKFeLggw+OefPmFXiOq6++OnbZZZeoXLly9OrVK373u99t9GwWa1867dZbb42GDRtGuXLlombNmvHrX/96nTFecsklseOOO8auu+4agwYN2uR5n3766XH++efH4sWLIy8vL+rVqxeHHXZY9OnTJ/r16xc777xzdOzYMSIiXn/99Tj66KOjUqVKUbNmzTjttNPi448/LjCfvn37bnSMRdn3bmw/WFxffPFFdOvWLSpWrBi77bZbXH/99QXWe1H3zU888UTss88+UbZs2Vi8eHHUq1cvrr766txnoW7duvHEE0/ERx99FJ07d45KlSpF06ZNY9q0abnnKsrxrCjrcHOti/XtmyIiXnzxxTj00EOjfPnyUbt27ejbt298+eWXuectbB2u7aOPPopWrVrFcccdFytWrCiRuW3ss/Hpp59Gr169okaNGlGlSpVo3759zJ49e53nuOOOO6J27dpRoUKFOPHEE+Ozzz7L3bfmUprXXHNN1KpVK/bee++I2Pix5fXXX4/8/Pz46KOPIiLik08+ifz8/Dj55JNzz3v11VfHIYccUiLroKjr44f76DXHnkcffXSDx+yI7z8HderUiQoVKsRxxx0XS5cuLXB/SV+utLDvMmvG/cADD8TBBx+c25c8//zzuWVWrVoVPXv2zO3T995777jxxhvX+5pDhw6N3XbbLXbaaafo3bt3rFy5MrdMYdv3u+++G506dYrq1atHxYoVY999941//vOfufsL228Wxbhx46Jq1aoxZsyYmDNnTrRv3z7Kly8fO+20U5x99tmxfPnydeZUnG014vuzXR155JGx8847R9WqVaNdu3YxY8aMAuPIy8uLu+66a7Mdh4tq9OjR0apVq6hcuXLsuuuuccopp8SHH34YEd9vG4cffnhERFSvXj3y8vLi9NNPj4h1j7n16tWLP/7xj3HmmWdG5cqVo06dOnHnnXdutnE//PDD0aRJk9x716FDh/jyyy9z79kVV1yR20+de+658e233+YeW9TPxMY+y2t//549e3YcfvjhUbly5ahSpUq0bNmywDEromSPxxtz+umnx/PPPx833nhj5OXlRV5eXm77nD59+ga/ey1YsCA6d+4cNWvWjEqVKsUBBxwQzzzzTIHnTulypesbS/PmzXP76Ly8vLjtttvif/7nf6JixYq5362GDBkSNWvWjMqVK0fPnj3jm2++KfAc67sUb5cuXXLb/vrceeedUatWrVi9enWB2zt37hxnnnnmevfrd911VzRu3DjKlSsXP/vZz+LWW2/N3beh7/dF2c9u7DMd8f+/h0+YMCH233//KF++fLRv3z4+/PDDePLJJ6Nx48ZRpUqVOOWUU+Krr77KPS613x8BAAAAgG2DyG078uWXX8ZFF10U06ZNi4kTJ0Z+fn4cd9xxBf7n+u9+97u44IILYu7cudGxY8f45ptvomXLljFu3Lh4/fXX4+yzz47TTjst/vWvfxV47nvuuSdKly4d//rXv+LGG2+M4cOHx1133bXecaxevTqOPvromDJlStx7773x5ptvxpAhQ6JUqVKbNL+NjaFPnz7x8ssvxwMPPBCvvfZanHDCCXHUUUfF/Pnzc4//6quvYujQoTF69Oh44YUXYvHixdG/f//c/ddee22MGTMmRo4cGVOmTInPP/98nZioKOu4JFx22WUxZMiQGDBgQLz55ptx3333Rc2aNXP3//73v4/+/fvHrFmzolGjRtG1a9f47rvvNvh8CxYsiMceeyzGjh0bY8eOjeeffz6GDBmSu3/w4MHx17/+NW6//fZ444034sILL4xTTz019wftNeN48sknY+7cuXHbbbflLrm4cuXK6NixY1SuXDkmT54cU6ZMyf2x7od/QCyJ+ffq1Svuu+++AuHGvffeG7vvvnu0b98+d9vQoUOjWbNmMXPmzBgwYMCPGsMP3XbbbdG7d+84++yzY86cOfHEE0/EXnvttcnPuz4XX3xxPP/88/H444/HU089FZMmTVrnD+Ebs+az+8wzz8SSJUvi0UcfLfIcrrjiijjxxBPjtddei2OOOSa6desWn3zySYnMq7BtLOL77XrYsGExbdq0KF26dJx55pm5+8aMGRPXXHNNXHvttTF9+vSoU6dO3HbbbUV+/WnTpkXfvn3jyiuvjHnz5sX48eOjbdu2BZa55557omLFivHqq6/Gn/70p7jyyivj6aef3qR533jjjXHllVfGHnvsEUuWLImpU6fmXqtMmTIxZcqUuP322+PTTz+N9u3bx/777x/Tpk2L8ePHxwcffBAnnnhikcdYlH1vYfvB4rroootiypQp8cQTT8TTTz8dkydPLrC9FnXffO2118Zdd90Vb7zxRuyyyy4REXH99ddHmzZtYubMmfHLX/4yTjvttOjevXuceuqpMWPGjGjQoEF07949FzsX53hW0u9zUdZFxLr7pgULFsRRRx0Vv/rVr+K1116LBx98MF588cUCAWpR1uEa7733Xhx66KGx3377xcMPPxxly5bd5HlFbHydnXDCCbk/hE+fPj1atGgRRxxxRIF9xzvvvBMPPfRQ/OMf/4jx48fHzJkz47zzzivwGhMnTox58+bF008/HWPHji302LLvvvvGTjvtlNuHTJ48ucDPERHPP/98gdC3pBR3G9rYMfvVV1+Nnj17Rp8+fWLWrFlx+OGHx9VXX13iY/6hon6Xufjii+O3v/1tzJw5M1q3bh2dOnXKBXirV6+OPfbYI/72t7/Fm2++GQMHDoz/83/+Tzz00EMFnuO5556LBQsWxHPPPRf33HNPjBo1KhdlRxS+fffu3TtWrFgRL7zwQsyZMyeuvfba3NmPirrf3Jj77rsvunbtGmPGjIkuXbpEx44do3r16jF16tT429/+Fs8888w6QXhxt9WI7yPYHj16xIsvvhivvPJKNGzYMI455pgC/+AgYvMeh4tq5cqVcdVVV8Xs2bPjsccei0WLFuVintq1a8cjjzwSERHz5s2LJUuWrBM3/tCwYcOiVatWuc/8b37zm3UC9pKwZMmS6Nq1a5x55pkxd+7cmDRpUhx//PG548PEiRNzt99///3x6KOPxhVXXJF7fFE/E8X5/t2tW7fYY489YurUqTF9+vT43e9+V+CsYSV9PN6YG2+8MVq3bh1nnXVWLFmyJJYsWRK1a9fOzWlD372WL18exxxzTEycODFmzpwZRx11VHTq1CkWL168Wcb5Uxg0aFAcd9xxMWfOnDjzzDPjoYceikGDBsUf//jHmDZtWuy2224F4rIf64QTToilS5fGc889l7vtk08+ifHjx0e3bt3WWX7MmDExcODAuOaaa2Lu3Lnxxz/+MQYMGBD33HNPRGz4+31E4fvZjX2m1143t9xyS7z00ku5AO2GG26I++67L8aNGxdPPfVU3HzzzbnlU/v9EQAAAADYRmRstz766KMsIrI5c+ZkCxcuzCIiu+GGGwp93C9/+cvst7/9be7ndu3aZY0bN85Wr16du+3SSy/NGjdunPu5bt262fXXX59lWZZNmDAhy8/Pz+bNm1dic9nYGN59992sVKlS2f/9v/+3wGOOOOKI7LLLLsuyLMtGjhyZRUT2zjvv5O7/85//nNWsWTP3c82aNbPrrrsu9/N3332X1alTJ+vcufMGx/XDdZxlWW49z5w5M8uyLHvuueeyiMiWLVtW5Ll+/vnnWdmyZbMRI0asc9+a57/rrrtyt73xxhtZRGRz587NzbVq1aq5+y+//PKsQoUK2eeff5677eKLL84OOuigLMuy7JtvvskqVKiQvfTSSwVeq2fPnlnXrl2zLMuyTp06ZWecccZ6xzt69Ohs7733LvDerFixIitfvnw2YcKEIs97jY3N/+uvv86qV6+ePfjgg7nbmjZtmg0aNCj3c926dbMuXboUeFxh78v61lmzZs1yP9eqVSv7/e9/X+y5FNcXX3yRlSlTJnvooYdyty1dujQrX758dsEFF2RZlmURkf39738v8LiqVatmI0eOzLJs3bmuUdgcIiL7wx/+kPt5+fLlWURkTz755CbNKcsK38bWvB/PPPNM7r5x48ZlEZF9/fXXWZZl2UEHHZT17t27wOPbtGlT4H3q0aNHgc9ru3btcuvtkUceyapUqVLgc/BD7dq1yw455JACtx1wwAHZpZdeWtzpruP666/P6tatW+C19t9//wLLXHXVVdkvfvGLAre99957WUTk9qWFjbGwfW9R9oPF8fnnn2c77LBD9re//S1326effppVqFAhu+CCC4q1b541a1aBZerWrZudeuqpuZ+XLFmSRUQ2YMCA3G0vv/xyFhHZkiVLNjjG9R3PNsf7XNi6WDOntfdNPXv2zM4+++wCt02ePDnLz8/Pvv766yKvw6pVq2ZvvfVWVrt27axv374F9sebamPrbPLkyVmVKlWyb775psD9DRo0yO64444sy77fn5YqVSr7z3/+k7v/ySefzPLz83PvXY8ePbKaNWtmK1asyC1TlGPL8ccfn9sv9OvXL7v44ouz6tWrZ3Pnzs2+/fbbrEKFCtlTTz1VYusiywrfhn64jy7KMbtr167ZMcccU+D5TjrppI0ek36MtfePP7Sh7zJDhgzJLbNy5cpsjz32yK699toNvkbv3r2zX/3qVwVes27dutl3332Xu+2EE07ITjrppCzLsiJt302aNClwjP+houw312fNseGWW27Jqlatmk2aNCnLsiy78847s+rVq2fLly/PLTtu3LgsPz8/e//993Nz+jHb6tpWrVqVVa5cOfvHP/6Ru21zHocL88Pj5dqmTp2aRUT2xRdfZFm24e+2az/H2vvx1atXZ7vsskt22223lfTws+nTp2cRkS1atGid+3r06JHtuOOO2Zdffpm77bbbbssqVaqUrVq1ar3Pt6HPRHG+f1euXDkbNWrUep+/pI/HRbH2+1OU717rs++++2Y333xz7ucf/g64pa1vLM2aNcsuv/zyLMu+/4z169evwP2tW7fOzjvvvAK3HXTQQQX2uev7fHTu3Dnr0aPHRsfTuXPn7Mwzz8z9fMcdd2S1atXKVq1atc5+vUGDBtl9991X4PFXXXVV1rp16yzLNvz9vrD97Pps6DP9w21h8ODBWURkCxYsyN12zjnnZB07dsyyLL3fHwEAAACAbYczuW1H5s+fH127do369etHlSpVol69ehERBf61fatWrQo8ZtWqVXHVVVdFkyZNYscdd4xKlSrFhAkT1vkX+j//+c8jLy8v93Pr1q1j/vz5sWrVqnXGMWvWrNhjjz2iUaNGJTi7DY9hzpw5sWrVqmjUqFFUqlQp99/zzz9f4FJDFSpUiAYNGuR+3m233XKXavnss8/igw8+iAMPPDB3f6lSpaJly5YFxlCUdbyp5s6dGytWrIgjjjhig8s0bdq0wDwiosBlZ9ZWr169qFy5coHHrFn+nXfeia+++iqOPPLIAuvvr3/9a279/eY3v4kHHnggmjdvHpdcckm89NJLueeaPXt2vPPOO1G5cuXcY3fcccf45ptvNnop1x8z/3LlysVpp50Wd999d0REzJgxI15//fV1zkaw9na+KT788MP473//u9H3o6QsWLAgvv322zjooINyt+244465y6H9WEWdww+3q4oVK0aVKlU2ul0VVVG2sbVff+3tet68eQU+nxGxzs8bc+SRR0bdunWjfv36cdppp8WYMWMKXHJp7ddfM4aSmP/6rL1vmT17djz33HMF1s/PfvaziIgNrqO1x1iUfe/G9oPF9e9//ztWrlxZ4H2oWrVqbnst6r65TJky68xr7bmuOZNlkyZN1rltzfiLejzbHO9zYetijbX3TbNnz45Ro0YVWD8dO3aM1atXx8KFC4u8Dr/++us49NBD4/jjj89djq4kbWidzZ49O5YvXx477bRTgfEtXLiwwPjq1KkTu+++e+7n1q1bx+rVqwuc0alJkyZRpkyZAuumsGNLu3btcpe2fP7556N9+/bRtm3bmDRpUkydOjVWrlwZbdq0KdF1sbH1UZTl1963zZ07t8A+P+L79bM5FfW7zA/HUbp06WjVqlXMnTs3d9uf//znaNmyZdSoUSMqVaoUd9555zrPse+++xY4m+QP11VRtu++ffvG1VdfHW3atInLL788XnvttdxzFXW/uT4PP/xwXHjhhfH0009Hu3btIuL796JZs2ZRsWLF3HJt2rQpkW31gw8+iLPOOisaNmwYVatWjSpVqsTy5cs3un8qyeNwcUyfPj06deoUderUicqVK+fWz4/5rvvD+eTl5cWuu+66WebTrFmzOOKII6JJkyZxwgknxIgRI2LZsmUF7q9QoULu59atW8fy5cvjvffei4iifyaK8/37oosuil69ekWHDh1iyJAh62yTJXk83hQbm9Py5cujf//+0bhx46hWrVpUqlQp5s6du1WfyW3t4/Dm3Ad369YtHnnkkdwZqMeMGRMnn3xy5OcX/F80X375ZSxYsCB69uxZYH929dVXF+l3qY3tZyOK/ple+3tXhQoVon79+gVuS/X3RwAAAABg21F6Sw+An06nTp2ibt26MWLEiKhVq1asXr069ttvvwKX/PjhH+4iIq677rq48cYb44YbbogmTZpExYoVo1+/fpt0mZDy5cv/6Mf+GMuXL49SpUrF9OnT17kk6ppLWkVEgUsERXz/x7bsfy9jVFRFWcebqijr74dzWRMzbOySqeub+5rlly9fHhER48aNKxAhRETuUndHH310vPvuu/HPf/4znn766TjiiCOid+/eMXTo0Fi+fHm0bNkyxowZs87r1qhRo9C5rK2w+ffq1SuaN28e//nPf2LkyJHRvn37qFu3boFl1t7ON8VPvT0XZn3b7cqVKzf6mKLOYWPbyaYobBtb88es4m7XxVG5cuWYMWNGTJo0KZ566qkYOHBgDBo0KKZOnRrVqlVb5/XXjKGkL0W8xtrb6PLly6NTp05x7bXXrrPsmj86FzbG4u471jy+uPvBoirqvrl8+fLrjbLWtz1sbBsp6vHsp3yf17a+9/2cc86Jvn37rrNsnTp14rXXXivSOixbtmx06NAhxo4dGxdffPE6n7NNtaF1tnz58thtt91yodkPrflcFdX61k1hx5bDDjss+vXrF/Pnz48333wzDjnkkHjrrbdi0qRJsWzZsmjVqlWBsKWkFHcb2pz7th+jJL7LPPDAA9G/f/8YNmxYtG7dOipXrhzXXXddvPrqqwWWK+z7R2Hbd69evaJjx465S+UNHjw4hg0bFueff36R95vrs//++8eMGTPi7rvvjlatWhUrDP0x22qPHj1i6dKlceONN0bdunWjbNmy0bp166T2TxHfxzYdO3aMjh07xpgxY6JGjRqxePHi6Nix44/6rvtTzadUqVLx9NNPx0svvZS7pOLvf//7dbbHDSnqZ6I4n+VBgwbFKaecEuPGjYsnn3wyLr/88njggQfiuOOOW+e51jzf5joeb8zG5tS/f/94+umnY+jQobHXXntF+fLl49e//nWyl5PMz88v9Dvyj/kdoSjPuz6dOnWKLMti3LhxccABB8TkyZPj+uuvX2e5Nd+TR4wYsU5wt/a+cX029jkrzmd67W1ha/r9EQAAAADYdojcthNLly6NefPmxYgRI+LQQw+NiIgXX3yx0MdNmTIlOnfuHKeeempEfP9Hjbfffjv22WefAsut/UeiV155JRo2bLje//HetGnT+M9//hNvv/12iZ7NbUNj2H///WPVqlXx4Ycf5uZeXFWrVo2aNWvG1KlTo23bthHx/VmBZsyYEc2bN4+IH7+Oi6thw4ZRvnz5mDhxYvTq1avEn39t++yzT5QtWzYWL16c+5f961OjRo3o0aNH9OjRIw499NC4+OKLY+jQodGiRYt48MEHY5dddokqVaps8ngKm3+TJk2iVatWMWLEiLjvvvvilltu2eTX3JjKlStHvXr1YuLEiXH44Ydv1tdq0KBB7LDDDvHqq69GnTp1IiJi2bJl8fbbb+femxo1asSSJUtyj5k/f36BM5KtObvMD8+y+FPOYX0K28aKcsaGvffeO6ZOnRrdu3fP3TZ16tRijaN06dLRoUOH6NChQ1x++eVRrVq1ePbZZ+P4448v1vNsDi1atIhHHnkk6tWrF6VL/7hD9+ba925I/fr1Y4cddoipU6fmttfPPvss3n777Wjbtm2J7JuLo6jHs82hsHWxIS1atIg333wz9tprr/XeX9R1mJ+fH6NHj45TTjklDj/88Jg0aVLUqlVr0yZVBC1atIj3338/SpcunTvz0fosXrw4/vvf/+bG9Morr0R+fv5Gz1JZlGNLkyZNonr16nH11VdH8+bNo1KlSnHYYYfFtddeG8uWLYvDDjtsU6b3k2jcuPF6v99sLsX5LvPKK6/ktt/vvvsupk+fHn369ImI7z9vBx98cJx33nm55Yt79p2ibt+1a9eOc889N84999y47LLLYsSIEXH++edv0n6zQYMGMWzYsDjssMOiVKlSccstt0Tjxo1j1KhR8eWXX+ZCmClTppTItjplypS49dZb45hjjomIiPfeey8+/vjjYo35p/DWW2/F0qVLY8iQIVG7du2IiJg2bVqBZdb3PSMFeXl50aZNm2jTpk0MHDgw6tatG3//+98j4vuzRn399de5GPyVV16JSpUqRe3atTfr9/tGjRpFo0aN4sILL4yuXbvGyJEjc5HbT61MmTLFfs+mTJkSp59+em7My5cvj0WLFm2G0ZWMtb8jf/7557Fw4cKNPmbNPviH3y/X3gev/byrVq2K119/vdDv1OXKlYvjjz8+xowZE++8807svffe0aJFi3WWq1mzZtSqVSv+/e9/R7du3db7XD/2c1eUz/SPkdrvjwAAAADAtsPlSrcT1atXj5122inuvPPOeOedd+LZZ5+Niy66qNDHNWzYMHfmg7lz58Y555wTH3zwwTrLLV68OC666KKYN29e3H///XHzzTfHBRdcsN7nbNeuXbRt2zZ+9atfxdNPPx0LFy6MJ598MsaPH79Jc9zQGBo1ahTdunWL7t27x6OPPhoLFy6Mf/3rXzF48OAYN25ckZ///PPPj8GDB8fjjz8e8+bNiwsuuCCWLVuWO6vBj13HxVWuXLm49NJL45JLLsld8uWVV16Jv/zlLyX+WhHfB1D9+/ePCy+8MO65555YsGBBzJgxI26++ea45557IiJi4MCB8fjjj8c777wTb7zxRowdOzYaN24cEd9fimfnnXeOzp07x+TJk2PhwoUxadKk6Nu3b/znP/8p9niKMv9evXrFkCFDIsuyn+SPhYMGDYphw4bFTTfdFPPnz8+tn5JWqVKl6NmzZ1x88cXx7LPP5i7F+sPLGrVv3z5uueWWmDlzZkybNi3OPffcAmda2GWXXaJ8+fIxfvz4+OCDD+Kzzz77SeewPkXZxgpz/vnnx1/+8pe45557Yv78+XH11VfHa6+9VuSz74wdOzZuuummmDVrVrz77rvx17/+NVavXr3Jl4ItKb17945PPvkkunbtGlOnTo0FCxbEhAkT4owzzijyHzQ31753QypXrhw9evSIiy++OJ577rl44403omfPnpGfnx95eXkltm8uqqIezzaHwtbFhlx66aXx0ksvRZ8+fWLWrFkxf/78ePzxx3MhUXHWYalSpWLMmDHRrFmzaN++fbz//vubdc4RER06dIjWrVtHly5d4qmnnopFixbFSy+9FL///e8L/BG9XLly0aNHj5g9e3ZMnjw5+vbtGyeeeGLsuuuuG3zuohxb8vLyom3btjFmzJhc0Na0adNYsWJFTJw4caN/eE9F3759Y/z48TF06NCYP39+3HLLLZvtMxtRvO8yf/7zn+Pvf/97vPXWW9G7d+9YtmxZnHnmmRHx/edt2rRpMWHChHj77bdjwIABxQ6Pi7J99+vXLyZMmBALFy6MGTNmxHPPPZf7/rGp+81GjRrFc889F4888kj069cvunXrlttWX3/99Xjuuefi/PPPj9NOOy13eeT1Kcq22rBhwxg9enTMnTs3Xn311ejWrVtyZ4qN+P4MkmXKlImbb745/v3vf8cTTzwRV111VYFl6tatG3l5eTF27Nj46KOPcmd02pJeffXV+OMf/xjTpk2LxYsXx6OPPhofffRRblv59ttvo2fPnvHmm2/GP//5z7j88sujT58+kZ+fv1m+33/99dfRp0+fmDRpUrz77rsxZcqUmDp1am48W0K9evXi1VdfjUWLFsXHH39cpDPqNWzYMB599NGYNWtWzJ49O0455ZQtehbKwrRv3z5Gjx4dkydPjjlz5kSPHj0KPRPaBRdcEHfffXeMHDky3n777bj88svjjTfeWOd5x40bF+PGjYu33norfvOb38Snn35apDF169Ytxo0bF3ffffcGA7aIiCuuuCIGDx4cN910U7z99tsxZ86cGDlyZAwfPjwiNvz9vjBF+Uz/GKn9/ggAAAAAbDtEbtuJ/Pz8eOCBB2L69Omx3377xYUXXhjXXXddoY/7wx/+EC1atIiOHTvGYYcdFrvuumt06dJlneW6d+8eX3/9dRx44IHRu3fvuOCCC+Lss8/e4PM+8sgjccABB0TXrl1jn332iUsuuWSTz/iwsTGMHDkyunfvHr/97W9j7733ji5duhQ4o05RXHrppdG1a9fo3r17tG7dOipVqhQdO3aMcuXKRcSPX8c/xoABA+K3v/1tDBw4MBo3bhwnnXRSfPjhh5vltSIirrrqqhgwYEAMHjw4GjduHEcddVSMGzcu9txzz4j4/uwBl112WTRt2jTatm0bpUqVigceeCAiIipUqBAvvPBC1KlTJ44//vho3Lhx9OzZM7755psf/S/zC5t/165do3Tp0tG1a9fc+7M59ejRI2644Ya49dZbY999941jjz025s+fv1le67rrrotDDz00OnXqFB06dIhDDjkkWrZsmbt/2LBhUbt27Tj00EPjlFNOif79+xe4HF/p0qXjpptuijvuuCNq1aoVnTt3/snnsD6FbWOF6datW1x22WXRv3//aNGiRSxcuDBOP/30Ir//1apVi0cffTTat28fjRs3jttvvz3uv//+2HfffTdlWiWmVq1aMWXKlFi1alX84he/iCZNmkS/fv2iWrVqBSLHwmyOfe/GDB8+PFq3bh3HHntsdOjQIdq0aRONGzfOvS8lsW8uqqIezzaXwtbF+jRt2jSef/75ePvtt+PQQw+N/fffPwYOHFjgLGzFWYelS5fObdft27ffrMeNiO8js3/+85/Rtm3bOOOMM6JRo0Zx8sknx7vvvlsgCtprr73i+OOPj2OOOSZ+8YtfRNOmTePWW2/d6HMX9djSrl27WLVqVS5yy8/Pj7Zt2+bO6pS6n//85zFixIi48cYbo1mzZvHUU0/FH/7wh832esX5LjNkyJAYMmRINGvWLF588cV44oknYuedd46IiHPOOSeOP/74OOmkk+Kggw6KpUuXFjirW1EVtn2vWrUqevfunTtuNGrUKLftlMR+c++9945nn3027r///hgwYEBMmDAhPvnkkzjggAPi17/+dRxxxBGFnjG2KNvqX/7yl1i2bFm0aNEiTjvttOjbt2/ssssuxV5fm1uNGjVi1KhR8be//S322WefGDJkSAwdOrTAMrvvvntcccUV8bvf/S5q1qyZi3K3pCpVqsQLL7wQxxxzTDRq1Cj+8Ic/xLBhw+Loo4+OiIgjjjgiGjZsGG3bto2TTjop/ud//icGDRoUEZvn+32pUqVi6dKl0b1792jUqFGceOKJcfTRR8cVV1yxqVP90fr37x+lSpWKffbZJ3fJysIMHz48qlevHgcffHB06tQpOnbsuN4zkaXisssui3bt2sWxxx4bv/zlL6NLly7RoEGDjT7mpJNOigEDBsQll1wSLVu2jHfffTd+85vfFFjmzDPPjB49ekT37t2jXbt2Ub9+/SKfGbl9+/ax4447xrx58+KUU07Z4HK9evWKu+66K0aOHBlNmjSJdu3axahRo3Lfkzf0/b4wRflM/1ip/f4IAAAAAGwb8rIsy7b0IGBrtHr16mjcuHGceOKJJfIv3ik5ixYtigYNGsTUqVOT/mMbm9eRRx4Zu+66a4wePXpLD4X/9eWXX8buu+8ew4YNi549e27p4WxR1gUp6dq1a5QqVSruvffeQpddtGhR7LnnnjFz5szcJdtha3X66afHp59+Go899tiWHgoAAAAAAFCI0lt6ALC1ePfdd+Opp56Kdu3axYoVK+KWW26JhQsXbvRf3fPTWrlyZSxdujT+8Ic/xM9//nOB23bkq6++ittvvz06duwYpUqVivvvvz+eeeaZePrpp7f00LZrM2fOjLfeeisOPPDA+Oyzz+LKK6+MiCjyGUa2JdYFKfruu+/i7bffjpdffjnOOeecLT0cAAAAAAAA2CCRGxRRfn5+jBo1Kvr37x9ZlsV+++0XzzzzTDRu3HhLD43/NWXKlDj88MOjUaNG8fDDD2/p4fATWnNZxGuuuSa++eab2HvvveORRx6JDh06bOmhbfeGDh0a8+bNizJlykTLli1j8uTJuUsabm+sC1Lz+uuvx8EHHxyHH354nHvuuVt6OAAAAAAAALBBLlcKAAAAAAAAAABAsvK39AAAAAAAAAAAAABgQ0RuAAAAAAAAAAAAJEvkBgAAAAAAAAAAQLJEbgAAAAAAAAAAACRL5AYAAAAAAAAAAECyRG4AAAk5/fTTo0uXLlt6GAAAAAAAAADJELkBAAAAAAAAAACQLJEbAMBWYvjw4dGkSZOoWLFi1K5dO84777xYvnx57v5Ro0ZFtWrVYsKECdG4ceOoVKlSHHXUUbFkyZLcMt9991307ds3qlWrFjvttFNceuml0aNHjwJnj6tXr17ccMMNBV67efPmMWjQoCKPJSJixIgRUbt27ahQoUIcd9xxMXz48KhWrVqBZR5//PFo0aJFlCtXLurXrx9XXHFFfPfddxERkWVZDBo0KOrUqRNly5aNWrVqRd++fTdtJQIAAAAAAABbHZEbAMBWIj8/P2666aZ444034p577olnn302LrnkkgLLfPXVVzF06NAYPXp0vPDCC7F48eLo379/7v5rr702xowZEyNHjowpU6bE559/Ho899liJj2XKlClx7rnnxgUXXBCzZs2KI488Mq655poCzzF58uTo3r17XHDBBfHmm2/GHXfcEaNGjcot98gjj8T1118fd9xxR8yfPz8ee+yxaNKkSbHHCgAAAAAAAGzd8rIsy7b0IAAA+N7pp58en376aZHCs4cffjjOPffc+PjjjyPi+zO5nXHGGfHOO+9EgwYNIiLi1ltvjSuvvDLef//9iIjYddddo3///rnwbdWqVVG/fv3Yf//9c69Zr1696NevX/Tr1y/3Ws2bN48uXboUOJvbxsZy8sknx/Lly2Ps2LG5ZU499dQYO3ZsfPrppxER0aFDhzjiiCPisssuyy1z7733xiWXXBL//e9/Y/jw4XHHHXfE66+/HjvssEOh6wMAAAAAAADYNjmTGwDAVuKZZ56JI444InbfffeoXLlynHbaabF06dL46quvcstUqFAhF7hFROy2227x4YcfRkTEZ599Fh988EEceOCBuftLlSoVLVu2LPGxzJs3r8DrRMQ6P8+ePTuuvPLKqFSpUu6/s846K5YsWRJfffVVnHDCCfH1119H/fr146yzzoq///3vuUuZAgAAAAAAANsPkRsAwFZg0aJFceyxx0bTpk3jkUceienTp8ef//zniIj49ttvc8utfcazvLy8KO6Je/Pz89d5zMqVK4s9lsIsX748rrjiipg1a1buvzlz5sT8+fOjXLlyUbt27Zg3b17ceuutUb58+TjvvPOibdu2BcYCAAAAAAAAbPtKb+kBAABQuOnTp8fq1atj2LBhkZ///b9TeOihh4r1HFWrVo2aNWvG1KlTo23bthHx/eVKZ8yYEc2bN88tV6NGjViyZEnu588//zwWLlxYrLHsvffeMXXq1AK3rf1zixYtYt68ebHXXnttcMzly5ePTp06RadOnaJ3797xs5/9LObMmRMtWrQo1twBAAAAAACArZfIDQAgMZ999lnMmjWrwG0777xzrFy5Mm6++ebo1KlTTJkyJW6//fZiP/f5558fgwcPjr322it+9rOfxc033xzLli2LvLy83DLt27ePUaNGRadOnaJatWoxcODAKFWqVO7+vfbaq9CxnH/++dG2bdsYPnx4dOrUKZ599tl48sknC7zOwIED49hjj406derEr3/968jPz4/Zs2fH66+/HldffXWMGjUqVq1aFQcddFBUqFAh7r333ihfvnzUrVu32PMGAAAAAAAAtl4uVwoAkJhJkybF/vvvX+C/0aNHx/Dhw+Paa6+N/fbbL8aMGRODBw8u9nNfeuml0bVr1+jevXu0bt06KlWqFB07doxy5crllrnsssuiXbt2ceyxx8Yvf/nL6NKlSzRo0CB3f7NmzQodS5s2beL222+P4cOHR7NmzWL8+PFx4YUXFnidjh07xtixY+Opp56KAw44IH7+85/H9ddfn4vYqlWrFiNGjIg2bdpE06ZN45lnnol//OMfsdNOOxV73gAAAAAAAMDWKy/LsmxLDwIAgC1j9erV0bhx4zjxxBPjqquu2qyvddZZZ8Vbb70VkydP3qyvAwAAAAAAAGxbXK4UAGA78u6778ZTTz0V7dq1ixUrVsQtt9wSCxcujFNOOaXEX2vo0KFx5JFHRsWKFePJJ5+Me+65J2699dYSfx0AAAAAAABg2yZyAwDYjuTn58eoUaOif//+kWVZ7LfffvHMM89E48aNS/y1/vWvf8Wf/vSn+OKLL6J+/fpx0003Ra9evUr8dQAAAAAAAIBtm8uVAgAAAAAAAAAAkKz8LT0AAAAAAAAAAAAA2BCRGwAAAAAAAAAAAMkSuQEAAAAAAAAAAJAskRsAAAAAAAAAAADJErkBAAAAAAAAAACQLJEbAAAAAAAAAAAAyRK5AQAAAAAAAAAAkCyRGwAAAAAAAAAAAMkSuQEAAAAAAAAAAJAskRsAAAAAAAAAAADJErkBAAAAAAAAAACQLJEbAAAAAAAAAAAAyRK5AQAAAAAAAAAAkCyRGwAAAAAAAAAAAMkSuQEAAAAAAAAAAJAskRsAAAAAAAAAAADJErkBAAAAAAAAAACQLJEbAAAAAAAAAAAAyRK5AQAAAAAAAAAAkCyRGwAAAAAAAAAAAMkSuQEAAAAAAAAAAJAskRsAAAAAAAAAAADJErkBAAAAAAAAAACQLJEbAAAAAAAAAAAAyRK5AQAAAAAAAAAAkCyRGwAAAAAAAAAAAMkSuQEAAAAAAAAAAJAskRsAAAAAAAAAAADJErkBAAAAAAAAAACQLJEbAAAAAAAAAAAAyRK5AQAAAAAAAAAAkCyRGwAAAAAAAAAAAMkSuQEAAAAAAAAAAJAskRsAAAAAAAAAAADJErkBAAAAAAAAAACQLJEbAAAAAAAAAAAAyRK5AQAAAAAAAAAAkCyRGwAAAAAAAAAAAMkSuQEAAAAAAAAAAJAskRsAAAAAAAAAAADJErkBAAAAAAAAAACQLJEbAAAAAAAAAAAAyRK5AQAAAAAAAAAAkCyRGwAAAAAAAAAAAMkSuQEAAAAAAAAAAJAskRsAAAAAAAAAAADJErkBAAAAAAAAAACQLJEbAAAAAAAAAAAAyRK5AQAAAAAAAAAAkCyRGwAAAAAAAAAAAMkSuQEAAAAAAAAAAJAskRsAAAAAAAAAAADJErkBAAAAAAAAAACQLJEbAAAAAAAAAAAAyRK5AQAAAAAAAAAAkCyRGwAAAAAAAAAAAMkSuQEAAAAAAAAAAJAskRsAAAAAAAAAAADJErkBAAAAAAAAAACQLJEbAAAAAAAAAAAAyRK5AQAAAAAAAAAAkCyRGwAAAAAAAAAAAMkSuQEAAAAAAAAAAJAskRsAAAAAAAAAAADJErkBAAAAAAAAAACQLJEbAAAAAAAAAAAAyRK5AQAAAAAAAAAAkCyRGwAAAAAAAAAAAMkSuQEAAAAAAAAAAJAskRsAAAAAAAAAAADJErkBAAAAAAAAAACQLJEbAAAAAAAAAAAAyRK5AQAAAAAAAAAAkCyRGwAAAAAAAAAAAMkSuQEAAAAAAAAAAJAskRsAAAAAAAAAAADJErkBAAAAAAAAAACQLJEbAAAAAAAAAAAAyRK5AQAAAAAAAAAAkCyRGwAAAAAAAAAAAMkSuQEAAAAAAAAAAJAskRsAAAAAAAAAAADJErkBAAAAAAAAAACQLJEbAAAAAAAAAAAAyRK5AQAAAAAAAAAAkCyRGwAAAAAAAAAAAMkSuQEAAAAAAAAAAJAskRsAAAAAAAAAAADJErkBAAAAAAAAAACQLJEbAAAAAAAAAAAAyRK5AQAAAAAAAAAAkCyRGwAAAAAAAAAAAMkSuQEAAAAAAAAAAJAskRsAAAAAAAAAAADJErkBAAAAAAAAAACQLJEbAAAAAAAAAAAAyRK5AQAAAAAAAAAAkCyRGwAAAAAAAAAAAMkSuQEAAAAAAAAAAJAskRsAAAAAAAAAAADJErkBAAAAAAAAAACQLJEbAAAAAAAAAAAAyRK5AQAAAAAAAAAAkCyRGwAAAAAAAAAAAMkSuQEAAAAAAAAAAJAskRsAAAAAAAAAAADJErkBAAAAAAAAAACQLJEbAAAAAAAAAAAAyRK5AQAAAAAAAAAAkCyRGwAAAAAAAAAAAMkSuQEAAAAAAAAAAJAskRsAAAAAAAAAAADJErkBAAAAAAAAAACQLJEbAAAAAAAAAAAAyRK5AQAAAAAAAAAAkCyRGwAAAAAAAAAAAMkSuQEAAAAAAAAAAJAskRsAAAAAAAAAAADJErkBAAAAAAAAAACQLJEbAAAAAAAAAAAAyRK5AQAAAAAAAAAAkCyRGwAAAAAAAAAAAMkSuQEAAAAAAAAAAJAskRsAAAAAAAAAAADJErkBAAAAAAAAAACQLJEbAAAAAAAAAAAAyRK5AQAAAAAAAAAAkCyRGwAAAAAAAAAAAMkSuQEAAAAAAAAAAJAskRsAAAAAAAAAAADJErkBAAAAAAAAAACQLJEbAAAAAAAAAAAAyRK5AQAAAAAAAAAAkCyRGwAAAAAAAAAAAMkSuQEAAAAAAAAAAJAskRsAAAAAAAAAAADJErkBAAAAAAAAAACQLJEbAAAAAAAAAAAAyRK5AQAAAAAAAAAAkCyRGwAAAAAAAAAAAMkSuQEAAAAAAAAAAJAskRsAAAAAAAAAAADJErkBAAAAAAAAAACQLJEbAAAAAAAAAAAAyRK5AQAAAAAAAAAAkCyRGwAAAAAAAAAAAMkSuQEAAAAAAAAAAJAskRsAAAAAAAAAAADJErkBAAAAAAAAAACQLJEbAAAAAAAAAAAAyRK5AQAAAAAAAAAAkCyRGwAAAAAAAAAAAMkSuQEAAAAAAAAAAJAskRsAAAAAAAAAAADJErkBAAAAAAAAAACQLJEbAAAAAAAAAAAAyRK5AQAAAAAAAAAAkCyRGwAAAAAAAAAAAMkSuQEAAAAAAAAAAJAskRsAAAAAAAAAAADJErkBAAAAAAAAAACQLJEbAAAAAAAAAAAAyRK5AQAAAAAAAAAAkCyRGwAAAAAAAAAAAMkSuQEAAAAAAAAAAJAskRsAAAAAAAAAAADJErkBAAAAAAAAAACQLJEbAAAAAAAAAAAAyRK5AQAAAAAAAAAAkCyRGwAAAAAAAAAAAMkSuQEAAAAAAAAAAJAskRsAAAAAAAAAAADJErkBAAAAAAAAAACQLJEbAAAAAAAAAAAAyRK5AQAAAAAAAAAAkCyRGwAAAAAAAAAAAMkSuQEAAAAAAAAAAJAskRsAAAAAAAAAAADJErkBAAAAAAAAAACQLJEbAAAAAAAAAAAAyRK5AQAAAAAAAAAAkCyRGwAAAAAAAAAAAMkSuQEAAAAAAAAAAJAskRsAAAAAAAAAAADJErkBAAAAAAAAAACQLJEbAAAAAAAAAAAAyRK5AQAAAAAAAAAAkCyRGwAAAAAAAAAAAMkSuQEAAAAAAAAAAJAskRsAAAAAAAAAAADJErkBAAAAAAAAAACQLJEbAAAAAAAAAAAAyRK5AQAAAAAAAAAAkCyRGwAAAAAAAAAAAMkSuQEAAAAAAAAAAJAskRsAAAAAAAAAAADJErkBAAAAAAAAAACQLJEbAAAAAAAAAAAAyRK5AQAAAAAAAAAAkCyRGwAAAAAAAAAAAMkSuQEAAAAAAAAAAJAskRsAAAAAAAAAAADJErkBAAAAAAAAAACQLJEbAAAAAAAAAAAAyRK5AQAAAAAAAAAAkCyRGwAAAAAAAAAAAMkSuQEAAAAAAAAAAJAskRsAAAAAAAAAAADJErkBAAAAAAAAAACQLJEbAAAAAAAAAAAAyRK5AQAAAAAAAAAAkCyRGwAAAAAAAAAAAMkSuQEAAAAAAAAAAJAskRsAAAAAAAAAAADJErkBAAAAAAAAAACQLJEbAAAAAAAAAAAAyRK5AQAAAAAAAAAAkCyRGwAAAAAAAAAAAMkSuQEAAAAAAAAAAJAskRsAAAAAAAAAAADJErkBAAAAAAAAAACQLJEbAAAAAAAAAAAAyRK5AQAAAAAAAAAAkCyRGwAAAAAAAAAAAMkSuQEAAAAAAAAAAJAskRsAAAAAAAAAAADJErkBAAAAAAAAAACQLJEbAAAAAAAAAAAAyRK5AQAAAAAAAAAAkCyRGwAAAAAAAAAAAMkSuQEAAAAAAAAAAJAskRsAAAAAAAAAAADJErkBAAAAAAAAAACQLJEbAAAAAAAAAAAAyRK5AQAAAAAAAAAAkCyRGwAAAAAAAAAAAMkSuQEAAAAAAAAAAJAskRsAAAAAAAAAAADJErkBAAAAAAAAAACQLJEbAAAAAAAAAAAAyRK5AQAAAAAAAAAAkCyRGwAAAAAAAAAAAMkSuQEAAAAAAAAAAJAskRsAAAAAAAAAAADJErkBAAAAAAAAAACQLJEbAAAAAAAAAAAAyRK5AQAAAAAAAAAAkCyRGwAAAAAAAAAAAMkSuQEAAAAAAAAAAJAskRsAAAAAAAAAAADJErkBAAAAAAAAAACQLJEbAAAAAAAAAAAAyRK5AQAAAAAAAAAAkCyRGwAAAAAAAAAAAMkSuQEAAAAAAAAAAJAskRsAAAAAAAAAAADJErkBAAAAAAAAAACQLJEbAAAAAAAAAAAAyRK5AQAAAAAAAAAAkCyRGwAAAAAAAAAAAMkSuQEAAAAAAAAAAJAskRsAAAAAAAAAAADJErkBAAAAAAAAAACQLJEbAAAAAAAAAAAAyRK5AQAAAAAAAAAAkCyRGwAAAAAAAAAAAMkSuQEAAAAAAAAAAJAskRsAAAAAAAAAAADJErkBAAAAAAAAAACQLJEbAAAAAAAAAAAAyRK5AQAAAAAAAAAAkCyRGwAAAAAAAAAAAMkSuQEAAAAAAAAAAJAskRsAAAAAAAAAAADJErkBAAAAAAAAAACQLJEbAAAAAAAAAAAAyRK5AQAAAAAAAAAAkCyRGwAAAAAAAAAAAMkSuQEAAAAAAAAAAJAskRsAAAAAAAAAAADJErkBAAAAAAAAAACQLJEbAAAAAAAAAAAAyRK5AQAAAAAAAAAAkCyRGwAAAAAAAAAAAMkSuQEAAAAAAAAAAJAskRsAAAAAAAAAAADJErkBAAAAAAAAAACQLJEbAAAAAAAAAAAAyRK5AQAAAAAAAAAAkCyRGwAAAAAAAAAAAMkSuQEAAAAAAAAAAJAskRsAAAAAAAAAAADJErkBAAAAAAAAAACQLJEbAAAAAAAAAAAAyRK5AQAAAAAAAAAAkCyRGwAAAAAAAAAAAMkSuQEAAAAAAAAAAJAskRsAAAAAAAAAAADJErkBAAAAAAAAAACQLJEbAAAAAAAAAAAAyRK5AQAAAAAAAAAAkCyRGwAAAAAAAAAAAMkSuQEAAAAAAAAAAJAskRsAAAAAAAAAAADJErkBAAAAAAAAAACQLJEbAAAAAAAAAAAAyRK5AQAAAAAAAAAAkCyRGwAAAAAAAAAAAMkSuQEAAAAAAAAAAJAskRsAAAAAAAAAAADJErkBAAAAAAAAAACQLJEbAAAAAAAAAAAAyRK5AQAAAAAAAAAAkCyRGwAAAAAAAAAAAMkSuQEAAAAAAAAAAJAskRsAAAAAAAAAAADJErkBAAAAAAAAAACQLJEbAAAAAAAAAAAAyRK5AQAAAAAAAAAAkCyRGwAAAAAAAAAAAMkSuQEAAAAAAAAAAJAskRsAAAAAAAAAAADJErkBAAAAAAAAAACQLJEbAAAAAAAAAAAAyRK5AQAAAAAAAAAAkCyRGwAAAAAAAAAAAMkSuQEAAAAAAAAAAJAskRsAAAAAAAAAAADJErkBAAAAAAAAAACQLJEbAAAAAAAAAAAAyRK5AQAAAAAAAAAAkCyRGwAAAAAAAAAAAMkSuQEAAAAAAAAAAJAskRsAAAAAAAAAAADJErkBAAAAAAAAAACQLJEbAAAAAAAAAAAAyRK5AQAAAAAAAAAAkCyRGwAAAAAAAAAAAMkSuQEAAAAAAAAAAJAskRsAAAAAAAAAAADJErkBAAAAAAAAAACQLJEbAAAAAAAAAAAAyRK5AQAAAAAAAAAAkCyRGwAAAAAAAAAAAMkSuQEAAAAAAAAAAJAskRsAAAAAAAAAAADJErkBAAAAAAAAAACQLJEbAAAAAAAAAAAAyRK5AQAAAAAAAAAAkCyRGwAAAAAAAAAAAMkSuQEAAAAAAAAAAJAskRsAAAAAAAAAAADJErkBAAAAAAAAAACQLJEbAAAAAAAAAAAAyRK5AQAAAAAAAAAAkCyRGwAAAAAAAAAAAMkSuQEAAAAAAAAAAJAskRsAAAAAAAAAAADJErkBAAAAAAAAAACQLJEbAAAAAAAAAAAAyRK5AQAAAAAAAAAAkCyRGwAAAAAAAAAAAMkSuQEAAAAAAAAAAJAskRsAAAAAAAAAAADJErkBAAAAAAAAAACQLJEbAAAAAAAAAAAAyRK5AQAAAAAAAAAAkCyRGwAAAAAAAAAAAMkSuQEAAAAAAAAAAJAskRsAAAAAAAAAAADJErkBAAAAAAAAAACQLJEbAAAAAAAAAAAAyRK5AQAAAAAAAAAAkCyRGwAAAAAAAAAAAMkSuQEAAAAAAAAAAJAskRsAAAAAAAAAAADJErkBAAAAAAAAAACQLJEbAAAAAAAAAAAAyRK5AQAAAAAAAAAAkCyRGwAAAAAAAAAAAMkSuQEAAAAAAAAAAJAskRsAAAAAAAAAAADJErkBAAAAAAAAAACQLJEbAAAAAAAAAAAAyRK5AQAAAAAAAAAAkCyRGwAAAAAAAAAAAMkSuQEAAAAAAAAAAJAskRsAAAAAAAAAAADJErkBAAAAAAAAAACQLJEbAAAAAAAAAAAAyRK5AQAAAAAAAAAAkCyRGwAAAAAAAAAAAMkSuQEAAAAAAAAAAJAskRsAAAAAAAAAAADJErkBAAAAAAAAAACQLJEbAAAAAAAAAAAAyRK5AQAAAAAAAAAAkCyRGwAAAAAAAAAAAMkSuQEAAAAAAAAAAJAskRsAAAAAAAAAAADJErkBAAAAAAAAAACQLJEbAAAAAAAAAAAAyRK5AQAAAAAAAAAAkCyRGwAAAAAAAAAAAMkSuQEAAAAAAAAAAJAskRsAAAAAAAAAAADJErkBAAAAAAAAAACQLJEbAAAAAAAAAAAAyRK5AQAAAAAAAAAAkCyRGwAAAAAAAAAAAMkSuQEAAAAAAAAAAJAskRsAAAAAAAAAAADJErkBAAAAAAAAAACQLJEbAAAAAAAAAAAAyRK5AQAAAAAAAAAAkCyRGwAAAAAAAAAAAMkSuQEAAAAAAAAAAJAskRsAAAAAAAAAAADJErkBAAAAAAAAAACQLJEbAAAAAAAAAAAAyRK5AQAAAAAAAAAAkCyRGwAAAAAAAAAAAMkSuQEAAAAAAAAAAJAskRsAAAAAAAAAAADJErkBAAAAAAAAAACQLJEbAAAAAAAAAAAAyRK5AQAAAAAAAAAAkCyRGwAAAAAAAAAAAMkSuQEAAAAAAAAAAJAskRsAAAAAAAAAAADJErkBAAAAAAAAAACQLJEbAAAAAAAAAAAAyRK5AQAAAAAAAAAAkCyRGwAAAAAAAAAAAMkSuQEAAAAAAAAAAJAskRsAAAAAAAAAAADJErkBAAAAAAAAAACQLJEbAAAAAAAAAAAAyRK5AQAAAAAAAAAAkCyRGwAAAAAAAAAAAMkSuQEAAAAAAAAAAJAskRsAAAAAAAAAAADJErkBAAAAAAAAAACQLJEbAAAAAAAAAAAAyRK5AQAAAAAAAAAAkCyRGwAAAAAAAAAAAMkSuQEAAAAAAAAAAJAskRsAAAAAAAAAAADJErkBAAAAAAAAAACQLJEbAAAAAAAAAAAAyRK5AQAAAAAAAAAAkCyRGwAAAAAAAAAAAMkSuQEAAAAAAAAAAJAskRsAAAAAAAAAAADJErkBAAAAAAAAAACQLJEbAAAAAAAAAAAAyRK5AQAAAAAAAAAAkCyRGwAAAAAAAAAAAMkSuQEAAAAAAAAAAJAskRsAAAAAAAAAAADJErkBAAAAAAAAAACQLJEbAAAAAAAAAAAAyRK5AQAAAAAAAAAAkCyRGwAAAAAAAAAAAMkSuQEAAAAAAAAAAJAskRsAAAAAAAAAAADJErkBAAAAAAAAAACQLJEbAAAAAAAAAAAAyRK5AQAAAAAAAAAAkCyRGwAAAAAAAAAAAMkSuQEAAAAAAAAAAJAskRsAAAAAAAAAAADJErkBAAAAAAAAAACQLJEbAAAAAAAAAAAAyRK5AQAAAAAAAAAAkCyRGwAAAAAAAAAAAMkSuQEAAAAAAAAAAJAskRsAAAAAAAAAAADJErkBAAAAAAAAAACQLJEbAAAAAAAAAAAAyRK5AQAAAAAAAAAAkCyRGwAAAAAAAAAAAMkSuQEAAAAAAAAAAJAskRsAAAAAAAAAAADJErkBAAAAAAAAAACQLJEbAAAAAAAAAAAAyRK5AQAAAAAAAAAAkCyRGwAAAAAAAAAAAMkSuQEAAAAAAAAAAJAskRsAAAAAAAAAAADJErkBAAAAAAAAAACQLJEbAAAAAAAAAAAAyRK5AQAAAAAAAAAAkCyRGwAAAAAAAAAAAMkSuQEAAAAAAAAAAJAskRsAAAAAAAAAAADJErkBAAAAAAAAAACQLJEbAAAAAAAAAAAAyRK5AQAAAAAAAAAAkCyRGwAAAAAAAAAAAMkSuQEAAAAAAAAAAJAskRsAAAAAAAAAAADJErkBAAAAAAAAAACQLJEbAAAAAAAAAAAAyRK5AQAAAAAAAAAAkCyRGwAAAAAAAAAAAMkSuQEAAAAAAAAAAJAskRsAAAAAAAAAAADJErkBAAAAAAAAAACQLJEbAAAAAAAAAAAAyRK5AQAAAAAAAAAAkCyRGwAAAAAAAAAAAMkSuQEAAAAAAAAAAJAskRsAAAAAAAAAAADJErkBAAAAAAAAAACQLJEbAAAAAAAAAAAAyRK5AQAAAAAAAAAAkCyRGwAAAAAAAAAAAMkSuQEAAAAAAAAAAJAskRsAAAAAAAAAAADJErkBAAAAAAAAAACQLJEbAAAAAAAAAAAAyRK5AQAAAAAAAAAAkCyRGwAAAAAAAAAAAMkSuQEAAAAAAAAAAJAskRsAAAAAAAAAAADJErkBAAAAAAAAAACQLJEbAAAAAAAAAAAAyRK5AQAAAAAAAAAAkCyRGwAAAAAAAAAAAMkSuQEAAAAAAAAAAJAskRsAAAAAAAAAAADJErkBAAAAAAAAAACQLJEbAAAAAAAAAAAAyRK5AQAAAAAAAAAAkCyRGwAAAAAAAAAAAMkSuQEAAAAAAAAAAJAskRsA/D/27je27rrs4/i1DtZBsAWcO4NZ7vknigTYcECdyAOTyhLNkj0wmWAYWQADQYI0RpjAJqIU/0BmwnARIfqEMCVCjCxD0kiMocni5hJJGAQBtxDbbRJaHNpp2/uBuXtTtwFC/3zGeb2S86Df/H491yE5ZLny7jkAAAAAAAAAQCyRGwAAAAAAAAAAALFEbgAAAAAAAAAAAMQSuQEAAAAAAAAAABBL5AYAAAAAAAAAAEAskRsAAAAAAAAAAACxRG4AAAAAAAAAAADEErkBAAAAAAAAAAAQS+QGAAAAAAAAAABALJEbAAAAAAAAAAAAsURuAAAAAAAAAAAAxBK5AQAAAAAAAAAAEEvkBgAAAAAAAAAAQCyRGwAAAAAAAAAAALFEbgAAAAAAAAAAAMQSuQEAAAAAAAAAABBL5AYAAAAAAAAAAEAskRsAAAAAAAAAAACxRG4AAAAAAAAAAADEErkBAAAAAAAAAAAQS+QGAAAAAAAAAABALJEbAAAAAAAAAAAAsURuAAAAAAAAAAAAxBK5AQAAAAAAAAAAEEvkBgAAAAAAAAAAQCyRGwAAAAAAAAAAALFEbgAAAAAAAAAAAMQSuQEAAAAAAAAAABBL5AYAAAAAAAAAAEAskRsAAAAAAAAAAACxRG4AAAAAAAAAAADEErkBAAAAAAAAAAAQS+QGAAAAAAAAAABALJEbAAAAAAAAAAAAsURuAAAAAAAAAAAAxBK5AQAAAAAAAAAAEEvkBgAAAAAAAAAAQCyRGwAAAAAAAAAAALFEbgAAAAAAAAAAAMQSuQEAAAAAAAAAABBL5AYAAAAAAAAAAEAskRsAAAAAAAAAAACxRG4AAAAAAAAAAADEErkBAAAAAAAAAAAQS+QGAAAAAAAAAABALJEbAAAAAAAAAAAAsURuAAAAAAAAAAAAxBK5AQAAAAAAAAAAEEvkBgAAAAAAAAAAQCyRGwAAAAAAAAAAALFEbgAAAAAAAAAAAMQSuQEAAAAAAAAAABBL5AYAAAAAAAAAAEAskRsAAAAAAAAAAACxRG4AAAAAAAAAAADEErkBAAAAAAAAAAAQS+QGAAAAAAAAAABALJEbAAAAAAAAAAAAsURuAAAAAAAAAAAAxBK5AQAAAAAAAAAAEEvkBgAAAAAAAAAAQCyRGwAAAAAAAAAAALFEbgAAAAAAAAAAAMQSuQEAAAAAAAAAABBL5AYAAAAAAAAAAEAskRsAAAAAAAAAAACxRG4AAAAAAAAAAADEErkBAAAAAAAAAAAQS+QGAAAAAAAAAABALJEbAAAAAAAAAAAAsURuAAAAAAAAAAAAxBK5AQAAAAAAAAAAEEvkBgAAAAAAAAAAQCyRGwAAAAAAAAAAALFEbgAAAAAAAAAAAMQSuQEAAAAAAAAAABBL5AYAAAAAAAAAAEAskRsAAAAAAAAAAACxRG4AAAAAAAAAAADEErkBAAAAAAAAAAAQS+QGAAAAAAAAAABALJEbAAAAAAAAAAAAsURuAAAAAAAAAAAAxBK5AQAAAAAAAAAAEEvkBgAAAAAAAAAAQCyRGwAAAAAAAAAAALFEbgAAAAAAAAAAAMQSuQEAAAAAAAAAABBL5AYAAAAAAAAAAEAskRsAAAAAAAAAAACxRG4AAAAAAAAAAADEErkBAAAAAAAAAAAQS+QGAAAAAAAAAABALJEbAAAAAAAAAAAAsURuAAAAAAAAAAAAxBK5AQAAAAAAAAAAEEvkBgAAAAAAAAAAQCyRGwAAAAAAAAAAALFEbgAAAAAAAAAAAMQSuQEAAAAAAAAAABBL5AYAAAAAAAAAAEAskRsAAAAAAAAAAACxRG4AAAAAAAAAAADEErkBAAAAAAAAAAAQS+QGAAAAAAAAAABALJEbAAAAAAAAAAAAsURuAAAAAAAAAAAAxBK5AQAAAAAAAAAAEEvkBgAAAAAAAAAAQCyRGwAAAAAAAAAAALFEbgAAAAAAAAAAAMQSuQEAAAAAAAAAABBL5AYAAAAAAAAAAEAskRsAAAAAAAAAAACxRG4AAAAAAAAAAADEErkBAAAAAAAAAAAQS+QGAAAAAAAAAABALJEbAAAAAAAAAAAAsURuAAAAAAAAAAAAxBK5AQAAAAAAAAAAEEvkBgAAAAAAAAAAQCyRGwAAAAAAAAAAALFEbgAAAAAAAAAAAMQSuQEAAAAAAAAAABBL5AYAAAAAAAAAAEAskRsAAAAAAAAAAACxRG4AAAAAAAAAAADEErkBAAAAAAAAAAAQS+QGAAAAAAAAAABALJEbAAAAAAAAAAAAsURuAAAAAAAAAAAAxBK5AQAAAAAAAAAAEEvkBgAAAAAAAAAAQCyRGwAAAAAAAAAAALFEbgAAAAAAAAAAAMQSuQEAAAAAAAAAABBL5AYAAAAAAAAAAEAskRsAAAAAAAAAAACxRG4AAAAAAAAAAADEErkBAAAAAAAAAAAQS+QGAAAAAAAAAABALJEbAAAAAAAAAAAAsURuAAAAAAAAAAAAxBK5AQAAAAAAAAAAEEvkBgAAAAAAAAAAQCyRGwAAAAAAAAAAALFEbgAAAAAAAAAAAMQSuQEAAAAAAAAAABBL5AYAAAAAAAAAAEAskRsAAAAAAAAAAACxRG4AAAAAAAAAAADEErkBAAAAAAAAAAAQS+QGAAAAAAAAAABALJEbAAAAAAAAAAAAsURuAAAAAAAAAAAAxBK5AQAAAAAAAAAAEEvkBgAAAAAAAAAAQCyRGwAAAAAAAAAAALFEbgAAAAAAAAAAAMQSuQEAAAAAAAAAABBL5AYAAAAAAAAAAEAskRsAAAAAAAAAAACxRG4AAAAAAAAAAADEErkBAAAAAAAAAAAQS+QGAAAAAAAAAABALJEbAAAAAAAAAAAAsURuAAAAAAAAAAAAxBK5AQAAAAAAAAAAEEvkBgAAAAAAAAAAQCyRGwAAAAAAAAAAALFEbgAAAAAAAAAAAMQSuQEAAAAAAAAAABBL5AYAAAAAAAAAAEAskRsAAAAAAAAAAACxRG4AAAAAAAAAAADEErkBAAAAAAAAAAAQS+QGAAAAAAAAAABALJEbAAAAAAAAAAAAsURuAAAAAAAAAAAAxBK5AQAAAAAAAAAAEEvkBgAAAAAAAAAAQCyRGwAAAAAAAAAAALFEbgAAAAAAAAAAAMQSuQEAAAAAAAAAABBL5AYAAAAAAAAAAEAskRsAAAAAAAAAAACxRG4AAAAAAAAAAADEErkBAAAAAAAAAAAQS+QGAAAAAAAAAABALJEbAAAAAAAAAAAAsURuAAAAAAAAAAAAxBK5AQAAAAAAAAAAEEvkBgAAAAAAAAAAQCyRGwAAAAAAAAAAALFEbgAAAAAAAAAAAMQSuQEAAAAAAAAAABBL5AYAAAAAAAAAAEAskRsAAAAAAAAAAACxRG4AAAAAAAAAAADEErkBAAAAAAAAAAAQS+QGAAAAAAAAAABALJEbAAAAAAAAAAAAsURuAAAAAAAAAAAAxBK5AQAAAAAAAAAAEEvkBgAAAAAAAAAAQCyRGwAAAAAAAAAAALFEbgAAAAAAAAAAAMQSuQEAAAAAAAAAABBL5AYAAAAAAAAAAEAskRsAAAAAAAAAAACxRG4AAAAAAAAAAADEErkBAAAAAAAAAAAQS+QGAAAAAAAAAABALJEbAAAAAAAAAAAAsURuAAAAAAAAAAAAxBK5AQAAAAAAAAAAEEvkBgAAAAAAAAAAQCyRGwAAAAAAAAAAALFEbgAAAAAAAAAAAMQSuQEAAAAAAAAAABBL5AYAAAAAAAAAAEAskRsAAAAAAAAAAACxRG4AAAAAAAAAAADEErkBAAAAAAAAAAAQS+QGAAAAAAAAAABALJEbAAAAAAAAAAAAsURuAAAAAAAAAAAAxBK5AQAAAAAAAAAAEEvkBgAAAAAAAAAAQCyRGwAAAAAAAAAAALFEbgAAAAAAAAAAAMQSuQEAAAAAAAAAABBL5AYAAAAAAAAAAEAskRsAAAAAAAAAAACxRG4AAAAAAAAAAADEErkBAAAAAAAAAAAQS+QGAAAAAAAAAABALJEbAAAAAAAAAAAAsURuAAAAAAAAAAAAxBK5AQAAAAAAAAAAEEvkBgAAAAAAAAAAQCyRGwAAAAAAAAAAALFEbgAAAAAAAAAAAMQSuQEAAAAAAAAAABBL5AYAAAAAAAAAAEAskRsAAAAAAAAAAACxRG4AAAAAAAAAAADEErkBAAAAAAAAAAAQS+QGAAAAAAAAAABALJEbAAAAAAAAAAAAsURuAAAAAAAAAAAAxBK5AQAAAAAAAAAAEEvkBgAAAAAAAAAAQCyRGwAAAAAAAAAAALFEbgAAAAAAAAAAAMQSuQEAAAAAAAAAABBL5AYAAAAAAAAAAEAskRsAAAAAAAAAAACxRG4AAAAAAAAAAADEErkBAAAAAAAAAAAQS+QGAAAAAAAAAABALJEbAAAAAAAAAAAAsURuAAAAAAAAAAAAxBK5AQAAAAAAAAAAEEvkBgAAAAAAAAAAQCyRGwAAAAAAAAAAALFEbgAAAAAAAAAAAMQSuQEAAAAAAAAAABBL5AYAAAAAAAAAAEAskRsAAAAAAAAAAACxRG4AAAAAAAAAAADEErkBAAAAAAAAAAAQS+QGAAAAAAAAAABALJEbAAAAAAAAAAAAsURuAAAAAAAAAAAAxBK5AQAAAAAAAAAAEEvkBgAAAAAAAAAAQCyRGwAAAAAAAAAAALFEbgAAAAAAAAAAAMQSuQEAAAAAAAAAABBL5AYAAAAAAAAAAEAskRsAAAAAAAAAAACxRG4AAAAAAAAAAADEErkBAAAAAAAAAAAQS+QGAAAAAAAAAABALJEbAAAAAAAAAAAAsURuAAAAAAAAAAAAxBK5AQAAAAAAAAAAEEvkBgAAAAAAAAAAQCyRGwAAAAAAAAAAALFEbgAAAAAAAAAAAMQSuQEAAAAAAAAAABBL5AYAAAAAAAAAAEAskRsAAAAAAAAAAACxRG4AAAAAAAAAAADEErkBAAAAAAAAAAAQS+QGAAAAAAAAAABALJEbAAAAAAAAAAAAsURuAAAAAAAAAAAAxBK5AQAAAAAAAAAAEEvkBgAAAAAAAAAAQCyRGwAAAAAAAAAAALFEbgAAAAAAAAAAAMQSuQEAAAAAAAAAABBL5AYAAAAAAAAAAEAskRsAAAAAAAAAAACxRG4AAAAAAAAAAADEErkBAAAAAAAAAAAQS+QGAAAAAAAAAABALJEbAAAAAAAAAAAAsURuAAAAAAAAAAAAxBK5AQAAAAAAAAAAEEvkBgAAAAAAAAAAQCyRGwAAAAAAAAAAALFEbgAAAAAAAAAAAMQSuQEAAAAAAAAAABBL5AYAAAAAAAAAAEAskRsAAAAAAAAAAACxRG4AAAAAAAAAAADEErkBAAAAAAAAAAAQS+QGAAAAAAAAAABALJEbAAAAAAAAAAAAsURuAAAAAAAAAAAAxBK5AQAAAAAAAAAAEEvkBgAAAAAAAAAAQCyRGwAAAAAAAAAAALFEbgAAAAAAAAAAAMQSuQEAAAAAAAAAABBL5AYAAAAAAAAAAEAskRsAAAAAAAAAAACxRG4AAAAAAAAAAADEErkBAAAAAAAAAAAQS+QGAAAAAAAAAABALJEbAAAAAAAAAAAAsURuAAAAAAAAAAAAxBK5AQAAAAAAAAAAEEvkBgAAAAAAAAAAQCyRGwAAAAAAAAAAALFEbgAAAAAAAAAAAMQSuQEAAAAAAAAAABBL5AYAAAAAAAAAAEAskRsAAAAAAAAAAACxRG4AAAAAAAAAAADEErkBAAAAAAAAAAAQS+QGAAAAAAAAAABALJEbAAAAAAAAAAAAsURuAAAAAAAAAAAAxBK5AQAAAAAAAAAAEEvkBgAAAAAAAAAAQCyRGwAAAAAAAAAAALFEbgAAAAAAAAAAAMQSuQEAAAAAAAAAABBL5AYAAAAAAAAAAEAskRsAAAAAAAAAAACxRG4AAAAAAAAAAADEErkBAAAAAAAAAAAQS+QGAAAAAAAAAABALJEbAAAAAAAAAAAAsURuAAAAAAAAAAAAxBK5AQAAAAAAAAAAEEvkBgAAAAAAAAAAQCyRGwAAAAAAAAAAALFEbgAAAAAAAAAAAMQSuQEAAAAAAAAAABBL5AYAAAAAAAAAAEAskRsAAAAAAAAAAACxoiK33/72t7VixYo69dRTa9asWfXII4+86T1PPPFEffzjH6/W1tb68Ic/XD/5yU+mfE4AAAAAmG52ZwAAAAA0q6jI7cCBA7V48eLauHHjW7r+hRdeqM997nP16U9/unbu3Flf+cpX6oorrqjHHntsiicFAAAAgOlldwYAAABAs5o1NjY2NtNDHM6sWbPq4YcfrpUrVx7xmhtuuKEeffTReuqpp8bPvvCFL9Qrr7xSW7dunYYpAQAAAGD62Z0BAAAA0EyiPsntv9XX11ddXV0TzpYvX159fX0zNBEAAAAAZLA7AwAAAODd4piZHuCd6O/vr0ajMeGs0WjU0NBQ/f3vf6/jjjvusPcNDw/X8PDw+M+jo6P18ssv13vf+96aNWvWlM4MAAAAwNFvbGysXn311Tr11FOrpSXz70jfzu7M3gwAAACAd2oqdmdHdeT2dvX09NStt94602MAAAAAcJTbs2dPvf/975/pMSaNvRkAAAAAk2Uyd2dHdeS2YMGCGhgYmHA2MDBQbW1tR/wUt6qqtWvXVnd39/jPg4ODddppp9WePXuqra1tyuYFAAAA4N1haGioOjo66j3vec9Mj3JEb2d3Zm8GAAAAwDs1FbuzozpyW7ZsWW3ZsmXC2eOPP17Lli17w/taW1urtbX1kPO2tjbLOgAAAADesuSv8Hw7uzN7MwAAAAAmy2TuzibnS08nyd/+9rfauXNn7dy5s6qqXnjhhdq5c2ft3r27qv79l6SrV68ev/6qq66q559/vr72ta/Vrl276p577qmf/exndf3118/E+AAAAAAwZezOAAAAAGhWUZHb73//+zrnnHPqnHPOqaqq7u7uOuecc2rdunVVVfWXv/xlfGlXVfWBD3ygHn300Xr88cdr8eLFdeedd9aPf/zjWr58+YzMDwAAAABTxe4MAAAAgGY1a2xsbGymh5hpQ0ND1d7eXoODg752AQAAAIA31Sz7pGZ5nQAAAABMnqnYKUV9khsAAAAAAAAAAAC8nsgNAAAAAAAAAACAWCI3AAAAAAAAAAAAYoncAAAAAAAAAAAAiCVyAwAAAAAAAAAAIJbIDQAAAAAAAAAAgFgiNwAAAAAAAAAAAGKJ3AAAAAAAAAAAAIglcgMAAAAAAAAAACCWyA0AAAAAAAAAAIBYIjcAAAAAAAAAAABiidwAAAAAAAAAAACIJXIDAAAAAAAAAAAglsgNAAAAAAAAAACAWCI3AAAAAAAAAAAAYoncAAAAAAAAAAAAiCVyAwAAAAAAAAAAIJbIDQAAAAAAAAAAgFgiNwAAAAAAAAAAAGKJ3AAAAAAAAAAAAIglcgMAAAAAAAAAACCWyA0AAAAAAAAAAIBYIjcAAAAAAAAAAABiidwAAAAAAAAAAACIJXIDAAAAAAAAAAAglsgNAAAAAAAAAACAWCI3AAAAAAAAAAAAYoncAAAAAAAAAAAAiCVyAwAAAAAAAAAAIJbIDQAAAAAAAAAAgFgiNwAAAAAAAAAAAGKJ3AAAAAAAAAAAAIglcgMAAAAAAAAAACCWyA0AAAAAAAAAAIBYIjcAAAAAAAAAAABiidwAAAAAAAAAAACIJXIDAAAAAAAAAAAglsgNAAAAAAAAAACAWCI3AAAAAAAAAAAAYoncAAAAAAAAAAAAiCVyAwAAAAAAAAAAIJbIDQAAAAAAAAAAgFgiNwAAAAAAAAAAAGKJ3AAAAAAAAAAAAIglcgMAAAAAAAAAACCWyA0AAAAAAAAAAIBYIjcAAAAAAAAAAABiidwAAAAAAAAAAACIJXIDAAAAAAAAAAAglsgNAAAAAAAAAACAWCI3AAAAAAAAAAAAYoncAAAAAAAAAAAAiCVyAwAAAAAAAAAAIJbIDQAAAAAAAAAAgFgiNwAAAAAAAAAAAGKJ3AAAAAAAAAAAAIglcgMAAAAAAAAAACCWyA0AAAAAAAAAAIBYIjcAAAAAAAAAAABiidwAAAAAAAAAAACIJXIDAAAAAAAAAAAglsgNAAAAAAAAAACAWCI3AAAAAAAAAAAAYoncAAAAAAAAAAAAiCVyAwAAAAAAAAAAIJbIDQAAAAAAAAAAgFgiNwAAAAAAAAAAAGJFRm4bN26sRYsW1dy5c6uzs7O2bdv2htdv2LChPvrRj9Zxxx1XHR0ddf3119c//vGPaZoWAAAAAKaHvRkAAAAAzSguctu8eXN1d3fX+vXra8eOHbV48eJavnx57d2797DXP/DAA3XjjTfW+vXr6+mnn6777ruvNm/eXF//+teneXIAAAAAmDr2ZgAAAAA0q7jI7a677qorr7yy1qxZU2eccUZt2rSpjj/++Lr//vsPe/2TTz5ZF1xwQV1yySW1aNGiuuiii+riiy9+079iBQAAAICjib0ZAAAAAM0qKnI7ePBgbd++vbq6usbPWlpaqqurq/r6+g57zyc/+cnavn37+HLu+eefry1bttRnP/vZIz7P8PBwDQ0NTXgAAAAAQCp7MwAAAACa2TEzPcDr7d+/v0ZGRqrRaEw4bzQatWvXrsPec8kll9T+/fvrU5/6VI2NjdW//vWvuuqqq97waxd6enrq1ltvndTZAQAAAGCq2JsBAAAA0MyiPsnt7XjiiSfq9ttvr3vuuad27NhRv/jFL+rRRx+t22677Yj3rF27tgYHB8cfe/bsmcaJAQAAAGDq2ZsBAAAA8G4R9Ulu8+bNq9mzZ9fAwMCE84GBgVqwYMFh77nlllvq0ksvrSuuuKKqqs4666w6cOBAfelLX6qbbrqpWloO7fhaW1urtbV18l8AAAAAAEwBezMAAAAAmlnUJ7nNmTOnli5dWr29veNno6Oj1dvbW8uWLTvsPa+99tohC7nZs2dXVdXY2NjUDQsAAAAA08TeDAAAAIBmFvVJblVV3d3dddlll9W5555b559/fm3YsKEOHDhQa9asqaqq1atX18KFC6unp6eqqlasWFF33XVXnXPOOdXZ2VnPPfdc3XLLLbVixYrxpR0AAAAAHO3szQAAAABoVnGR26pVq2rfvn21bt266u/vryVLltTWrVur0WhUVdXu3bsn/AXqzTffXLNmzaqbb765XnrppXrf+95XK1asqG9/+9sz9RIAAAAAYNLZmwEAAADQrGaN+W6CGhoaqvb29hocHKy2traZHgcAAACAcM2yT2qW1wkAAADA5JmKnVLLm18CAAAAAAAAAAAAM0PkBgAAAAAAAAAAQCyRGwAAAAAAAAAAALFEbgAAAAAAAAAAAMQSuQEAAAAAAAAAABBL5AYAAAAAAAAAAEAskRsAAAAAAAAAAACxRG4AAAAAAAAAAADEErkBAAAAAAAAAAAQS+QGAAAAAAAAAABALJEbAAAAAAAAAAAAsURuAAAAAAAAAAAAxBK5AQAAAAAAAAAAEEvkBgAAAAAAAAAAQCyRGwAAAAAAAAAAALFEbgAAAAAAAAAAAMQSuQEAAAAAAAAAABBL5AYAAAAAAAAAAEAskRsAAAAAAAAAAACxRG4AAAAAAAAAAADEErkBAAAAAAAAAAAQS+QGAAAAAAAAAABALJEbAAAAAAAAAAAAsURuAAAAAAAAAAAAxBK5AQAAAAAAAAAAEEvkBgAAAAAAAAAAQCyRGwAAAAAAAAAAALFEbgAAAAAAAAAAAMQSuQEAAAAAAAAAABBL5AYAAAAAAAAAAEAskRsAAAAAAAAAAACxRG4AAAAAAAAAAADEErkBAAAAAAAAAAAQS+QGAAAAAAAAAABALJEbAAAAAAAAAAAAsURuAAAAAAAAAAAAxBK5AQAAAAAAAAAAEEvkBgAAAAAAAAAAQCyRGwAAAAAAAAAAALFEbgAAAAAAAAAAAMQSuQEAAAAAAAAAABBL5AYAAAAAAAAAAEAskRsAAAAAAAAAAACxRG4AAAAAAAAAAADEErkBAAAAAAAAAAAQS+QGAAAAAAAAAABALJEbAAAAAAAAAAAAsURuAAAAAAAAAAAAxBK5AQAAAAAAAAAAEEvkBgAAAAAAAAAAQCyRGwAAAAAAAAAAALFEbgAAAAAAAAAAAMQSuQEAAAAAAAAAABBL5AYAAAAAAAAAAEAskRsAAAAAAAAAAACxRG4AAAAAAAAAAADEErkBAAAAAAAAAAAQS+QGAAAAAAAAAABALJEbAAAAAAAAAAAAsURuAAAAAAAAAAAAxBK5AQAAAAAAAAAAEEvkBgAAAAAAAAAAQCyRGwAAAAAAAAAAALFEbgAAAAAAAAAAAMQSuQEAAAAAAAAAABBL5AYAAAAAAAAAAEAskRsAAAAAAAAAAACxIiO3jRs31qJFi2ru3LnV2dlZ27Zte8PrX3nllbrmmmvqlFNOqdbW1vrIRz5SW7ZsmaZpAQAAAGB62JsBAAAA0IyOmekB/tPmzZuru7u7Nm3aVJ2dnbVhw4Zavnx5PfPMMzV//vxDrj948GB95jOfqfnz59dDDz1UCxcurD//+c914oknTv/wAAAAADBF7M0AAAAAaFazxsbGxmZ6iNfr7Oys8847r+6+++6qqhodHa2Ojo669tpr68Ybbzzk+k2bNtX3vve92rVrVx177LFv6zmHhoaqvb29BgcHq62t7R3NDwAAAMC730zsk+zNAAAAADgaTMVOKerrSg8ePFjbt2+vrq6u8bOWlpbq6uqqvr6+w97zy1/+spYtW1bXXHNNNRqNOvPMM+v222+vkZGRIz7P8PBwDQ0NTXgAAAAAQCp7MwAAAACaWVTktn///hoZGalGozHhvNFoVH9//2Hvef755+uhhx6qkZGR2rJlS91yyy1155131re+9a0jPk9PT0+1t7ePPzo6Oib1dQAAAADAZLI3AwAAAKCZRUVub8fo6GjNnz+/fvSjH9XSpUtr1apVddNNN9WmTZuOeM/atWtrcHBw/LFnz55pnBgAAAAApp69GQAAAADvFsfM9ACvN2/evJo9e3YNDAxMOB8YGKgFCxYc9p5TTjmljj322Jo9e/b42cc+9rHq7++vgwcP1pw5cw65p7W1tVpbWyd3eAAAAACYIvZmAAAAADSzqE9ymzNnTi1durR6e3vHz0ZHR6u3t7eWLVt22HsuuOCCeu6552p0dHT87Nlnn61TTjnlsIs6AAAAADja2JsBAAAA0MyiIreqqu7u7rr33nvrpz/9aT399NN19dVX14EDB2rNmjVVVbV69epau3bt+PVXX311vfzyy3XdddfVs88+W48++mjdfvvtdc0118zUSwAAAACASWdvBgAAAECzivq60qqqVatW1b59+2rdunXV399fS5Ysqa1bt1aj0aiqqt27d1dLy/+3eR0dHfXYY4/V9ddfX2effXYtXLiwrrvuurrhhhtm6iUAAAAAwKSzNwMAAACgWc0aGxsbm+khZtrQ0FC1t7fX4OBgtbW1zfQ4AAAAAIRrln1Ss7xOAAAAACbPVOyU4r6uFAAAAAAAAAAAAP6PyA0AAAAAAAAAAIBYIjcAAAAAAAAAAABiidwAAAAAAAAAAACIJXIDAAAAAAAAAAAglsgNAAAAAAAAAACAWCI3AAAAAAAAAAAAYoncAAAAAAAAAAAAiCVyAwAAAAAAAAAAIJbIDQAAAAAAAAAAgFgiNwAAAAAAAAAAAGKJ3AAAAAAAAAAAAIglcgMAAAAAAAAAACCWyA0AAAAAAAAAAIBYIjcAAAAAAAAAAABiidwAAAAAAAAAAACIJXIDAAAAAAAAAAAglsgNAAAAAAAAAACAWCI3AAAAAAAAAAAAYoncAAAAAAAAAAAAiCVyAwAAAAAAAAAAIJbIDQAAAAAAAAAAgFgiNwAAAAAAAAAAAGKJ3AAAAAAAAAAAAIglcgMAAAAAAAAAACCWyA0AAAAAAAAAAIBYIjcAAAAAAAAAAABiidwAAAAAAAAAAACIJXIDAAAAAAAAAAAglsgNAAAAAAAAAACAWCI3AAAAAAAAAAAAYoncAAAAAAAAAAAAiCVyAwAAAAAAAAAAIJbIDQAAAAAAAAAAgFgiNwAAAAAAAAAAAGKJ3AAAAAAAAAAAAIglcgMAAAAAAAAAACCWyA0AAAAAAAAAAIBYIjcAAAAAAAAAAABiidwAAAAAAAAAAACIJXIDAAAAAAAAAAAglsgNAAAAAAAAAACAWCI3AAAAAAAAAAAAYoncAAAAAAAAAAAAiCVyAwAAAAAAAAAAIJbIDQAAAAAAAAAAgFgiNwAAAAAAAAAAAGKJ3AAAAAAAAAAAAIglcgMAAAAAAAAAACCWyA0AAAAAAAAAAIBYIjcAAAAAAAAAAABiidwAAAAAAAAAAACIJXIDAAAAAAAAAAAglsgNAAAAAAAAAACAWCI3AAAAAAAAAAAAYoncAAAAAAAAAAAAiCVyAwAAAAAAAAAAIJbIDQAAAAAAAAAAgFgiNwAAAAAAAAAAAGKJ3AAAAAAAAAAAAIglcgMAAAAAAAAAACCWyA0AAAAAAAAAAIBYIjcAAAAAAAAAAABiidwAAAAAAAAAAACIJXIDAAAAAAAAAAAglsgNAAAAAAAAAACAWJGR28aNG2vRokU1d+7c6uzsrG3btr2l+x588MGaNWtWrVy5cmoHBAAAAIAZYG8GAAAAQDOKi9w2b95c3d3dtX79+tqxY0ctXry4li9fXnv37n3D+1588cX66le/WhdeeOE0TQoAAAAA08feDAAAAIBmFRe53XXXXXXllVfWmjVr6owzzqhNmzbV8ccfX/fff/8R7xkZGakvfvGLdeutt9YHP/jBaZwWAAAAAKaHvRkAAAAAzSoqcjt48GBt3769urq6xs9aWlqqq6ur+vr6jnjfN7/5zZo/f35dfvnl0zEmAAAAAEwrezMAAAAAmtkxMz3A6+3fv79GRkaq0WhMOG80GrVr167D3vO73/2u7rvvvtq5c+dbfp7h4eEaHh4e/3loaOhtzQsAAAAA08HeDAAAAIBmFvVJbv+tV199tS699NK69957a968eW/5vp6enmpvbx9/dHR0TOGUAAAAADC97M0AAAAAeDeJ+iS3efPm1ezZs2tgYGDC+cDAQC1YsOCQ6//0pz/Viy++WCtWrBg/Gx0draqqY445pp555pn60Ic+dMh9a9eure7u7vGfh4aGLOwAAAAAiGVvBgAAAEAzi4rc5syZU0uXLq3e3t5auXJlVf17+dbb21tf/vKXD7n+9NNPrz/+8Y8Tzm6++eZ69dVX6wc/+MERF3Ctra3V2to66fMDAAAAwFSwNwMAAACgmUVFblVV3d3dddlll9W5555b559/fm3YsKEOHDhQa9asqaqq1atX18KFC6unp6fmzp1bZ5555oT7TzzxxKqqQ84BAAAA4GhmbwYAAABAs4qL3FatWlX79u2rdevWVX9/fy1ZsqS2bt1ajUajqqp2795dLS0tMzwlAAAAAEwvezMAAAAAmtWssbGxsZkeYqYNDQ1Ve3t7DQ4OVltb20yPAwAAAEC4ZtknNcvrBAAAAGDyTMVOyZ92AgAAAAAAAAAAEEvkBgAAAAAAAAAAQCyRGwAAAAAAAAAAALFEbgAAAAAAAAAAAMQSuQEAAAAAAAAAABBL5AYAAAAAAAAAAEAskRsAAAAAAAAAAACxRG4AAAAAAAAAAADEErkBAAAAAAAAAAAQS+QGAAAAAAAAAABALJEbAAAAAAAAAAAAsURuAAAAAAAAAAAAxBK5AQAAAAAAAAAAEEvkBgAAAAAAAAAAQCyRGwAAAAAAAAAAALFEbgAAAAAAAAAAAMQSuQEAAAAAAAAAABBL5AYAAAAAAAAAAEAskRsAAAAAAAAAAACxRG4AAAAAAAAAAADEErkBAAAAAAAAAAAQS+QGAAAAAAAAAABALJEbAAAAAAAAAAAAsURuAAAAAAAAAAAAxBK5AQAAAAAAAAAAEEvkBgAAAAAAAAAAQCyRGwAAAAAAAAAAALFEbgAAAAAAAAAAAMQSuQEAAAAAAAAAABBL5AYAAAAAAAAAAEAskRsAAAAAAAAAAACxRG4AAAAAAAAAAADEErkBAAAAAAAAAAAQS+QGAAAAAAAAAABALJEbAAAAAAAAAAAAsURuAAAAAAAAAAAAxBK5AQAAAAAAAAAAEEvkBgAAAAAAAAAAQCyRGwAAAAAAAAAAALFEbgAAAAAAAAAAAMQSuQEAAAAAAAAAABBL5AYAAAAAAAAAAEAskRsAAAAAAAAAAACxRG4AAAAAAAAAAADEErkBAAAAAAAAAAAQS+QGAAAAAAAAAABALJEbAAAAAAAAAAAAsURuAAAAAAAAAAAAxBK5AQAAAAAAAAAAEEvkBgAAAAAAAAAAQCyRGwAAAAAAAAAAALFEbgAAAAAAAAAAAMQSuQEAAAAAAAAAABBL5AYAAAAAAAAAAEAskRsAAAAAAAAAAACxRG4AAAAAAAAAAADEErkBAAAAAAAAAAAQS+QGAAAAAAAAAABALJEbAAAAAAAAAAAAsURuAAAAAAAAAAAAxBK5AQAAAAAAAAAAEEvkBgAAAAAAAAAAQCyRGwAAAAAAAAAAALFEbgAAAAAAAAAAAMQSuQEAAAAAAAAAABBL5AYAAAAAAAAAAEAskRsAAAAAAAAAAACxIiO3jRs31qJFi2ru3LnV2dlZ27ZtO+K19957b1144YV10kkn1UknnVRdXV1veD0AAAAAHK3szQAAAABoRnGR2+bNm6u7u7vWr19fO3bsqMWLF9fy5ctr7969h73+iSeeqIsvvrh+85vfVF9fX3V0dNRFF11UL7300jRPDgAAAABTx94MAAAAgGY1a2xsbGymh3i9zs7OOu+88+ruu++uqqrR0dHq6Oioa6+9tm688cY3vX9kZKROOumkuvvuu2v16tVv6TmHhoaqvb29BgcHq62t7R3NDwAAAMC730zsk+zNAAAAADgaTMVOKeqT3A4ePFjbt2+vrq6u8bOWlpbq6uqqvr6+t/Q7XnvttfrnP/9ZJ5988lSNCQAAAADTyt4MAAAAgGZ2zEwP8Hr79++vkZGRajQaE84bjUbt2rXrLf2OG264oU499dQJC7//NDw8XMPDw+M/Dw0Nvb2BAQAAAGAa2JsBAAAA0MyiPsntnbrjjjvqwQcfrIcffrjmzp17xOt6enqqvb19/NHR0TGNUwIAAADA9LI3AwAAAOBoFhW5zZs3r2bPnl0DAwMTzgcGBmrBggVveO/3v//9uuOOO+rXv/51nX322W947dq1a2twcHD8sWfPnnc8OwAAAABMFXszAAAAAJpZVOQ2Z86cWrp0afX29o6fjY6OVm9vby1btuyI9333u9+t2267rbZu3Vrnnnvumz5Pa2trtbW1TXgAAAAAQCp7MwAAAACa2TEzPcB/6u7urssuu6zOPffcOv/882vDhg114MCBWrNmTVVVrV69uhYuXFg9PT1VVfWd73yn1q1bVw888EAtWrSo+vv7q6rqhBNOqBNOOGHGXgcAAAAATCZ7MwAAAACaVVzktmrVqtq3b1+tW7eu+vv7a8mSJbV169ZqNBpVVbV79+5qafn/D6D74Q9/WAcPHqzPf/7zE37P+vXr6xvf+MZ0jg4AAAAAU8beDAAAAIBmNWtsbGxspoeYaUNDQ9Xe3l6Dg4O+ggEAAACAN9Us+6RmeZ0AAAAATJ6p2Cm1vPklAAAAAAAAAAAAMDNEbgAAAAAAAAAAAMQSuQEAAAAAAAAAABBL5AYAAAAAAAAAAEAskRsAAAAAAAAAAACxRG4AAAAAAAAAAADEErkBAAAAAAAAAAAQS+QGAAAAAAAAAABALJEbAAAAAAAAAAAAsURuAAAAAAAAAAAAxBK5AQAAAAAAAAAAEEvkBgAAAAAAAAAAQCyRGwAAAAAAAAAAALFEbgAAAAAAAAAAAMQSuQEAAAAAAAAAABBL5AYAAAAAAAAAAEAskRsAAAAAAAAAAACxRG4AAAAAAAAAAADEErkBAAAAAAAAAAAQS+QGAAAAAAAAAABALJEbAAAAAAAAAAAAsURuAAAAAAAAAAAAxBK5AQAAAAAAAAAAEEvkBgAAAAAAAAAAQCyRGwAAAAAAAAAAALFEbgAAAAAAAAAAAMQSuQEAAAAAAAAAABBL5AYAAAAAAAAAAEAskRsAAAAAAAAAAACxRG4AAAAAAAAAAADEErkBAAAAAAAAAAAQS+QGAAAAAAAAAABALJEbAAAAAAAAAAAAsURuAAAAAAAAAAAAxBK5AQAAAAAAAAAAEEvkBgAAAAAAAAAAQCyRGwAAAAAAAAAAALFEbgAAAAAAAAAAAMQSuQEAAAAAAAAAABBL5AYAAAAAAAAAAEAskRsAAAAAAAAAAACxRG4AAAAAAAAAAADEErkBAAAAAAAAAAAQS+QGAAAAAAAAAABALJEbAAAAAAAAAAAAsURuAAAAAAAAAAAAxBK5AQAAAAAAAAAAEEvkBgAAAAAAAAAAQCyRGwAAAAAAAAAAALFEbgAAAAAAAAAAAMQSuQEAAAAAAAAAABBL5AYAAAAAAAAAAEAskRsAAAAAAAAAAACxRG4AAAAAAAAAAADEErkBAAAAAAAAAAAQS+QGAAAAAAAAAABALJEbAAAAAAAAAAAAsURuAAAAAAAAAAAAxBK5AQAAAAAAAAAAEEvkBgAAAAAAAAAAQCyRGwAAAAAAAAAAALFEbgAAAAAAAAAAAMQSuQEAAAAAAAAAABBL5AYAAAAAAAAAAEAskRsAAAAAAAAAAACxRG4AAAAAAAAAAADEErkBAAAAAAAAAAAQKzJy27hxYy1atKjmzp1bnZ2dtW3btje8/uc//3mdfvrpNXfu3DrrrLNqy5Yt0zQpAAAAAEwfezMAAAAAmlFc5LZ58+bq7u6u9evX144dO2rx4sW1fPny2rt372Gvf/LJJ+viiy+uyy+/vP7whz/UypUra+XKlfXUU09N8+QAAAAAMHXszQAAAABoVrPGxsbGZnqI1+vs7Kzzzjuv7r777qqqGh0drY6Ojrr22mvrxhtvPOT6VatW1YEDB+pXv/rV+NknPvGJWrJkSW3atOktPefQ0FC1t7fX4OBgtbW1Tc4LAQAAAOBdayb2SfZmAAAAABwNpmKndMyk/JZJcvDgwdq+fXutXbt2/KylpaW6urqqr6/vsPf09fVVd3f3hLPly5fXI488csTnGR4eruHh4fGfBwcHq+rf/4EBAAAA4M383x5puv5+1N4MAAAAgKPFVOzOoiK3/fv318jISDUajQnnjUajdu3addh7+vv7D3t9f3//EZ+np6enbr311kPOOzo63sbUAAAAADSrv/71r9Xe3j7lz2NvBgAAAMDRZjJ3Z1GR23RZu3bthL9ifeWVV+p//ud/avfu3dOylAT+e0NDQ9XR0VF79uzx9SgQzHsV8nmfwtHBexXyDQ4O1mmnnVYnn3zyTI8yqezN4Ojk3w6Qz/sUjg7eq5DP+xSODlOxO4uK3ObNm1ezZ8+ugYGBCecDAwO1YMGCw96zYMGC/+r6qqrW1tZqbW095Ly9vd3/BCFcW1ub9ykcBbxXIZ/3KRwdvFchX0tLy7Q8j70Z8Fb4twPk8z6Fo4P3KuTzPoWjw2TuzqZnC/cWzZkzp5YuXVq9vb3jZ6Ojo9Xb21vLli077D3Lli2bcH1V1eOP/2979xdTdf3Hcfx15K9ttnDGEelsNfNPGypLy6CssVFsOZKLFmlDVjrn0mZQDobkaVnGypptUk5y44pwumRN2DGlmFqspsJmE2lGxOY8phcshjoUPr+bn2fDID1HOOfzPd/nY+PCr58D7+/Fy+Nee/M9R8Y9DwAAAAAAADgNvRkAAAAAAADczKonuUlSeXm5SktLtWTJEj355JPauXOnBgcH9frrr0uSVq9erczMTH388ceSpE2bNum5557TZ599puXLl6uxsVEnT57Unj17YnkbAAAAAAAAwISiNwMAAAAAAIBbWbfkVlxcrMuXL2vr1q0KBoPKzs5WIBCQ1+uVJPX19Y16lF1ubq4aGhpUXV2tqqoqzZkzR01NTcrKyrrrn5mSkiK/3z/mRzEAsAM5BZyBrAL2I6eAM5BVwH6xyCm9GYDxkFXAfuQUcAayCtiPnALOMBlZ9RhjzIR9NwAAAAAAAAAAAAAAAAAAJtCUOx8BAAAAAAAAAAAAAAAAACA2WHIDAAAAAAAAAAAAAAAAAFiLJTcAAAAAAAAAAAAAAAAAgLVYcgMAAAAAAAAAAAAAAAAAWMs1S261tbV6+OGHlZqaqqVLl+rXX3/9z/P79+/X/PnzlZqaqgULFqilpSVKkwLuFU5O6+rqtGzZMqWlpSktLU35+fl3zDWAiRHue+otjY2N8ng8KioqmtwBAYSd0/7+fm3YsEEZGRlKSUnR3Llz+f8vEAXhZnXnzp2aN2+epk6dKp/Pp7KyMl2/fj1K0wLuc+zYMRUWFmrWrFnyeDxqamq642va2tr0+OOPKyUlRY8++qjq6+snfc6JQG8GOAPdGWA/ejPAGejOAPvRmwH2i0V35oolt3379qm8vFx+v1+nT5/WokWLVFBQoL///nvM8z///LNWrlypNWvWqKOjQ0VFRSoqKtJvv/0W5ckB9wg3p21tbVq5cqV+/PFHtbe3y+fz6YUXXtCFCxeiPDngLuFm9Zbe3l69++67WrZsWZQmBdwr3JwODQ3p+eefV29vrw4cOKDu7m7V1dUpMzMzypMD7hJuVhsaGlRZWSm/36+uri7t3btX+/btU1VVVZQnB9xjcHBQixYtUm1t7V2d//PPP7V8+XLl5eWps7NTb7/9ttauXavDhw9P8qT3ht4McAa6M8B+9GaAM9CdAfajNwOcIRbdmccYYyId2CmWLl2qJ554Qrt27ZIkjYyMyOfz6a233lJlZeW/zhcXF2twcFCHDh0KXXvqqaeUnZ2t3bt3R21uwE3CzenthoeHlZaWpl27dmn16tWTPS7gWpFkdXh4WM8++6zeeOMNHT9+XP39/Xe1yQ8gMuHmdPfu3fr000917tw5JSUlRXtcwLXCzerGjRvV1dWl1tbW0LV33nlHv/zyi06cOBG1uQG38ng8Onjw4H8+XaWiokLNzc2jlr1effVV9ff3KxAIRGHKyNCbAc5AdwbYj94McAa6M8B+9GaA80SrO4v7J7kNDQ3p1KlTys/PD12bMmWK8vPz1d7ePuZr2tvbR52XpIKCgnHPA7g3keT0dlevXtWNGzc0ffr0yRoTcL1Is/rBBx8oPT1da9asicaYgKtFktPvvvtOOTk52rBhg7xer7KysrR9+3YNDw9Ha2zAdSLJam5urk6dOhX6aIaenh61tLToxRdfjMrMAO7MiX0SvRngDHRngP3ozQBnoDsD7EdvBsSvieiUEid6KNtcuXJFw8PD8nq9o657vV6dO3duzNcEg8ExzweDwUmbE3CzSHJ6u4qKCs2aNetf/ygCmDiRZPXEiRPau3evOjs7ozAhgEhy2tPTox9++EGvvfaaWlpadP78eb355pu6ceOG/H5/NMYGXCeSrK5atUpXrlzRM888I2OMbt68qfXr1/OxC4BFxuuT/vnnH127dk1Tp06N0WTjozcDnIHuDLAfvRngDHRngP3ozYD4NRHdWdw/yQ1A/KupqVFjY6MOHjyo1NTUWI8D4P8GBgZUUlKiuro6zZgxI9bjABjHyMiI0tPTtWfPHi1evFjFxcXasmULHzcGWKatrU3bt2/Xl19+qdOnT+vbb79Vc3Oztm3bFuvRAACA5ejOAPvQmwHOQXcG2I/eDHCPuH+S24wZM5SQkKBLly6Nun7p0iXNnDlzzNfMnDkzrPMA7k0kOb1lx44dqqmp0dGjR7Vw4cLJHBNwvXCz+scff6i3t1eFhYWhayMjI5KkxMREdXd3a/bs2ZM7NOAykbynZmRkKCkpSQkJCaFrjz32mILBoIaGhpScnDypMwNuFElW33vvPZWUlGjt2rWSpAULFmhwcFDr1q3Tli1bNGUKv8MGxNp4fdL9999v5VPcJHozwCnozgD70ZsBzkB3BtiP3gyIXxPRncV9mpOTk7V48WK1traGro2MjKi1tVU5OTljviYnJ2fUeUk6cuTIuOcB3JtIcipJn3zyibZt26ZAIKAlS5ZEY1TA1cLN6vz583XmzBl1dnaGvl566SXl5eWps7NTPp8vmuMDrhDJe+rTTz+t8+fPh8p0Sfr999+VkZFBSQdMkkiyevXq1X8VcrcKdmPM5A0L4K45sU+iNwOcge4MsB+9GeAMdGeA/ejNgPg1IZ2ScYHGxkaTkpJi6uvrzdmzZ826devMAw88YILBoDHGmJKSElNZWRk6/9NPP5nExESzY8cO09XVZfx+v0lKSjJnzpyJ1S0AcS/cnNbU1Jjk5GRz4MABc/HixdDXwMBArG4BcIVws3q70tJSs2LFiihNC7hTuDnt6+sz06ZNMxs3bjTd3d3m0KFDJj093Xz44YexugXAFcLNqt/vN9OmTTPffPON6enpMd9//72ZPXu2eeWVV2J1C0DcGxgYMB0dHaajo8NIMp9//rnp6Ogwf/31lzHGmMrKSlNSUhI639PTY+677z6zefNm09XVZWpra01CQoIJBAKxuoW7Qm8GOAPdGWA/ejPAGejOAPvRmwHOEIvuLO4/rlSSiouLdfnyZW3dulXBYFDZ2dkKBALyer2SpL6+vlGbvbm5uWpoaFB1dbWqqqo0Z84cNTU1KSsrK1a3AMS9cHP61VdfaWhoSC+//PKo7+P3+/X+++9Hc3TAVcLNKoDoCzenPp9Phw8fVllZmRYuXKjMzExt2rRJFRUVsboFwBXCzWp1dbU8Ho+qq6t14cIFPfjggyosLNRHH30Uq1sA4t7JkyeVl5cX+nN5ebkkqbS0VPX19bp48aL6+vpCf//II4+oublZZWVl+uKLL/TQQw/p66+/VkFBQdRnDwe9GeAMdGeA/ejNAGegOwPsR28GOEMsujOPMTyfEQAAAAAAAAAAAAAAAABgJ35lBAAAAAAAAAAAAAAAAABgLZbcAAAAAAAAAAAAAAAAAADWYskNAAAAAAAAAAAAAAAAAGAtltwAAAAAAAAAAAAAAAAAANZiyQ0AAAAAAAAAAAAAAAAAYC2W3AAAAAAAAAAAAAAAAAAA1mLJDQAAAAAAAAAAAAAAAABgLZbcAAAAAAAAAAAAAAAAAADWYskNAAAAAAAAAAAAAAAAAGAtltwAAAAAAAAAAAAAAAAAANZiyQ0AAAAAAAAAAAAAAAAAYC2W3AAAAAAAAAAAAAAAAAAA1vofuvyP4WfjeHcAAAAASUVORK5CYII=\n"
},
"metadata": {}
}
]
},
{
"cell_type": "code",
"source": [
"evaluation_results = evaluate_ocr_models_for_different_languages()\n",
"\n",
"for model, df in evaluation_results.items():\n",
" print(f\"Model: {model}\")\n",
" display(df)\n",
" print(\"\\n\")"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 697
},
"collapsed": true,
"id": "UuWDxHtjBy06",
"outputId": "0ced273e-cc3e-43d4-cbd1-2026d925fb5b"
},
"execution_count": 28,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Model: vision\n"
]
},
{
"output_type": "display_data",
"data": {
"text/plain": [
" Fuzzy Score CER WER Jaccard Index Cosine Similarity\n",
"Languages \n",
"arabic 100 0.030928 0.155689 0.980000 1.000000\n",
"bengali 100 0.035478 0.153409 0.982759 1.000000\n",
"chinese 24 0.604341 17.268293 0.980057 0.006081\n",
"cyrillic 100 0.037657 0.212251 0.962963 0.999906\n",
"dutch 100 0.025207 0.140391 0.957746 0.999881\n",
"english 100 0.024473 0.107053 0.976744 1.000000\n",
"french 100 0.020288 0.094211 0.959184 0.999753\n",
"german 100 0.041282 0.225843 0.981132 1.000000\n",
"greek 100 0.030437 0.168040 0.985294 1.000000\n",
"hebrew 98 0.046806 0.240491 0.979167 0.992660\n",
"hindi 99 0.038486 0.167708 0.966667 0.998818\n",
"japanese 29 0.674087 53.259259 0.946988 0.034352\n",
"korean 75 0.173840 0.686620 0.995392 0.448421\n",
"latin 100 0.027611 0.169261 0.981132 1.000000\n",
"spanish 99 0.060906 0.336709 0.880000 0.997281\n",
"thai 59 0.200000 5.142857 0.974684 0.373060\n",
"urdu 96 0.038528 0.153439 0.975000 0.954732\n",
"vietnamese 99 0.021310 0.075000 0.989899 0.998874"
],
"text/html": [
"\n",
" \n",
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Fuzzy Score | \n",
" CER | \n",
" WER | \n",
" Jaccard Index | \n",
" Cosine Similarity | \n",
"
\n",
" \n",
" Languages | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" arabic | \n",
" 100 | \n",
" 0.030928 | \n",
" 0.155689 | \n",
" 0.980000 | \n",
" 1.000000 | \n",
"
\n",
" \n",
" bengali | \n",
" 100 | \n",
" 0.035478 | \n",
" 0.153409 | \n",
" 0.982759 | \n",
" 1.000000 | \n",
"
\n",
" \n",
" chinese | \n",
" 24 | \n",
" 0.604341 | \n",
" 17.268293 | \n",
" 0.980057 | \n",
" 0.006081 | \n",
"
\n",
" \n",
" cyrillic | \n",
" 100 | \n",
" 0.037657 | \n",
" 0.212251 | \n",
" 0.962963 | \n",
" 0.999906 | \n",
"
\n",
" \n",
" dutch | \n",
" 100 | \n",
" 0.025207 | \n",
" 0.140391 | \n",
" 0.957746 | \n",
" 0.999881 | \n",
"
\n",
" \n",
" english | \n",
" 100 | \n",
" 0.024473 | \n",
" 0.107053 | \n",
" 0.976744 | \n",
" 1.000000 | \n",
"
\n",
" \n",
" french | \n",
" 100 | \n",
" 0.020288 | \n",
" 0.094211 | \n",
" 0.959184 | \n",
" 0.999753 | \n",
"
\n",
" \n",
" german | \n",
" 100 | \n",
" 0.041282 | \n",
" 0.225843 | \n",
" 0.981132 | \n",
" 1.000000 | \n",
"
\n",
" \n",
" greek | \n",
" 100 | \n",
" 0.030437 | \n",
" 0.168040 | \n",
" 0.985294 | \n",
" 1.000000 | \n",
"
\n",
" \n",
" hebrew | \n",
" 98 | \n",
" 0.046806 | \n",
" 0.240491 | \n",
" 0.979167 | \n",
" 0.992660 | \n",
"
\n",
" \n",
" hindi | \n",
" 99 | \n",
" 0.038486 | \n",
" 0.167708 | \n",
" 0.966667 | \n",
" 0.998818 | \n",
"
\n",
" \n",
" japanese | \n",
" 29 | \n",
" 0.674087 | \n",
" 53.259259 | \n",
" 0.946988 | \n",
" 0.034352 | \n",
"
\n",
" \n",
" korean | \n",
" 75 | \n",
" 0.173840 | \n",
" 0.686620 | \n",
" 0.995392 | \n",
" 0.448421 | \n",
"
\n",
" \n",
" latin | \n",
" 100 | \n",
" 0.027611 | \n",
" 0.169261 | \n",
" 0.981132 | \n",
" 1.000000 | \n",
"
\n",
" \n",
" spanish | \n",
" 99 | \n",
" 0.060906 | \n",
" 0.336709 | \n",
" 0.880000 | \n",
" 0.997281 | \n",
"
\n",
" \n",
" thai | \n",
" 59 | \n",
" 0.200000 | \n",
" 5.142857 | \n",
" 0.974684 | \n",
" 0.373060 | \n",
"
\n",
" \n",
" urdu | \n",
" 96 | \n",
" 0.038528 | \n",
" 0.153439 | \n",
" 0.975000 | \n",
" 0.954732 | \n",
"
\n",
" \n",
" vietnamese | \n",
" 99 | \n",
" 0.021310 | \n",
" 0.075000 | \n",
" 0.989899 | \n",
" 0.998874 | \n",
"
\n",
" \n",
"
\n",
"
\n",
"
\n",
"
\n"
],
"application/vnd.google.colaboratory.intrinsic+json": {
"type": "dataframe",
"variable_name": "df",
"summary": "{\n \"name\": \"df\",\n \"rows\": 18,\n \"fields\": [\n {\n \"column\": \"Languages\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 18,\n \"samples\": [\n \"arabic\",\n \"bengali\",\n \"greek\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Fuzzy Score\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 24,\n \"min\": 24,\n \"max\": 100,\n \"num_unique_values\": 8,\n \"samples\": [\n 24,\n 75,\n 100\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"CER\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.19634747342347822,\n \"min\": 0.020288206295032234,\n \"max\": 0.674087266251113,\n \"num_unique_values\": 18,\n \"samples\": [\n 0.030927835051546393,\n 0.0354775828460039,\n 0.03043691703485518\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"WER\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 12.873922557853087,\n \"min\": 0.075,\n \"max\": 53.25925925925926,\n \"num_unique_values\": 18,\n \"samples\": [\n 0.15568862275449102,\n 0.1534090909090909,\n 0.16803953871499178\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Jaccard Index\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.02545892435154941,\n \"min\": 0.88,\n \"max\": 0.9953917050691244,\n \"num_unique_values\": 17,\n \"samples\": [\n 0.98,\n 0.9827586206896551,\n 0.9767441860465116\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Cosine Similarity\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.34744659110653675,\n \"min\": 0.006081103291140964,\n \"max\": 1.0000000000000036,\n \"num_unique_values\": 17,\n \"samples\": [\n 1.0000000000000036,\n 1.0000000000000018,\n 0.9999999999999993\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"
}
},
"metadata": {}
},
{
"output_type": "stream",
"name": "stdout",
"text": [
"\n",
"\n"
]
}
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "LRy9xCV6O3Nb"
},
"outputs": [],
"source": [
"import pandas as pd\n",
"import os\n",
"\n",
"def evaluate_ocr_models_for_different_fonts(num_docs, starting_font, increment_font):\n",
" ocr_models = {\n",
" # \"gemini_flash\": extract_text_gemini,\n",
" \"opus\": extract_text_opus,\n",
" \"sonnet\": extract_text_sonnet,\n",
" \"haiku\": extract_text_haiku,\n",
" \"gpt4_turbo\": extract_text_gpt,\n",
" \"gpt4o\": extract_text_gpt,\n",
" \"vision\": extract_text_vision,\n",
" \"tesseract\": extract_text_tesseract,\n",
" }\n",
"\n",
" evaluation_metrics = {\n",
" \"Fuzzy Score\": calculate_fuzzy_score,\n",
" \"CER\": calculate_cer,\n",
" \"WER\": calculate_wer,\n",
" # \"BLEU\": calculate_bleu,\n",
" \"Jaccard Index\": calculate_jaccard_index,\n",
" \"Cosine Similarity\": calculate_cosine_similarity\n",
" }\n",
"\n",
" results = {model: {metric: [] for metric in evaluation_metrics} for model in ocr_models}\n",
"\n",
" for model in ocr_models:\n",
" for docs in range(1, 12):\n",
" font_size = docs\n",
" model_output_path = f\"/content/{model}_font_output_{font_size}.txt\"\n",
" reference_path = f\"/content/font-reference.txt\"\n",
"\n",
" if os.path.exists(model_output_path):\n",
" for metric in evaluation_metrics:\n",
" score = evaluation_metrics[metric](read_file(reference_path), read_file(model_output_path))\n",
" results[model][metric].append(score)\n",
" else:\n",
" for metric in evaluation_metrics:\n",
" print(model_output_path)\n",
" results[model][metric].append(None)\n",
"\n",
" # for docs in range(num_docs):\n",
" # font_size = starting_font + docs * increment_font\n",
" # model_output_path = f\"/content/{model}_font_output_{font_size}.txt\"\n",
" # reference_path = f\"/content/font-reference.txt\"\n",
"\n",
" # if os.path.exists(model_output_path):\n",
" # for metric in evaluation_metrics:\n",
" # score = evaluation_metrics[metric](read_file(reference_path), read_file(model_output_path))\n",
" # results[model][metric].append(score)\n",
" # else:\n",
" # for metric in evaluation_metrics:\n",
" # print(model_output_path)\n",
" # results[model][metric].append(None)\n",
"\n",
" models_dfs = {}\n",
" for model, metrics_scores in results.items():\n",
" df = pd.DataFrame(metrics_scores)\n",
" # df.index = [docs+1 if docs<11 else (starting_font + (docs-11) * increment_font) for docs in range(len(df))]\n",
" df.index = [docs+1 for docs in range(len(df))]\n",
" df.index.name = 'Font Size'\n",
" models_dfs[model] = df\n",
"\n",
" return models_dfs"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 1000
},
"id": "H0Stery6Q7cu",
"outputId": "b9c8b11e-b662-4c96-83d4-026f270377aa"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"/content/vision_font_output_1.txt\n",
"/content/vision_font_output_1.txt\n",
"/content/vision_font_output_1.txt\n",
"/content/vision_font_output_1.txt\n",
"/content/vision_font_output_1.txt\n",
"Model: opus\n"
]
},
{
"data": {
"application/vnd.google.colaboratory.intrinsic+json": {
"summary": "{\n \"name\": \"df\",\n \"rows\": 11,\n \"fields\": [\n {\n \"column\": \"Font Size\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 3,\n \"min\": 1,\n \"max\": 11,\n \"num_unique_values\": 11,\n \"samples\": [\n 6,\n 1,\n 10\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Fuzzy Score\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 26,\n \"min\": 11,\n \"max\": 83,\n \"num_unique_values\": 9,\n \"samples\": [\n 83,\n 54,\n 81\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"CER\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.2706902059592143,\n \"min\": 0.20877659574468085,\n \"max\": 0.9401595744680851,\n \"num_unique_values\": 11,\n \"samples\": [\n 0.5332446808510638,\n 0.9391622340425532,\n 0.20877659574468085\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"WER\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.6112781316192542,\n \"min\": 1.188976377952756,\n \"max\": 5.56496062992126,\n \"num_unique_values\": 11,\n \"samples\": [\n 3.1003937007874014,\n 5.559055118110236,\n 1.188976377952756\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Jaccard Index\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.1278999198278638,\n \"min\": 0.5777777777777777,\n \"max\": 0.9148936170212766,\n \"num_unique_values\": 9,\n \"samples\": [\n 0.8541666666666666,\n 0.6461538461538462,\n 0.8333333333333334\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Cosine Similarity\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.2254302455083485,\n \"min\": 0.40280813892384887,\n \"max\": 0.9686748398131518,\n \"num_unique_values\": 11,\n \"samples\": [\n 0.7377493548436327,\n 0.5343168969237784,\n 0.9646151323331051\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}",
"type": "dataframe",
"variable_name": "df"
},
"text/html": [
"\n",
" \n",
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Fuzzy Score | \n",
" CER | \n",
" WER | \n",
" Jaccard Index | \n",
" Cosine Similarity | \n",
"
\n",
" \n",
" Font Size | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 1 | \n",
" 11 | \n",
" 0.939162 | \n",
" 5.559055 | \n",
" 0.577778 | \n",
" 0.534317 | \n",
"
\n",
" \n",
" 2 | \n",
" 11 | \n",
" 0.940160 | \n",
" 5.564961 | \n",
" 0.577778 | \n",
" 0.402808 | \n",
"
\n",
" \n",
" 3 | \n",
" 54 | \n",
" 0.744016 | \n",
" 4.385827 | \n",
" 0.646154 | \n",
" 0.671715 | \n",
"
\n",
" \n",
" 4 | \n",
" 49 | \n",
" 0.659574 | \n",
" 3.866142 | \n",
" 0.734694 | \n",
" 0.411806 | \n",
"
\n",
" \n",
" 5 | \n",
" 58 | \n",
" 0.545213 | \n",
" 3.179134 | \n",
" 0.653846 | \n",
" 0.713956 | \n",
"
\n",
" \n",
" 6 | \n",
" 56 | \n",
" 0.533245 | \n",
" 3.100394 | \n",
" 0.770833 | \n",
" 0.737749 | \n",
"
\n",
" \n",
" 7 | \n",
" 81 | \n",
" 0.244681 | \n",
" 1.429134 | \n",
" 0.833333 | \n",
" 0.957964 | \n",
"
\n",
" \n",
" 8 | \n",
" 77 | \n",
" 0.281250 | \n",
" 1.645669 | \n",
" 0.914894 | \n",
" 0.941545 | \n",
"
\n",
" \n",
" 9 | \n",
" 81 | \n",
" 0.235040 | \n",
" 1.364173 | \n",
" 0.854167 | \n",
" 0.963042 | \n",
"
\n",
" \n",
" 10 | \n",
" 83 | \n",
" 0.208777 | \n",
" 1.188976 | \n",
" 0.914894 | \n",
" 0.964615 | \n",
"
\n",
" \n",
" 11 | \n",
" 78 | \n",
" 0.501995 | \n",
" 2.950787 | \n",
" 0.860000 | \n",
" 0.968675 | \n",
"
\n",
" \n",
"
\n",
"
\n",
"
\n",
"
\n"
],
"text/plain": [
" Fuzzy Score CER WER Jaccard Index Cosine Similarity\n",
"Font Size \n",
"1 11 0.939162 5.559055 0.577778 0.534317\n",
"2 11 0.940160 5.564961 0.577778 0.402808\n",
"3 54 0.744016 4.385827 0.646154 0.671715\n",
"4 49 0.659574 3.866142 0.734694 0.411806\n",
"5 58 0.545213 3.179134 0.653846 0.713956\n",
"6 56 0.533245 3.100394 0.770833 0.737749\n",
"7 81 0.244681 1.429134 0.833333 0.957964\n",
"8 77 0.281250 1.645669 0.914894 0.941545\n",
"9 81 0.235040 1.364173 0.854167 0.963042\n",
"10 83 0.208777 1.188976 0.914894 0.964615\n",
"11 78 0.501995 2.950787 0.860000 0.968675"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"Model: sonnet\n"
]
},
{
"data": {
"application/vnd.google.colaboratory.intrinsic+json": {
"summary": "{\n \"name\": \"df\",\n \"rows\": 11,\n \"fields\": [\n {\n \"column\": \"Font Size\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 3,\n \"min\": 1,\n \"max\": 11,\n \"num_unique_values\": 11,\n \"samples\": [\n 6,\n 1,\n 10\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Fuzzy Score\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 25,\n \"min\": 13,\n \"max\": 81,\n \"num_unique_values\": 11,\n \"samples\": [\n 43,\n 14,\n 73\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"CER\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.26048711871268654,\n \"min\": 0.20944148936170212,\n \"max\": 0.9305186170212766,\n \"num_unique_values\": 11,\n \"samples\": [\n 0.691156914893617,\n 0.9271941489361702,\n 0.3134973404255319\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"WER\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.5598515803234427,\n \"min\": 1.218503937007874,\n \"max\": 5.50984251968504,\n \"num_unique_values\": 11,\n \"samples\": [\n 4.057086614173229,\n 5.49015748031496,\n 1.8228346456692914\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Jaccard Index\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.07769381021431758,\n \"min\": 0.6,\n \"max\": 0.8367346938775511,\n \"num_unique_values\": 10,\n \"samples\": [\n 0.8367346938775511,\n 0.6666666666666666,\n 0.6862745098039216\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Cosine Similarity\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.3092924518668363,\n \"min\": 0.13849155265525223,\n \"max\": 0.964876185576174,\n \"num_unique_values\": 11,\n \"samples\": [\n 0.13849155265525223,\n 0.21952362028805444,\n 0.9251568793533181\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}",
"type": "dataframe",
"variable_name": "df"
},
"text/html": [
"\n",
" \n",
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Fuzzy Score | \n",
" CER | \n",
" WER | \n",
" Jaccard Index | \n",
" Cosine Similarity | \n",
"
\n",
" \n",
" Font Size | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 1 | \n",
" 14 | \n",
" 0.927194 | \n",
" 5.490157 | \n",
" 0.644444 | \n",
" 0.219524 | \n",
"
\n",
" \n",
" 2 | \n",
" 15 | \n",
" 0.915891 | \n",
" 5.423228 | \n",
" 0.666667 | \n",
" 0.355524 | \n",
"
\n",
" \n",
" 3 | \n",
" 13 | \n",
" 0.930519 | \n",
" 5.509843 | \n",
" 0.600000 | \n",
" 0.404004 | \n",
"
\n",
" \n",
" 4 | \n",
" 52 | \n",
" 0.754654 | \n",
" 4.435039 | \n",
" 0.633333 | \n",
" 0.529081 | \n",
"
\n",
" \n",
" 5 | \n",
" 53 | \n",
" 0.677859 | \n",
" 3.944882 | \n",
" 0.696429 | \n",
" 0.421371 | \n",
"
\n",
" \n",
" 6 | \n",
" 43 | \n",
" 0.691157 | \n",
" 4.057087 | \n",
" 0.686275 | \n",
" 0.138492 | \n",
"
\n",
" \n",
" 7 | \n",
" 51 | \n",
" 0.564495 | \n",
" 3.281496 | \n",
" 0.700000 | \n",
" 0.737316 | \n",
"
\n",
" \n",
" 8 | \n",
" 69 | \n",
" 0.441157 | \n",
" 2.555118 | \n",
" 0.765957 | \n",
" 0.894934 | \n",
"
\n",
" \n",
" 9 | \n",
" 75 | \n",
" 0.343750 | \n",
" 1.944882 | \n",
" 0.836735 | \n",
" 0.945566 | \n",
"
\n",
" \n",
" 10 | \n",
" 73 | \n",
" 0.313497 | \n",
" 1.822835 | \n",
" 0.722222 | \n",
" 0.925157 | \n",
"
\n",
" \n",
" 11 | \n",
" 81 | \n",
" 0.209441 | \n",
" 1.218504 | \n",
" 0.836735 | \n",
" 0.964876 | \n",
"
\n",
" \n",
"
\n",
"
\n",
"
\n",
"
\n"
],
"text/plain": [
" Fuzzy Score CER WER Jaccard Index Cosine Similarity\n",
"Font Size \n",
"1 14 0.927194 5.490157 0.644444 0.219524\n",
"2 15 0.915891 5.423228 0.666667 0.355524\n",
"3 13 0.930519 5.509843 0.600000 0.404004\n",
"4 52 0.754654 4.435039 0.633333 0.529081\n",
"5 53 0.677859 3.944882 0.696429 0.421371\n",
"6 43 0.691157 4.057087 0.686275 0.138492\n",
"7 51 0.564495 3.281496 0.700000 0.737316\n",
"8 69 0.441157 2.555118 0.765957 0.894934\n",
"9 75 0.343750 1.944882 0.836735 0.945566\n",
"10 73 0.313497 1.822835 0.722222 0.925157\n",
"11 81 0.209441 1.218504 0.836735 0.964876"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"Model: haiku\n"
]
},
{
"data": {
"application/vnd.google.colaboratory.intrinsic+json": {
"summary": "{\n \"name\": \"df\",\n \"rows\": 11,\n \"fields\": [\n {\n \"column\": \"Font Size\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 3,\n \"min\": 1,\n \"max\": 11,\n \"num_unique_values\": 11,\n \"samples\": [\n 6,\n 1,\n 10\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Fuzzy Score\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 29,\n \"min\": 7,\n \"max\": 88,\n \"num_unique_values\": 11,\n \"samples\": [\n 65,\n 9,\n 77\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"CER\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.2583607660330754,\n \"min\": 0.20079787234042554,\n \"max\": 0.961436170212766,\n \"num_unique_values\": 11,\n \"samples\": [\n 0.5728058510638298,\n 0.953125,\n 0.3949468085106383\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"WER\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.5375984125960058,\n \"min\": 1.1751968503937007,\n \"max\": 5.692913385826771,\n \"num_unique_values\": 11,\n \"samples\": [\n 3.358267716535433,\n 5.643700787401575,\n 2.3188976377952755\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Jaccard Index\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.11353233506269551,\n \"min\": 0.5111111111111111,\n \"max\": 0.875,\n \"num_unique_values\": 10,\n \"samples\": [\n 0.8571428571428571,\n 0.5777777777777777,\n 0.6222222222222222\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Cosine Similarity\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.27283869866102467,\n \"min\": 0.23374491359409186,\n \"max\": 0.9838809725569844,\n \"num_unique_values\": 11,\n \"samples\": [\n 0.8651734765851289,\n 0.23374491359409186,\n 0.9531800031135179\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}",
"type": "dataframe",
"variable_name": "df"
},
"text/html": [
"\n",
" \n",
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Fuzzy Score | \n",
" CER | \n",
" WER | \n",
" Jaccard Index | \n",
" Cosine Similarity | \n",
"
\n",
" \n",
" Font Size | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 1 | \n",
" 9 | \n",
" 0.953125 | \n",
" 5.643701 | \n",
" 0.600000 | \n",
" 0.233745 | \n",
"
\n",
" \n",
" 2 | \n",
" 8 | \n",
" 0.955785 | \n",
" 5.657480 | \n",
" 0.577778 | \n",
" 0.318580 | \n",
"
\n",
" \n",
" 3 | \n",
" 7 | \n",
" 0.961436 | \n",
" 5.692913 | \n",
" 0.511111 | \n",
" 0.398063 | \n",
"
\n",
" \n",
" 4 | \n",
" 13 | \n",
" 0.927859 | \n",
" 5.494094 | \n",
" 0.666667 | \n",
" 0.428811 | \n",
"
\n",
" \n",
" 5 | \n",
" 16 | \n",
" 0.911902 | \n",
" 5.397638 | \n",
" 0.600000 | \n",
" 0.451232 | \n",
"
\n",
" \n",
" 6 | \n",
" 65 | \n",
" 0.572806 | \n",
" 3.358268 | \n",
" 0.735849 | \n",
" 0.865173 | \n",
"
\n",
" \n",
" 7 | \n",
" 25 | \n",
" 0.857048 | \n",
" 5.072835 | \n",
" 0.622222 | \n",
" 0.592152 | \n",
"
\n",
" \n",
" 8 | \n",
" 28 | \n",
" 0.841755 | \n",
" 4.984252 | \n",
" 0.630435 | \n",
" 0.747555 | \n",
"
\n",
" \n",
" 9 | \n",
" 49 | \n",
" 0.700465 | \n",
" 4.141732 | \n",
" 0.680851 | \n",
" 0.883847 | \n",
"
\n",
" \n",
" 10 | \n",
" 77 | \n",
" 0.394947 | \n",
" 2.318898 | \n",
" 0.857143 | \n",
" 0.953180 | \n",
"
\n",
" \n",
" 11 | \n",
" 88 | \n",
" 0.200798 | \n",
" 1.175197 | \n",
" 0.875000 | \n",
" 0.983881 | \n",
"
\n",
" \n",
"
\n",
"
\n",
"
\n",
"
\n"
],
"text/plain": [
" Fuzzy Score CER WER Jaccard Index Cosine Similarity\n",
"Font Size \n",
"1 9 0.953125 5.643701 0.600000 0.233745\n",
"2 8 0.955785 5.657480 0.577778 0.318580\n",
"3 7 0.961436 5.692913 0.511111 0.398063\n",
"4 13 0.927859 5.494094 0.666667 0.428811\n",
"5 16 0.911902 5.397638 0.600000 0.451232\n",
"6 65 0.572806 3.358268 0.735849 0.865173\n",
"7 25 0.857048 5.072835 0.622222 0.592152\n",
"8 28 0.841755 4.984252 0.630435 0.747555\n",
"9 49 0.700465 4.141732 0.680851 0.883847\n",
"10 77 0.394947 2.318898 0.857143 0.953180\n",
"11 88 0.200798 1.175197 0.875000 0.983881"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"Model: gpt4_turbo\n"
]
},
{
"data": {
"application/vnd.google.colaboratory.intrinsic+json": {
"summary": "{\n \"name\": \"df\",\n \"rows\": 11,\n \"fields\": [\n {\n \"column\": \"Font Size\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 3,\n \"min\": 1,\n \"max\": 11,\n \"num_unique_values\": 11,\n \"samples\": [\n 6,\n 1,\n 10\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Fuzzy Score\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 31,\n \"min\": 6,\n \"max\": 96,\n \"num_unique_values\": 11,\n \"samples\": [\n 60,\n 6,\n 94\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"CER\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.3421238782483519,\n \"min\": 0.04920212765957447,\n \"max\": 0.9654255319148937,\n \"num_unique_values\": 11,\n \"samples\": [\n 0.6449468085106383,\n 0.9654255319148937,\n 0.07912234042553191\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"WER\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 2.028721720144799,\n \"min\": 0.2755905511811024,\n \"max\": 5.716535433070866,\n \"num_unique_values\": 11,\n \"samples\": [\n 3.765748031496063,\n 5.716535433070866,\n 0.44291338582677164\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Jaccard Index\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.11537976396364674,\n \"min\": 0.5333333333333333,\n \"max\": 0.9148936170212766,\n \"num_unique_values\": 11,\n \"samples\": [\n 0.7647058823529411,\n 0.5333333333333333,\n 0.86\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Cosine Similarity\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.25606447753978095,\n \"min\": 0.2987571711162542,\n \"max\": 0.9888192836918042,\n \"num_unique_values\": 11,\n \"samples\": [\n 0.7837497701197942,\n 0.3718509279635078,\n 0.9888192836918042\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}",
"type": "dataframe",
"variable_name": "df"
},
"text/html": [
"\n",
" \n",
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Fuzzy Score | \n",
" CER | \n",
" WER | \n",
" Jaccard Index | \n",
" Cosine Similarity | \n",
"
\n",
" \n",
" Font Size | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 1 | \n",
" 6 | \n",
" 0.965426 | \n",
" 5.716535 | \n",
" 0.533333 | \n",
" 0.371851 | \n",
"
\n",
" \n",
" 2 | \n",
" 13 | \n",
" 0.927194 | \n",
" 5.490157 | \n",
" 0.666667 | \n",
" 0.298757 | \n",
"
\n",
" \n",
" 3 | \n",
" 26 | \n",
" 0.850731 | \n",
" 5.029528 | \n",
" 0.641509 | \n",
" 0.548370 | \n",
"
\n",
" \n",
" 4 | \n",
" 53 | \n",
" 0.672872 | \n",
" 3.944882 | \n",
" 0.692308 | \n",
" 0.581897 | \n",
"
\n",
" \n",
" 5 | \n",
" 56 | \n",
" 0.707114 | \n",
" 4.131890 | \n",
" 0.735849 | \n",
" 0.666032 | \n",
"
\n",
" \n",
" 6 | \n",
" 60 | \n",
" 0.644947 | \n",
" 3.765748 | \n",
" 0.764706 | \n",
" 0.783750 | \n",
"
\n",
" \n",
" 7 | \n",
" 71 | \n",
" 0.413231 | \n",
" 2.427165 | \n",
" 0.788462 | \n",
" 0.912369 | \n",
"
\n",
" \n",
" 8 | \n",
" 75 | \n",
" 0.420878 | \n",
" 2.456693 | \n",
" 0.792453 | \n",
" 0.945860 | \n",
"
\n",
" \n",
" 9 | \n",
" 92 | \n",
" 0.088098 | \n",
" 0.501969 | \n",
" 0.895833 | \n",
" 0.988406 | \n",
"
\n",
" \n",
" 10 | \n",
" 94 | \n",
" 0.079122 | \n",
" 0.442913 | \n",
" 0.860000 | \n",
" 0.988819 | \n",
"
\n",
" \n",
" 11 | \n",
" 96 | \n",
" 0.049202 | \n",
" 0.275591 | \n",
" 0.914894 | \n",
" 0.987096 | \n",
"
\n",
" \n",
"
\n",
"
\n",
"
\n",
"
\n"
],
"text/plain": [
" Fuzzy Score CER WER Jaccard Index Cosine Similarity\n",
"Font Size \n",
"1 6 0.965426 5.716535 0.533333 0.371851\n",
"2 13 0.927194 5.490157 0.666667 0.298757\n",
"3 26 0.850731 5.029528 0.641509 0.548370\n",
"4 53 0.672872 3.944882 0.692308 0.581897\n",
"5 56 0.707114 4.131890 0.735849 0.666032\n",
"6 60 0.644947 3.765748 0.764706 0.783750\n",
"7 71 0.413231 2.427165 0.788462 0.912369\n",
"8 75 0.420878 2.456693 0.792453 0.945860\n",
"9 92 0.088098 0.501969 0.895833 0.988406\n",
"10 94 0.079122 0.442913 0.860000 0.988819\n",
"11 96 0.049202 0.275591 0.914894 0.987096"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"Model: gpt4o\n"
]
},
{
"data": {
"application/vnd.google.colaboratory.intrinsic+json": {
"summary": "{\n \"name\": \"df\",\n \"rows\": 11,\n \"fields\": [\n {\n \"column\": \"Font Size\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 3,\n \"min\": 1,\n \"max\": 11,\n \"num_unique_values\": 11,\n \"samples\": [\n 6,\n 1,\n 10\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Fuzzy Score\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 28,\n \"min\": 7,\n \"max\": 99,\n \"num_unique_values\": 10,\n \"samples\": [\n 98,\n 52,\n 80\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"CER\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.35695772268159165,\n \"min\": 0.014960106382978724,\n \"max\": 0.9647606382978723,\n \"num_unique_values\": 11,\n \"samples\": [\n 0.2509973404255319,\n 0.9647606382978723,\n 0.02759308510638298\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"WER\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 2.1139951323900963,\n \"min\": 0.0531496062992126,\n \"max\": 5.71259842519685,\n \"num_unique_values\": 11,\n \"samples\": [\n 1.4625984251968505,\n 5.71259842519685,\n 0.14566929133858267\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Jaccard Index\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.1337860161791627,\n \"min\": 0.4666666666666667,\n \"max\": 0.9166666666666666,\n \"num_unique_values\": 11,\n \"samples\": [\n 0.8235294117647058,\n 0.4666666666666667,\n 0.9166666666666666\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Cosine Similarity\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.25121656836400763,\n \"min\": 0.31970530939306635,\n \"max\": 0.9979545301643027,\n \"num_unique_values\": 11,\n \"samples\": [\n 0.956832943133306,\n 0.31970530939306635,\n 0.9978873363758954\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}",
"type": "dataframe",
"variable_name": "df"
},
"text/html": [
"\n",
" \n",
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Fuzzy Score | \n",
" CER | \n",
" WER | \n",
" Jaccard Index | \n",
" Cosine Similarity | \n",
"
\n",
" \n",
" Font Size | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 1 | \n",
" 7 | \n",
" 0.964761 | \n",
" 5.712598 | \n",
" 0.466667 | \n",
" 0.319705 | \n",
"
\n",
" \n",
" 2 | \n",
" 52 | \n",
" 0.763298 | \n",
" 4.507874 | \n",
" 0.722222 | \n",
" 0.487974 | \n",
"
\n",
" \n",
" 3 | \n",
" 51 | \n",
" 0.812168 | \n",
" 4.748031 | \n",
" 0.690909 | \n",
" 0.517332 | \n",
"
\n",
" \n",
" 4 | \n",
" 63 | \n",
" 0.647939 | \n",
" 3.812992 | \n",
" 0.725490 | \n",
" 0.850500 | \n",
"
\n",
" \n",
" 5 | \n",
" 71 | \n",
" 0.448138 | \n",
" 2.488189 | \n",
" 0.754717 | \n",
" 0.917159 | \n",
"
\n",
" \n",
" 6 | \n",
" 80 | \n",
" 0.250997 | \n",
" 1.462598 | \n",
" 0.823529 | \n",
" 0.956833 | \n",
"
\n",
" \n",
" 7 | \n",
" 87 | \n",
" 0.188497 | \n",
" 1.090551 | \n",
" 0.843137 | \n",
" 0.979915 | \n",
"
\n",
" \n",
" 8 | \n",
" 94 | \n",
" 0.088763 | \n",
" 0.494094 | \n",
" 0.877551 | \n",
" 0.991400 | \n",
"
\n",
" \n",
" 9 | \n",
" 98 | \n",
" 0.023936 | \n",
" 0.114173 | \n",
" 0.914894 | \n",
" 0.997767 | \n",
"
\n",
" \n",
" 10 | \n",
" 99 | \n",
" 0.027593 | \n",
" 0.145669 | \n",
" 0.916667 | \n",
" 0.997887 | \n",
"
\n",
" \n",
" 11 | \n",
" 99 | \n",
" 0.014960 | \n",
" 0.053150 | \n",
" 0.897959 | \n",
" 0.997955 | \n",
"
\n",
" \n",
"
\n",
"
\n",
"
\n",
"
\n"
],
"text/plain": [
" Fuzzy Score CER WER Jaccard Index Cosine Similarity\n",
"Font Size \n",
"1 7 0.964761 5.712598 0.466667 0.319705\n",
"2 52 0.763298 4.507874 0.722222 0.487974\n",
"3 51 0.812168 4.748031 0.690909 0.517332\n",
"4 63 0.647939 3.812992 0.725490 0.850500\n",
"5 71 0.448138 2.488189 0.754717 0.917159\n",
"6 80 0.250997 1.462598 0.823529 0.956833\n",
"7 87 0.188497 1.090551 0.843137 0.979915\n",
"8 94 0.088763 0.494094 0.877551 0.991400\n",
"9 98 0.023936 0.114173 0.914894 0.997767\n",
"10 99 0.027593 0.145669 0.916667 0.997887\n",
"11 99 0.014960 0.053150 0.897959 0.997955"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"Model: vision\n"
]
},
{
"data": {
"application/vnd.google.colaboratory.intrinsic+json": {
"summary": "{\n \"name\": \"df\",\n \"rows\": 11,\n \"fields\": [\n {\n \"column\": \"Font Size\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 3,\n \"min\": 1,\n \"max\": 11,\n \"num_unique_values\": 11,\n \"samples\": [\n 6,\n 1,\n 10\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Fuzzy Score\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 28.25990485161304,\n \"min\": 11.0,\n \"max\": 100.0,\n \"num_unique_values\": 5,\n \"samples\": [\n 73.0,\n 100.0,\n 95.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"CER\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.2836086492441448,\n \"min\": 0.03856382978723404,\n \"max\": 0.9368351063829787,\n \"num_unique_values\": 10,\n \"samples\": [\n 0.0694813829787234,\n 0.316156914893617,\n 0.04055851063829787\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"WER\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.686012047454625,\n \"min\": 0.20669291338582677,\n \"max\": 5.547244094488189,\n \"num_unique_values\": 10,\n \"samples\": [\n 0.39173228346456695,\n 1.860236220472441,\n 0.21850393700787402\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Jaccard Index\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.14553198126384706,\n \"min\": 0.5333333333333333,\n \"max\": 0.9777777777777777,\n \"num_unique_values\": 5,\n \"samples\": [\n 0.7068965517241379,\n 0.9148936170212766,\n 0.9555555555555556\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Cosine Similarity\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.11484568404271042,\n \"min\": 0.6345357249509544,\n \"max\": 0.9999070934173677,\n \"num_unique_values\": 7,\n \"samples\": [\n 0.6345357249509544,\n 0.9136700731018212,\n 0.9999070934173677\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}",
"type": "dataframe",
"variable_name": "df"
},
"text/html": [
"\n",
" \n",
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Fuzzy Score | \n",
" CER | \n",
" WER | \n",
" Jaccard Index | \n",
" Cosine Similarity | \n",
"
\n",
" \n",
" Font Size | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 1 | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
"
\n",
" \n",
" 2 | \n",
" 11.0 | \n",
" 0.936835 | \n",
" 5.547244 | \n",
" 0.533333 | \n",
" 0.634536 | \n",
"
\n",
" \n",
" 3 | \n",
" 73.0 | \n",
" 0.316157 | \n",
" 1.860236 | \n",
" 0.706897 | \n",
" 0.913670 | \n",
"
\n",
" \n",
" 4 | \n",
" 95.0 | \n",
" 0.081782 | \n",
" 0.464567 | \n",
" 0.955556 | \n",
" 0.982378 | \n",
"
\n",
" \n",
" 5 | \n",
" 99.0 | \n",
" 0.042221 | \n",
" 0.230315 | \n",
" 0.955556 | \n",
" 0.995717 | \n",
"
\n",
" \n",
" 6 | \n",
" 100.0 | \n",
" 0.042886 | \n",
" 0.234252 | \n",
" 0.955556 | \n",
" 0.998699 | \n",
"
\n",
" \n",
" 7 | \n",
" 100.0 | \n",
" 0.040559 | \n",
" 0.218504 | \n",
" 0.955556 | \n",
" 0.999907 | \n",
"
\n",
" \n",
" 8 | \n",
" 100.0 | \n",
" 0.045213 | \n",
" 0.248031 | \n",
" 0.955556 | \n",
" 0.999907 | \n",
"
\n",
" \n",
" 9 | \n",
" 100.0 | \n",
" 0.038564 | \n",
" 0.206693 | \n",
" 0.977778 | \n",
" 0.999907 | \n",
"
\n",
" \n",
" 10 | \n",
" 100.0 | \n",
" 0.069481 | \n",
" 0.391732 | \n",
" 0.914894 | \n",
" 0.999722 | \n",
"
\n",
" \n",
" 11 | \n",
" 100.0 | \n",
" 0.048870 | \n",
" 0.267717 | \n",
" 0.914894 | \n",
" 0.999722 | \n",
"
\n",
" \n",
"
\n",
"
\n",
"
\n",
"
\n"
],
"text/plain": [
" Fuzzy Score CER WER Jaccard Index Cosine Similarity\n",
"Font Size \n",
"1 NaN NaN NaN NaN NaN\n",
"2 11.0 0.936835 5.547244 0.533333 0.634536\n",
"3 73.0 0.316157 1.860236 0.706897 0.913670\n",
"4 95.0 0.081782 0.464567 0.955556 0.982378\n",
"5 99.0 0.042221 0.230315 0.955556 0.995717\n",
"6 100.0 0.042886 0.234252 0.955556 0.998699\n",
"7 100.0 0.040559 0.218504 0.955556 0.999907\n",
"8 100.0 0.045213 0.248031 0.955556 0.999907\n",
"9 100.0 0.038564 0.206693 0.977778 0.999907\n",
"10 100.0 0.069481 0.391732 0.914894 0.999722\n",
"11 100.0 0.048870 0.267717 0.914894 0.999722"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"Model: tesseract\n"
]
},
{
"data": {
"application/vnd.google.colaboratory.intrinsic+json": {
"summary": "{\n \"name\": \"df\",\n \"rows\": 11,\n \"fields\": [\n {\n \"column\": \"Font Size\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 3,\n \"min\": 1,\n \"max\": 11,\n \"num_unique_values\": 11,\n \"samples\": [\n 6,\n 1,\n 10\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Fuzzy Score\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 26,\n \"min\": 0,\n \"max\": 65,\n \"num_unique_values\": 7,\n \"samples\": [\n 0,\n 9,\n 60\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"CER\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.2380588349780737,\n \"min\": 0.37333776595744683,\n \"max\": 0.9996675531914894,\n \"num_unique_values\": 7,\n \"samples\": [\n 0.9996675531914894,\n 0.9544547872340425,\n 0.4328457446808511\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"WER\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.4439344346996803,\n \"min\": 2.12007874015748,\n \"max\": 5.921259842519685,\n \"num_unique_values\": 7,\n \"samples\": [\n 5.921259842519685,\n 5.6515748031496065,\n 2.486220472440945\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Jaccard Index\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.3133414775340051,\n \"min\": 0.022222222222222223,\n \"max\": 0.7017543859649122,\n \"num_unique_values\": 7,\n \"samples\": [\n 0.022222222222222223,\n 0.48936170212765956,\n 0.6666666666666666\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Cosine Similarity\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.3095614211412481,\n \"min\": 0.0,\n \"max\": 0.8153483295215893,\n \"num_unique_values\": 7,\n \"samples\": [\n 0.0,\n 0.058424057987394716,\n 0.7149728391186198\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}",
"type": "dataframe",
"variable_name": "df"
},
"text/html": [
"\n",
" \n",
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Fuzzy Score | \n",
" CER | \n",
" WER | \n",
" Jaccard Index | \n",
" Cosine Similarity | \n",
"
\n",
" \n",
" Font Size | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 1 | \n",
" 0 | \n",
" 0.999668 | \n",
" 5.921260 | \n",
" 0.022222 | \n",
" 0.000000 | \n",
"
\n",
" \n",
" 2 | \n",
" 0 | \n",
" 0.999668 | \n",
" 5.921260 | \n",
" 0.022222 | \n",
" 0.000000 | \n",
"
\n",
" \n",
" 3 | \n",
" 0 | \n",
" 0.999668 | \n",
" 5.921260 | \n",
" 0.022222 | \n",
" 0.000000 | \n",
"
\n",
" \n",
" 4 | \n",
" 0 | \n",
" 0.999668 | \n",
" 5.921260 | \n",
" 0.022222 | \n",
" 0.000000 | \n",
"
\n",
" \n",
" 5 | \n",
" 0 | \n",
" 0.999668 | \n",
" 5.921260 | \n",
" 0.022222 | \n",
" 0.000000 | \n",
"
\n",
" \n",
" 6 | \n",
" 9 | \n",
" 0.954455 | \n",
" 5.651575 | \n",
" 0.489362 | \n",
" 0.058424 | \n",
"
\n",
" \n",
" 7 | \n",
" 19 | \n",
" 0.896277 | \n",
" 5.291339 | \n",
" 0.571429 | \n",
" 0.169130 | \n",
"
\n",
" \n",
" 8 | \n",
" 30 | \n",
" 0.833112 | \n",
" 4.889764 | \n",
" 0.600000 | \n",
" 0.157488 | \n",
"
\n",
" \n",
" 9 | \n",
" 51 | \n",
" 0.638630 | \n",
" 3.732283 | \n",
" 0.650000 | \n",
" 0.510251 | \n",
"
\n",
" \n",
" 10 | \n",
" 60 | \n",
" 0.432846 | \n",
" 2.486220 | \n",
" 0.666667 | \n",
" 0.714973 | \n",
"
\n",
" \n",
" 11 | \n",
" 65 | \n",
" 0.373338 | \n",
" 2.120079 | \n",
" 0.701754 | \n",
" 0.815348 | \n",
"
\n",
" \n",
"
\n",
"
\n",
"
\n",
"
\n"
],
"text/plain": [
" Fuzzy Score CER WER Jaccard Index Cosine Similarity\n",
"Font Size \n",
"1 0 0.999668 5.921260 0.022222 0.000000\n",
"2 0 0.999668 5.921260 0.022222 0.000000\n",
"3 0 0.999668 5.921260 0.022222 0.000000\n",
"4 0 0.999668 5.921260 0.022222 0.000000\n",
"5 0 0.999668 5.921260 0.022222 0.000000\n",
"6 9 0.954455 5.651575 0.489362 0.058424\n",
"7 19 0.896277 5.291339 0.571429 0.169130\n",
"8 30 0.833112 4.889764 0.600000 0.157488\n",
"9 51 0.638630 3.732283 0.650000 0.510251\n",
"10 60 0.432846 2.486220 0.666667 0.714973\n",
"11 65 0.373338 2.120079 0.701754 0.815348"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n"
]
}
],
"source": [
"num_docs = 9\n",
"evaluation_results = evaluate_ocr_models_for_different_fonts(num_docs, starting_font, increment_font)\n",
"\n",
"for model, df in evaluation_results.items():\n",
" print(f\"Model: {model}\")\n",
" display(df)\n",
" print(\"\\n\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "eOfF1FQszIqj"
},
"outputs": [],
"source": [
"import pandas as pd\n",
"import matplotlib.pyplot as plt\n",
"\n",
"def plot_evaluation_metric_for_all_models(models_dfs, evaluation_metric):\n",
" fig, axs = plt.subplots(4, 2, figsize=(20, 20)) # Create a 3x2 grid of subplots\n",
" fig.suptitle(f'{evaluation_metric} for Different OCR Models', fontsize=16)\n",
"\n",
" models = list(models_dfs.keys())\n",
"\n",
" for i, model in enumerate(models):\n",
" row = i // 2\n",
" col = i % 2\n",
" ax = axs[row, col]\n",
"\n",
" df = models_dfs[model]\n",
"\n",
" if evaluation_metric in df.columns:\n",
" ax.bar(df.index, df[evaluation_metric], color=\"#d4377c\")\n",
" ax.set_title(model)\n",
" ax.set_xlabel('Font Size')\n",
" ax.set_ylabel(evaluation_metric)\n",
"\n",
" else:\n",
" ax.text(0.5, 0.5, 'Metric Not Available', horizontalalignment='center', verticalalignment='center', transform=ax.transAxes)\n",
" ax.set_title(model)\n",
" ax.set_xlabel('Font Size')\n",
" ax.set_ylabel(evaluation_metric)\n",
"\n",
" for j in range(len(models), 6):\n",
" row = j // 2\n",
" col = j % 2\n",
" fig.delaxes(axs[row, col])\n",
"\n",
" plt.tight_layout(rect=[0, 0.03, 1, 0.95]) # Adjust layout to fit title\n",
" plt.show()\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 1000
},
"id": "Sis7oGDkz6RR",
"outputId": "fd6e8b1a-5e84-4bf5-ba0e-6b70e3a3900e"
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAB8YAAAdxCAYAAABiyPedAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd5gV9dk//vfSQQRBBAEREAtiBFQiErGj2DC2xGiigNEYFRuxoQJ2LBGxRaKxl9hiSzRGRbFEjAqWRAUblkelKBEsEZA9vz/4sV9XFmVxixxer+va69n9zGdm7jPMOT533mdmSgqFQiEAAAAAAAAAUKTq1HYBAAAAAAAAAFCdBOMAAAAAAAAAFDXBOAAAAAAAAABFTTAOAAAAAAAAQFETjAMAAAAAAABQ1ATjAAAAAAAAABQ1wTgAAAAAAAAARU0wDgAAAAAAAEBRE4wDAAAAAAAAUNQE4wAAUMQeeuihDB48OOuuu26aNWuWhg0bpm3bttl+++1z4YUXZubMmTVe09tvv52SkpJ06tSpxvddWZMmTcqBBx6YtddeO40bN06TJk3SsWPHbL755jn22GPz0EMPLbZOp06dUlJSkrfffrtGaiwpKUlJScli41tvvXVKSkoyfvz4GqkjSQYNGpSSkpJce+21NbbPb/PJJ5/k8MMPT8eOHdOgQYOUlJRk6623rtWaTj311LJ/s0U/jRo1SuvWrdOjR48MGjQoN910U7788sslbuPaa69NSUlJBg0atNiyQqGQ888/Pz/60Y/SuHHjxc6PuXPn5qSTTso666yThg0bLjfvxdry3nvv5YQTTshGG22UFi1apGHDhlljjTWyxx575JZbbkmhUFiq7VT2s3jRv/HXf+rUqZNmzZplo402yrBhw5b583vRZ1RJSUmOOuqob517/vnnl82tV6/eMu2vsqr6vxHf9n4BAABWLDXT1QAAADXqo48+yr777puHH344ycIgZJtttslKK62UadOm5amnnsrDDz+cESNG5OGHH07v3r1rueIfnksuuSRHH310SktL0759+2yzzTZp0aJFZs6cmUmTJuWpp57K+PHjs/3229d2qT941157bQYPHpyBAwfWaGj+m9/8Jrfffns6deqUPffcM40aNUrXrl1rbP/fpk2bNtlxxx2TJAsWLMjs2bMzefLkXHfddbnuuuty9NFH55JLLskvfvGLSm338ssvz/HHH5/mzZtnp512SrNmzcotHz58eM4///y0adMmP/3pT9OkSZO0atWqyl7XD8H48eOzzTbbZKuttvpeXwy57LLL8rvf/S5z587Nqquumr59+6Zp06Z58803c8899+Tuu+/O6NGjc/fdd6ddu3YVbuP7fhavtNJK2XvvvZMsPE/eeeedTJgwIS+88EKuueaaPPHEE1lnnXWW+TXedNNNOf/889OgQYMKl1999dXLvG0AAIAfGsE4AAAUmdmzZ6dv376ZMmVKunbtmiuuuCJbbLFFuTlz587Nddddl5EjR+bDDz+s0frat2+fV199NfXr16/R/VbGSy+9VBaKX3jhhTniiCNSt27dsuWlpaV58skn8+STTy627rhx4zJ//vy0b9++Rmp99dVXa2Q/S2PUqFE58cQT07Zt29ouJfPnz89dd92VRo0a5cUXX1wsIK5tXbt2rfBLAm+++WZOPfXU3Hjjjdl3330za9asHHbYYeXm7LHHHtlss83SvHnzxda/7bbbkiS33357hV/aWLT8+waqxe6iiy7K0UcfnTp16uScc87J0KFDy31mTZ48Ob/61a/y7LPPZosttsjEiROzyiqrlNtGVXwWt2rVarHz5OWXX85WW22V6dOn5+ijj8599923TK+xV69eee6553LPPffkZz/72WLLn3rqqUyePDk//vGP8+yzzy7TPgAAAH5I3EodAACKzBFHHJEpU6akU6dO+ec//7lYEJMkDRs2zG9+85u88MILWX/99Wu0vvr166dr167p0qVLje63Mm6//faUlpamT58+Ofroo8uF4klSp06dbLnlljnppJMWW7dLly7p2rVrjQX/Xbt2/cFcBd22bdt07dq1wsC2pn344Yf56quv0qZNmx9cKP5tunTpkhtuuCHHHXdckuSoo47KW2+9VW5O8+bN07Vr1wq/gPDuu+8myRJD7+9aTvLKK6+UHf8LL7wwJ5xwwmLv565du2bcuHHp0qVL3nrrrRxxxBGLbae6Pos32GCDDB06NMnCW7TPnTu3si8xSXLggQcmWfJV4VdddVW5eQAAAMs7wTgAABSRt956KzfffHOSZPTo0WnZsuW3zm/Tpk3WW2+9xcZvueWWbLfddmnZsmUaNmyYjh075sADD8xrr71W4XY+/PDDHHXUUVl33XXTqFGjNGnSJB06dMh2222X3//+9+XmftvzY7/+POS//OUv6du3b5o1a5aVVlopm2++ee6///4lvpavvvoqf/rTn7L11luX1d25c+cceuihee+99771OHzT9OnTkyStW7eu1HrJkp8x/vVnfj/99NPZZZddsuqqq2bllVfOVlttlSeeeKJs7gMPPJDtttsuLVq0SNOmTbP99ttn0qRJFe5vSc8YX5KZM2fm4osvzs4775zOnTuncePGadasWXr16pVzzz13ic+2/vp+rrnmmvTp0yfNmzcv91oresZ4p06dMnjw4CTJddddV+6ZyVtvvXVKS0uz1lprpaSkJBMmTFhi3YcddlhKSkpy/PHHf+drLCkpSceOHZMk77zzTrl9fv3W2l999VXGjh2bn/zkJ2nevHkaNWqUddZZJ0ceeWTef//9ZT4OVeGss85Ku3bt8tVXX+XCCy8st6yiZyYvOr+mTp2aJOncuXNZraeeemrZebnomdhfPybfvCJ54sSJ+eUvf5k111wzDRs2TMuWLdO/f/8lvv++fs7fc8892XbbbdOyZcvFjvd///vfjBw5Mj179szKK6+cJk2aZMMNN8yZZ56ZL774YrHtLnoe+6mnnpqZM2fm8MMPT4cOHdKgQYN06NAhRxxxRD755JNy62y99dbZZpttkiSPPfZYude5tM+sPv/88zN//vx07969wsB7kebNm+f8889Pkvz5z38u9wWGqvosXpLu3bsnWXhnhFmzZi31el+34YYbplevXnnwwQcXO98/++yz3HbbbVljjTWyww47fOt2Zs2alZNOOikbbLBBmjRpkpVXXjmbbLJJzjvvvPzvf/9b4np/+9vfstVWW2XllVdO8+bNs8UWW+See+75zrorex59m4cffjgDBgxImzZtUr9+/bRo0SLrrLNOfvWrX+Xxxx+v1LYAAIAfPsE4AAAUkb/97W9ZsGBBVlllley2226VXr9QKGTgwIHZd9998/jjj2ejjTYqezbzNddck4022igPPPBAuXWmTZuWXr165eKLL87cuXOz4447Zrfddkvnzp3zwgsv5Mwzz6x0HSNHjiy7te/OO++cddZZJ0899VR23XXX3HXXXYvN//TTT7P99tvn4IMPzsSJE9O9e/fstttuadiwYcaOHZuNNtoozz///FLvf80110yy8Lbo//nPfypd/7e57777ssUWW+TDDz/M9ttvn7XXXjuPP/54tt9++zz11FO57LLLsssuu+TLL7/MDjvskPbt2+fhhx/OVlttlTfeeON77/8f//hHjjrqqLz00kvp2LFjdt9992y66aaZMmVKTjzxxGy77bbfegXqEUcckYMOOij16tXLLrvskt69e39rML/33ntn8803T7LwauiBAweW/ey4446pU6dOhgwZkiS59NJLK9zGnDlzcsMNN6ROnTqL3Va8IgMHDsxee+2VZOEzmr++z9VXXz3JwltY77TTTjn00EPz/PPPZ/PNN8/uu++euXPn5pJLLknPnj2X+GWEZTkOlVW/fv3ss88+SRZeFfxddtxxxwwcODArrbRSkmSvvfYqe809e/bM3nvvnYEDB5bN//oxWXvttcvGL7roomy66aa5+eabs+qqq2a33XbLBhtskPHjx2eXXXbJ6aefvsQaLrjgguy+++759NNPs+OOO2arrbYqu9vCK6+8kh49euT000/PjBkz0rdv3/Tr1y8zZ87M8OHDs/nmm2f27NkVbve9997LxhtvnL/85S/ZdNNNs/322+fTTz/NpZdemh122CHz588vdxz69++fZGHY/PXXuehZ3d+mUCjk3nvvTZLsv//+3/lvOmDAgKyyyipZsGBBuVuaf9/P4u8yZ86cJEndunW/1zPiDzzwwJSWli725Yjbbrstn332WQYOHJg6dZb8Px299dZb2XjjjTNq1KjMnDkzO++8c7bddtu8/vrrOeGEE9K3b9/897//XWy9Cy+8MAMGDMjjjz+ebt26lX3m7b777rnkkkuWuL/vcx5903XXXZcddtgh9913Xzp37py99torW265ZZo1a5Zbbrkld95551JtBwAAWI4UAACAorH//vsXkhS23XbbZVr/8ssvLyQptGrVqvD888+XjZeWlhZGjhxZSFJYZZVVCjNmzChbdtpppxWSFH7zm98USktLy21v3rx5hYcffrjc2NSpUwtJCh07dlxs/0nK9vH000+XW7Zo/+uuu+5i6+23336FJIVdd921MH369HLLLrzwwkKSwjrrrFP46quvluo4vPvuu4WVV165kKRQr169ws4771w499xzCw899FDhk08++dZ1O3bsWEhSmDp1arnxrbbaqpCkUFJSUrjhhhvKLRs6dGghSWG99dYrNG3atNwx++qrrwp77bVXIUnhoIMOWmx/i47ZNy3a36OPPlpu/JVXXilMmDBhsfmzZs0q7LDDDoUkhfPOO2+J+2nWrFmF6xcKhcLAgQMLSQrXXHNNufFrrrmmkKQwcODACtf75JNPCiuttFKhQYMGhWnTpi22/JJLLikkKQwYMKDC9SvybedZoVAonHDCCYUkhS5dupT7t5o3b17h17/+dSFJoXPnzoW5c+eWW29pjsO3WXQeb7XVVt8598Ybbyzb3/z588vGv+14Lun8+2b9FXnggQcKJSUlhVatWhUee+yxcsteeumlwhprrFFIUhg/fnyF+6xbt27hnnvuWWy7X3zxRaFLly6FJIVTTjml3DH9/PPPC/vuu28hSWHw4MHl1lt0rJIUBg0aVPjyyy/Llr377ruF9u3bF5IUbr755nLrPfroo0t9jL/pzTffLNvnN4/BkmyzzTaFJIUDDjigbOz7fhYv+jde0vm76DNvl112qfS2F/17PfHEE4VPPvmk0Lhx48Laa69dbs7mm29eKCkpKbz55ptl76W6desutq3evXsXkhR22223wmeffVY2PmPGjMLGG29cSFLYb7/9yq3z4osvFurWrVuoU6dO4fbbby+37MYbbyyUlJRU+NqX9Txa0vulc+fOZcfhm6ZPn16YNGnS4gcPAABYrrliHAAAisjMmTOTLNstwJOU3fZ8xIgR6dmzZ9l4SUlJRo4cme7du+eTTz7JlVdeWbZs0W3Hd9xxx8Wurqxfv3622267Stdx+umnp3fv3uXGhg0blubNm+e1114rd2v0V199NX/+85/Trl273HzzzYu99qOPPjo777xzXn/99fz9739fqv136NAhDz74YLp27Zqvvvoq999/f0444YRsv/32admyZTbffPPceuutlX5dycIrqH/1q1+VGzv55JOTJFOmTMmhhx5a7pjVrVu37Fnm48aNW6Z9ft3666+fzTbbbLHxFi1alF2pefvtty9x/WOPPbbC9b+P5s2bZ+DAgZk3b165c2uRyy67LEnKriz/vr788suybV544YXlbrFdv379XHzxxWnTpk2mTp2aO+64o8JtVMdx+KavXwm8rLfLroyRI0emUChk7Nix2XLLLcst23DDDTN69OgkWeIVvQMHDqzw6ujrrrsub775ZnbdddecccYZadCgQdmyJk2a5Iorrkjr1q1zww03VHh18RprrJHLLrssDRs2LBtbdCv1ZOHtsKvKos/QZOEV50tj0byvr/t9P4srsmDBgrz11ls58cQTc/PNN6djx465+OKLv9c2mzdvnj333DNvvPFGHnvssSQLP4f++c9/Zquttspaa621xHWffPLJ/Otf/yr7N1x0t4IkWW211XLFFVckWfhojv/7v/8rW3bJJZdkwYIF+dnPfrbYVfy//OUvl3iF/fc9j75p+vTpad68efr27bvYstatW2ejjTb6zm0AAADLF8E4AACQJPm///u/vPnmm0lS7pbLi5SUlJQ9K/rRRx8tG990002TJCeeeGLuvPPOfPbZZ9+7lgEDBiw21rBhw7KQ5uvPw73//vtTKBSy0047ZeWVV65we1tvvXWS5KmnnlrqGjbbbLO8/PLLeeSRR3L88cdnm222SfPmzVNaWpqnnnoqv/jFL8o943lp7bzzzouNtWzZMquuuuoSl6+zzjpJkg8++KDS+6vIggULMm7cuJxxxhk57LDDMnjw4AwaNChnnXVWkoXB2JIsze2ol8WRRx6ZkpKS/PGPf8xXX31VNj5u3LhMnjw56623Xrbffvsq2ddzzz2Xzz77LC1btqzwXGvSpEl+8YtfJCl/rn9ddR2HrystLS37vSpv016Rjz76KM8880waN25c4TFJvvt9tKRjsugW44tuDf9NTZs2Ta9evfLVV1/l2WefXWz5dtttlyZNmiw2vv766yfJEp8HX1MK//9z26vDO++8U/aM9Hr16qVLly4599xzs+mmm+bFF1/81uB6aR144IFJkquvvrrc/100viSLnh+/4447Vvglgk022SQ9evRIaWlpWej+9fW++QWhRSr670/y/c+jb9p0000ze/bsHHDAAZk4cWK59xsAAFCc6tV2AQAAQNVZbbXVkiQzZsyo9LqLwqVVV101zZo1q3BOly5dys1NFj6H96GHHspNN92UvfbaK3Xr1k23bt3St2/f7L333tl2220rXcuiZ3x/06K6vvzyy7Kxt956K0ly1VVX5aqrrvrW7X79is6lUadOnWyzzTbZZpttkiwMlCdMmJDTTz89Dz30UK677rrssssuZc9DXxpLem1NmzbNxx9/XOHyRYH/tz37e2m9/vrr2WOPPfLyyy8vcc6i5xdX5OtXV1el9dZbLzvssEP+8Y9/5O677y4LWRdd2X3YYYdVWTi86Pzt3LnzEudUdK5/XXUdh6/76KOPkiwMxVu0aFGt+5o6dWoKhUL+97//lbsyuyJLeh8t6Zgseo/uv//+2X///Su97cp8HnxfX79Kf/r06VlvvfW+c51Fn7eLPn+//vuyfBZ/3UorrVT2Xpg7d25effXVvPjii3nmmWdyyCGH5JZbbvle20+SbbbZJp07d84dd9yRMWPG5Prrr0+zZs2+88sfS/s+evHFF8u9jxZdPb6k9ZY0/n3Po2/6wx/+kF133TU33HBDbrjhhqy88sr58Y9/nG233Tb777//Es87AABg+SUYBwCAIrLJJpvkhhtuyKRJk7JgwYLUrVu32vdZp06d3HjjjTnppJNy33335Z///Gf++c9/5vLLL8/ll1+eAQMG5K677qpULXXqLP3NrRZd5dezZ8/06NHjW+d+8/bslVW3bt307ds3f//737Pppptm0qRJufvuuysVjH/Xa6vMa18We++9d15++eXsuuuuOf7449OtW7c0a9Ys9evXz7x5874zFG3cuHG11XbUUUflH//4Ry677LLsvffeee+993LvvfemadOmy3R1fnWqzuOwyKRJk5IkXbt2Tb161du+L3ofNW3aNHvttdcybWNJx2TRtpd0ZfHXdezYcbGx6n5PfF3nzp3TokWL/Pe//82//vWvxW4p/01fffVV2b/TJptsUjZeVZ/FrVq1yrXXXltu7M4778w+++yTW2+9NVtuuWUOO+ywZdr2IiUlJRk0aFBGjhyZgQMHZtq0afnNb35TI+d4ZXzf8+ib1l9//UyZMiUPPvhgHnnkkTz11FN54okn8sgjj+T000/PVVddtcSr2gEAgOWTYBwAAIrIrrvumqFDh+aTTz7Jvffemz322GOp123fvn2S5OOPP86cOXMqvGp80RV7i+Z+Xbdu3dKtW7ccd9xxKRQKeeSRR7Lffvvlr3/9a66//vqy27BXtQ4dOiRJNt9881x66aXVso9vqlu3brbddttMmjSp7Kre5cHkyZPz0ksvpXXr1rnrrrsWC1tff/31WqpsoR133DHrrrtuxo8fn5dffjk333xzFixYkP3333+JdzFYFovO36lTpy5xzred6zVh/vz5ue2225IkO+ywQ7Xvb9H7qKSkJFdffXWVhtEdOnTI5MmT8+tf/7pGbkH/fdSpUycDBgzI9ddfnxtuuCHHHnvst96p4N57783s2bNTp06d7LLLLmXj3+ez+LvsueeeOfHEE3PmmWdmxIgR+eUvf5nmzZt/r20OGjQop512Wv76178m+e7bqCf/772x6L1SkYreR+3bt8+bb76Zt99+OxtssMFi67z99tsVbqs6zqN69epl5513LnuExZw5czJ69OicdtppOeSQQ7LHHnuUe3Y6AACwfPOMcQAAKCJdunTJvvvumyT53e9+l1mzZn3r/BkzZpQ9T3qNNdYou330N69QTBY+R3fR+KJbiy9JSUlJtttuu+y3335JkhdeeKESr6JydtpppyQLA6qquqXy0jwz+N13302y8LgtLxadD+3atavwCuQbb7yxWvbboEGDJCn37PCKlJSU5IgjjkiSjB49On/605+SJEOGDKnSenr16pWmTZtm1qxZuffeexdb/r///a/sFtXfda5Xl5NPPjkffPBB6tevn2OOOaba99euXbt07949n376aR544IEq3fai9+iioL+6Le35tiTHHXdc6tWrl3//+9+5+OKLlzhv9uzZOf7445MsfO71os/P5Pt9Fi+NYcOGpW3btvn4448zevTopV5vSdZcc8389Kc/zaqrrprNNttsqe6useiZ8w888ECmT5++2PLnn38+L7zwQurUqVPuyvutttoqSXLTTTdVuN3rr7++wvGaOI+aNWuWU089Nausskq++OKLvPbaa9W2LwAAoOYJxgEAoMhccsklWXvttTN16tT07ds3Tz755GJz5s2bl6uvvjobbbRRXn311bLxY489Nklyxhln5MUXXywbLxQKOfPMM/PCCy9klVVWycEHH1y27Prrr8/EiRMX28enn36a8ePHJ1m629ouq4022ih77bVX3nvvvey5554VXm34+eef56abbqowvKnIySefnCOOOCIvvfTSYsu++uqr/PGPf8wdd9yRJPnFL37xveqvSeuuu27q1q2bf//732X/Nov89a9/zYUXXlgt+1305YFXXnnlO+cOGjQozZs3z9VXX50ZM2Zkm222Sbdu3aq0nkaNGuXwww9PsjC0fOedd8qWzZ8/P0cddVSmTZuWzp071/gVzm+99VYOOOCAnH/++UmSSy+9tFrfP1935plnJkkGDx5cduXw1xUKhfzrX//Kgw8+WKnt/uY3v0nHjh1z++2354QTTsinn3662Jxp06blyiuvXLbCv2HR+fb6669n/vz5lV7/Rz/6Uc4999wkydChQ3PeeectFrJPnjw5/fr1y5tvvplOnTpVeLeK7/NZ/F2aNGmS4cOHJ0nGjBmT//73v5V5iRW6884789FHH2XChAlLNb9v377p3bt3/ve//+WQQw7JF198Ubbso48+yiGHHJJk4WfkojsSJMkRRxyRunXr5rbbbstdd91Vbpu33HJL7r777gr3V5Xn0RdffJHRo0dX+CzyJ554Ip988knq1q27XH3xCQAA+G5upQ4AAEWmRYsW+ec//5l99tkn48ePzxZbbJHOnTune/fuadKkSaZPn55nnnkmn332WZo1a5Z27dqVrXvIIYfkqaeeyg033JBevXplq622SuvWrTNp0qRMmTIljRs3zs0335zVVlutbJ0777wzAwcOTLt27dKzZ8+y5/P+85//zOzZs/OjH/2oXJBeHa655pp88skn+fvf/5711lsvPXr0SOfOnVMoFPL222/nxRdfzLx58/Lqq69+57Npk4WhyaWXXppLL7007du3T48ePbLKKqvk448/zosvvphp06YlWXjV5vbbb1+tr60qtWrVKkOGDMlFF12U7bbbLltssUXatWuXKVOmZNKkSTnllFPKwtGqtNlmm6Vdu3Z5/vnns/HGG2fDDTdM/fr1s9566+W4444rN7dp06YZPHhwxowZk6TqrxZf5LTTTstzzz2XcePGZf31188222yTlVdeORMmTMi7776bVVddNbfffnvZ1cdVbfLkyWXPTS8tLc3s2bMzefLkvP766ykUCllttdVy6aWX5uc//3m17L8iAwYMyEUXXZTf/e532W233bL22mtnvfXWS/PmzTNz5sy8+OKLmTFjRk444YRK3d59pZVWyn333Zddd9015513Xq644op07949a6yxRtlVua+++mpat25dJZ8Va665Znr16pXnnnsuG264YXr16pVGjRqlVatWOeecc5ZqG0OHDk29evVy3HHH5YQTTsh5552Xn/zkJ1lppZUyderUPPPMMykUCtlkk01y9913p2XLlott4/t8Fi+Ngw46KBdccEHefPPN/P73v89ZZ51VqfWrws0335xtt90299xzTzp37pwtt9wy8+fPz6OPPpo5c+Zk4403XuxLAz179syoUaNy/PHHZ88990zv3r3TpUuXvP7663n22WdzzDHHVPglnao8j+bNm5ff/e53Oe6447LhhhtmnXXWSf369fP222/n6aefTrLwC1Jf/28dAACw/BOMAwBAEWrdunUeffTRPPDAA/nzn/+cp556KuPGjcvcuXOz6qqrpk+fPtlll12y//77lwt0SkpKcv3112ennXbKFVdckYkTJ+bzzz/P6quvnkGDBuXEE0/MeuutV25fv/vd79K5c+c89dRTmTRpUmbNmpWWLVumW7du2W+//TJ48OBqf0bryiuvnAcffDC33nprbrzxxkycODEvvPBCmjVrlrZt2+aXv/xldtttt3K3Ov42w4cPT58+fTJu3LhMnDgxzz//fGbOnJmGDRumQ4cO2XnnnXPQQQelT58+1fq6qsOFF16Y7t275w9/+EPZcdpwww1zyy23ZJ999qmWYLxBgwb5xz/+kZNPPjkTJkzIiy++mNLS0my11VaLBeNJ0r9//4wZMyYdOnTIT3/60yqvJ0kaNmyYBx54IFdeeWWuv/76PPHEE5k7d246dOiQI444IieccEK1Pl98+vTpue6665IsPD6LgtH9998//fv3z5577plGjRpV2/6X5Mgjj8y2226bSy65JI8++mjGjRuXOnXqZPXVV89GG22UXXbZJXvttVelt7vBBhvkpZdeytixY3PXXXflpZdeyoQJE9KqVausscYaOfbYY6v0Odx/+ctfMmzYsDz66KO59dZb89VXX6Vjx45LHYwnC4/FT3/601x22WV58MEH8/jjj+d///tfWrVqlQEDBmSfffbJL37xi299HvuyfhYvjfr16+fMM8/Mvvvum0suuSRDhw7NqquuWqltfF9rrbVWJk2alN///ve5++6787e//S116tTJeuutl3322SdHHnlkGjduvNh6xx13XNZbb72cf/75ef755/Pyyy+ne/fuueOOO7LJJpss8e4VVXUeNW3aNGPHjs1jjz2W559/Pg899FDmzZuXdu3aZc8998xhhx2Wbbfd9nsfHwAA4IelpLA0D88DAACAGvKrX/0qN910U84+++wMGzastssBAAAAioBgHAAAgB+Mf//739l4443TqFGjvPPOO5W+ihYAAACgIm6lDgAAQK076KCD8vnnn+fvf/97vvrqq5xyyilCcQAAAKDKuGIcAACAWldSUpI6deqkQ4cOOeigg3LyySenpKSktssCAAAAioQrxgEAAKh1vrMNAAAAVKc6tV0AAAAAAAAAAFQnwTgAAAAAAAAARU0wDgAAAAAAAEBRE4wDAAAAAAAAUNQE4wAAAAAAAAAUNcE4AAAAAAAAAEVNMA4AAAAAAABAUROMAwAAAAAAAFDUBOMAAAAAAAAAFDXBOAAAAAAAAABFTTAOAAAAAAAAQFETjAMAAAAAAABQ1ATjAAAAAAAAABQ1wTgAAAAAAAAARU0wDgAAAAAAAEBRE4wDAAAAAAAAUNQE4wAAAAAAAAAUNcE4AAAAAAAAAEVNMA4AAAAAAABAUROMAwAAAAAAAFDUBOMAAAAAAAAAFDXBOAAAAAAAAABFTTAOAAAAAAAAQFETjAMAAAAAAABQ1ATjAAAAAAAAABQ1wTgAAAAAAAAARU0wDgAAAAAAAEBRE4wDAAAAAAAAUNQE4wAAAAAAAAAUNcE4AAAAAAAAAEVNMA4AAAAAAABAUROMAwAAAAAAAFDUBOMAAAAAAAAAFDXBOAAAAAAAAABFTTAOAAAAAAAAQFETjAMAAAAAAABQ1ATjAAAAAAAAABQ1wTgAAAAAAAAARU0wDgAAAAAAAEBRE4wDAAAAAAAAUNQE4wAAAAAAAAAUNcE4AAAAAAAAAEVNMA4AAAAAAABAUROMAwAAAAAAAFDUBOMAAAAAAAAAFDXBOAAAAAAAAABFTTAOAAAAAAAAQFETjAMAAAAAAABQ1ATjAAAAAAAAABQ1wTgAAAAAAAAARU0wDgAAAAAAAEBRE4wDAAAAAAAAUNQE4wAAAAAAAAAUNcE4AAAAAAAAAEVNMA4AAAAAAABAUROMAwAAAAAAAFDUBOMAAAAAAAAAFDXBOAAAAAAAAABFTTAOAAAAAAAAQFETjAMAAAAAAABQ1ATjAAAAAAAAABQ1wTgAAAAAAAAARU0wDgAAAAAAAEBRE4wDAAAAAAAAUNQE4wAAAAAAAAAUNcE4AAAAAAAAAEVNMA4AAAAAAABAUROMAwAAAAAAAFDUBOMAAAAAAAAAFDXBOAAAAAAAAABFTTAOAAAAAAAAQFETjAMAAAAAAABQ1ATjAAAAAAAAABQ1wTgAAAAAAAAARU0wDgAAAAAAAEBRE4wDAAAAAAAAUNQE4wAAAAAAAAAUNcE4AAAAAAAAAEVNMA4AAAAAAABAUROMAwAAAAAAAFDUBOMAAAAAAAAAFDXBOAAAAAAAAABFTTAOAAAAAAAAQFETjAMAAAAAAABQ1ATjAAAAAAAAABQ1wTgAAAAAAAAARU0wDgAAAAAAAEBRE4wDAAAAAAAAUNQE4wAAAAAAAAAUNcE4AAAAAAAAAEVNMA4AAAAAAMu5V155Jaeeemrefvvt2i4FAH6QBOMAAAAAALCce+WVV3LaaacJxgFgCQTjAAAAAAAAABQ1wTgAFKnnn38+O+20U5o1a5amTZtmu+22y9NPP122/Nprr01JSUkef/zxHHLIIVl11VXTrFmzHHDAAfnvf/9bblslJSU59dRTF9tHp06dMmjQoLK/58+fn9NOOy3rrLNOGjVqlFVXXTV9+/bNQw89VF0vEwAAAL63Tz/9NEcffXQ6deqUhg0bpnXr1tl+++0zadKksjm33357NtlkkzRu3DitWrXKr371q7z//vvltjNo0KA0bdo077//fnbfffc0bdo0q622Wo499tgsWLCgbN7bb7+dkpKS/P73v88VV1yRLl26pGHDhvnxj3+cZ599drH6Jk+enL333jstW7ZMo0aN0qtXr9x7771ly6+99tr87Gc/S5Jss802KSkpSUlJScaPH1/FRwoAll/1arsAAKDqvfzyy9liiy3SrFmzHH/88alfv37++Mc/Zuutt85jjz2W3r17l80dMmRIVllllZx66qmZMmVKLr/88rzzzjsZP358SkpKKrXfU089NaNGjcpBBx2UTTfdNHPmzMlzzz2XSZMmZfvtt6/qlwkAAABV4re//W3uuOOODBkyJN26dcvHH3+cJ598Mq+++mo23njjXHvttRk8eHB+/OMfZ9SoUZk+fXouuuii/POf/8zzzz+fVVZZpWxbCxYsSP/+/dO7d+/8/ve/z8MPP5wLLrggXbp0yaGHHlpuvzfffHM+/fTTHHLIISkpKcl5552XPffcM2+99Vbq16+fZGGPv/nmm6d9+/Y58cQTs9JKK+W2227L7rvvnr/85S/ZY489suWWW+bII4/MxRdfnJNOOinrr79+kpT9XwAgKSkUCoXaLgIAqFp77LFH7r///rz66qtZa621kiQffvhh1ltvvWy00UZ57LHHypr6TTbZJBMmTChruM8///wcf/zxueeee7LbbrslWXjF+MiRIxe7arxTp07Zeuutc+211yZJevbsmTXWWCN/+9vfauy1AgAAwPe1yiqr5Fe/+lUuvfTSxZbNnz8/a6yxRlq3bp1nn302jRo1SpLcd9992XXXXTNixIicdtppSRZeMX7dddfl9NNPz/Dhw8u2sfHGG6dOnTp57rnnkiy8Yrxz585ZddVV8/rrr6dFixZJknvvvTc//elP89e//jW77rprkqRfv36ZMWNGnn322TRs2DBJUigU0rdv38ycOTOvvfZakuSOO+7Iz372szz66KPZeuutq+dAAcByzK3UAaDILFiwIA8++GB23333slA8Sdq2bZv99tsvTz75ZObMmVM2/pvf/KYsFE+SQw89NPXq1cv9999f6X2vssoqefnll/P6669/vxcBAAAANWiVVVbJv/71r3zwwQeLLXvuuecyY8aMHHbYYWWheJLssssu6dq1a+67777F1vntb39b7u8tttgib7311mLz9tlnn7JQfNG8JGVzZ82alUceeSQ///nP8+mnn+ajjz7KRx99lI8//jj9+/fP66+/vtjt3AGAignGAaDIzJw5M1988UXWW2+9xZatv/76KS0tzXvvvVc2ts4665Sb07Rp07Rt2zZvv/12pfd9+umn55NPPsm6666bDTfcMMcdd1xeeumlSm8HAAAAatJ5552X//znP+nQoUM23XTTnHrqqWXh9DvvvJMkFfbZXbt2LVu+SKNGjbLaaquVG2vRokX++9//Lrb+mmuuudi8JGVz33jjjRQKhQwfPjyrrbZauZ+RI0cmSWbMmLEsLxkAVjieMQ4ALLMFCxaU+3vLLbfMm2++mXvuuScPPvhg/vSnP+XCCy/M2LFjc9BBB9VSlQAAAPDtfv7zn2eLLbbIXXfdlQcffDDnn39+zj333Nx5552V3lbdunW/99xFT0AtLS1Nkhx77LHp379/hXPXXnvtSlYIACsmV4wDQJFZbbXV0qRJk0yZMmWxZZMnT06dOnXSoUOHsrFv3vb8s88+y4cffphOnTqVjbVo0SKffPJJuXnz5s3Lhx9+uNg+WrZsmcGDB+fPf/5z3nvvvXTv3n2xZ5MDAADAD03btm1z2GGH5e67787UqVOz6qqr5qyzzkrHjh2TpMI+e8qUKWXLq8OiR6TVr18//fr1q/Bn5ZVXTpKUlJRUWx0AUAwE4wBQZOrWrZsddtgh99xzT7nboU+fPj0333xz+vbtm2bNmpWNX3HFFZk/f37Z35dffnm++uqr7LTTTmVjXbp0yeOPP15uP1dcccViV4x//PHH5f5u2rRp1l577cydO7cqXhoAAABUuQULFmT27Nnlxlq3bp127dpl7ty56dWrV1q3bp2xY8eW62///ve/59VXX80uu+xSbbW1bt06W2+9df74xz9W+OX0mTNnlv2+0korJcliX2wHABZyK3UAKEJnnnlmHnroofTt2zeHHXZY6tWrlz/+8Y+ZO3duzjvvvHJz582bl+222y4///nPM2XKlPzhD39I3759s9tuu5XNOeigg/Lb3/42e+21V7bffvu8+OKL+cc//pFWrVqV21a3bt2y9dZbZ5NNNknLli3z3HPP5Y477siQIUNq5HUDAABAZX366adZY401svfee6dHjx5p2rRpHn744Tz77LO54IILUr9+/Zx77rkZPHhwttpqq+y7776ZPn16LrroonTq1CnHHHNMtdZ32WWXpW/fvtlwww1z8MEHZ6211sr06dMzYcKE/N///V9efPHFJEnPnj1Tt27dnHvuuZk9e3YaNmyYbbfdNq1bt67W+gBgeSEYB4AitMEGG+SJJ57IsGHDMmrUqJSWlqZ379658cYb07t373JzL7300tx0000ZMWJE5s+fn3333TcXX3xxuVuwHXzwwZk6dWquuuqqPPDAA9liiy3y0EMPZbvttiu3rSOPPDL33ntvHnzwwcydOzcdO3bMmWeemeOOO65GXjcAAABUVpMmTXLYYYflwQcfzJ133pnS0tKsvfba+cMf/pBDDz00STJo0KA0adIk55xzTk444YSstNJK2WOPPXLuuedmlVVWqdb6unXrlueeey6nnXZarr322nz88cdp3bp1Ntpoo4wYMaJs3uqrr56xY8dm1KhR+fWvf50FCxbk0UcfFYwDwP+vpFAoFGq7CACg5l177bUZPHhwnn322fTq1au2ywEAAAAAgGrjGeMAAAAAAAAAFDXBOAAAAAAAAABFTTAOAAAAAAAAQFHzjHEAAAAAAAAAiporxgEAAAAAAAAoaoJxAAAAAAAAAIpavdouoKaVlpbmgw8+yMorr5ySkpLaLgcAAIDlWKFQyKeffpp27dqlTp0V97vnem0AAACqSnX12itcMP7BBx+kQ4cOtV0GAAAAReS9997LGmusUdtl1Bq9NgAAAFWtqnvtFS4YX3nllZMsPJDNmjWr5WoAAABYns2ZMycdOnQo6zV/CB5//PGcf/75mThxYj788MPcdddd2X333b91nfHjx2fo0KF5+eWX06FDh5xyyikZNGjQUu9Trw0AAEBVqa5eu1aD8dpo1hfd0q1Zs2aadQAAAKrED+n24Z9//nl69OiRAw88MHvuued3zp86dWp22WWX/Pa3v81NN92UcePG5aCDDkrbtm3Tv3//pdqnXhsAAICqVtW9dq0G47XRrAMAAEAx22mnnbLTTjst9fyxY8emc+fOueCCC5Ik66+/fp588slceOGFem0AAACKRq0G45p1AAAAqF0TJkxIv379yo31798/Rx999BLXmTt3bubOnVv295w5c6qrPAAAAKgSdWq7gMpYUrM+YcKEWqoIAAAAlm/Tpk1LmzZtyo21adMmc+bMyf/+978K1xk1alSaN29e9tOhQ4eaKBUAAACW2XIVjC9Lsz537tzMmTOn3A8AAACw7IYNG5bZs2eX/bz33nu1XRIAAAB8q+UqGF8WvsUOAAAAS7b66qtn+vTp5camT5+eZs2apXHjxhWu07BhwzRr1qzcDwAAAPyQLVfB+LI0677FDgAAAEvWp0+fjBs3rtzYQw89lD59+tRSRQAAAFD16tV2AZXRp0+f3H///eXGvqtZb9iwYRo2bFjdpQEAAMAPwmeffZY33nij7O+pU6fmhRdeSMuWLbPmmmtm2LBhef/993P99dcnSX7729/m0ksvzfHHH58DDzwwjzzySG677bbcd999tfUSAAAAoMrV6hXjn332WV544YW88MILSf5fs/7uu+8mWXi19wEHHFA2/7e//W3eeuutHH/88Zk8eXL+8Ic/5LbbbssxxxxTG+UDAADAD85zzz2XjTbaKBtttFGSZOjQodloo40yYsSIJMmHH35Y1ncnSefOnXPffffloYceSo8ePXLBBRfkT3/6U/r3718r9QMAAEB1KCkUCoXa2vn48eOzzTbbLDY+cODAXHvttRk0aFDefvvtjB8/vtw6xxxzTF555ZWsscYaGT58eAYNGrTU+5wzZ06aN2+e2bNnewYaAAAA34secyHHAQAAgKpSXT1mrQbjtUGzDgAAQFXRYy7kOAAAAFBVqqvHrNVbqQMAAAAAAABAdROMAwAAAAAAAFDUBOMAAAAAAAAAFDXBOAAAAAAAAABFTTAOAAAAAAAAQFGrV9sFAAAA8O1e3mx4bZdQKzZ4+ozaLgEAAIAipdde8QjGAQCAGqXxBAAAAKCmCcYBAGAZCXgBAAAAYPngGeMAAAAAAAAAFDVXjAMARcdVvAAAAAAAfJ0rxgEAAAAAAAAoaoJxAAAAAAAAAIqaW6kDAAAAAADwg+AReUB1ccU4AAAAAAAAAEVNMA4AAAAAAABAUXMrdQAAkrhVGQAAAABQvFwxDgAAAAAAAEBRE4wDAAAAAAAAUNQE4wAAAAAAAAAUNc8YBwAAAAAAgOXYy5sNr+0SasUGT59R2yWwHHHFOAAAAAAAAABFTTAOAAAAAAAAQFETjAMAAAAAAABQ1ATjAAAAAAAAABQ1wTgAAAAAAAAARU0wDgAAAAAAAEBRE4wDAAAAAAAAUNQE4wAAAAAAAAAUNcE4AAAAAAAAAEVNMA4AAAAAAABAUatX2wUAAAAAAAAUo5c3G17bJdSKDZ4+o7ZLAFiMK8YBAAAAAAAAKGqCcQAAAAAAAACKmmAcAAAAAAAAgKImGAcAAAAAAACgqAnGAQAAAAAAAChqgnEAAAAAAAAAippgHAAAAAAAAICiJhgHAAAAAAAAoKgJxgEAAAAAAAAoaoJxAAAAAAAAAIqaYBwAAAAAAACAoiYYBwAAAAAAAKCoCcYBAAAAAAAAKGqCcQAAAAAAAACKmmAcAAAAAAAAgKImGAcAAAAAAACgqAnGAQAAAAAAAChqgnEAAAAAAAAAippgHAAAAAAAAICiJhgHAAAAAAAAoKgJxgEAAAAAAAAoaoJxAAAAAAAAAIqaYBwAAAAAAACAoiYYBwAAAAAAAKCoCcYBAAAAAAAAKGqCcQAAAAAAAACKmmAcAAAAAAAAgKImGAcAAAAAAACgqAnGAQAAAAAAAChqgnEAAAAoMpdddlk6deqURo0apXfv3nnmmWe+df6YMWOy3nrrpXHjxunQoUOOOeaYfPnllzVULQAAAFS/Wg/GNesAAABQdW699dYMHTo0I0eOzKRJk9KjR4/0798/M2bMqHD+zTffnBNPPDEjR47Mq6++mquuuiq33nprTjrppBquHAAAAKpPrQbjmnUAAACoWqNHj87BBx+cwYMHp1u3bhk7dmyaNGmSq6++usL5Tz31VDbffPPst99+6dSpU3bYYYfsu+++3/nFdQAAAFie1GowrlkHAACAqjNv3rxMnDgx/fr1KxurU6dO+vXrlwkTJlS4zk9+8pNMnDixrLd+6623cv/992fnnXeukZoBAACgJtRaMK5ZBwAAgKr10UcfZcGCBWnTpk258TZt2mTatGkVrrPffvvl9NNPT9++fVO/fv106dIlW2+99bfenW3u3LmZM2dOuR8AAAD4Iau1YFyzDgAAALVv/PjxOfvss/OHP/whkyZNyp133pn77rsvZ5xxxhLXGTVqVJo3b17206FDhxqsGAAAACqvVm+lXlmadQAAAFiyVq1apW7dupk+fXq58enTp2f11VevcJ3hw4dn//33z0EHHZQNN9wwe+yxR84+++yMGjUqpaWlFa4zbNiwzJ49u+znvffeq/LXAgAAAFWp1oJxzToAAABUrQYNGmSTTTbJuHHjysZKS0szbty49OnTp8J1vvjii9SpU/5/Hqhbt26SpFAoVLhOw4YN06xZs3I/AAAA8ENWa8G4Zh0AAACq3tChQ3PllVfmuuuuy6uvvppDDz00n3/+eQYPHpwkOeCAAzJs2LCy+QMGDMjll1+eW265JVOnTs1DDz2U4cOHZ8CAAWU9NwAAACzv6tXmzocOHZqBAwemV69e2XTTTTNmzJjFmvX27dtn1KhRSRY266NHj85GG22U3r1754033tCsAwAAwNfss88+mTlzZkaMGJFp06alZ8+eeeCBB9KmTZskybvvvlvuS+ennHJKSkpKcsopp+T999/PaqutlgEDBuSss86qrZcAAAAAVa5Wg3HNOgAAAFS9IUOGZMiQIRUuGz9+fLm/69Wrl5EjR2bkyJE1UBkAAADUjloNxhPNOgAAAAAAAADVq9aeMQ4AAAAAAAAANUEwDgAAAAAAAEBRE4wDAAAAAAAAUNQE4wAAAAAAAAAUNcE4AAAAAAAAAEVNMA4AAAAAAABAUROMAwAAAAAAAFDUBOMAAAAAAAAAFDXBOAAAAAAAAABFTTAOAAAAAAAAQFETjAMAAAAAAABQ1ATjAAAAAAAAABQ1wTgAAAAAAAAARU0wDgAAAAAAAEBRE4wDAAAAAAAAUNTq1XYBAAAAAADAD9vLmw2v7RJqxQZPn1HbJQBQRQTjAPADp/EEAAAAAIDvx63UAQAAAAAAAChqgnEAAAAAAAAAippgHAAAAAAAAICiJhgHAAAAAAAAoKgJxgEAAAAAAAAoaoJxAAAAAAAAAIqaYBwAAAAAAACAoiYYBwAAAAAAAKCo1avtAgBYcby82fDaLqFWbPD0GbVdAgAAAAAArNBcMQ4AAAAAAABAUROMAwAAAAAAAFDUBOMAAAAAAAAAFDXBOAAAAAAAAABFTTAOAAAAAAAAQFETjAMAAAAAAABQ1ATjAAAAAAAAABQ1wTgAAAAAAAAARU0wDgAAAAAAAEBRE4wDAAAAAAAAUNQE4wAAAAAAAAAUNcE4AAAAAAAAAEVNMA4AAAAAAABAUROMAwAAAAAAAFDU6tV2AUDte3mz4bVdQq3Y4OkzarsEAAAAAAAAakClrxh/6623qqMOAAAAWGHptQEAAKB6VToYX3vttbPNNtvkxhtvzJdfflkdNQEAAMAKRa8NAAAA1avSwfikSZPSvXv3DB06NKuvvnoOOeSQPPPMM9VRGwAAAKwQ9NoAAABQvSodjPfs2TMXXXRRPvjgg1x99dX58MMP07dv3/zoRz/K6NGjM3PmzOqoEwAAAIqWXhsAAACqV6WD8UXq1auXPffcM7fffnvOPffcvPHGGzn22GPToUOHHHDAAfnwww+rsk4AAAAoenptAAAAqB7LHIw/99xzOeyww9K2bduMHj06xx57bN5888089NBD+eCDD/LTn/60KusEAACAoqfXBgAAgOpRr7IrjB49Otdcc02mTJmSnXfeOddff3123nnn1KmzMGPv3Llzrr322nTq1KmqawUAAICipNcGAACA6lXpYPzyyy/PgQcemEGDBqVt27YVzmndunWuuuqq710cAAAArAj02gAAAFC9Kh2MP/TQQ1lzzTXLvrW+SKFQyHvvvZc111wzDRo0yMCBA6usSAAAAChmem0AAACoXpV+xniXLl3y0UcfLTY+a9asdO7cuUqKAgAAgBWJXhsAAACqV6WD8UKhUOH4Z599lkaNGn3vggAAAGBFo9cGAACA6rXUt1IfOnRokqSkpCQjRoxIkyZNypYtWLAg//rXv9KzZ88qLxAAAACKlV4bAAAAasZSB+PPP/98koXfYv/3v/+dBg0alC1r0KBBevTokWOPPbbqKwQAAIAipdcGAACAmrHUwfijjz6aJBk8eHAuuuiiNGvWrNqKAgAAgBWBXhsAAABqxlIH44tcc8011VEHAAAArLD02gAAAFC9lioY33PPPXPttdemWbNm2XPPPb917p133lklhQEAAEAx02sDAABAzVmqYLx58+YpKSkp+x0AAAD4fvTaAAAAUHOWKhhfdEu3QqGQ0047LauttloaN25crYUBAABAMdNrAwAAQM2pU5nJhUIha6+9dv7v//6vuuoBAACAFYpeGwAAAKpfpYLxOnXqZJ111snHH39cXfUAAADACqU6eu3LLrssnTp1SqNGjdK7d+8888wz3zr/k08+yeGHH562bdumYcOGWXfddXP//fdXWT0AAABQ2yoVjCfJOeeck+OOOy7/+c9/qqQAzToAAAAruqrstW+99dYMHTo0I0eOzKRJk9KjR4/0798/M2bMqHD+vHnzsv322+ftt9/OHXfckSlTpuTKK69M+/btv3ctAAAA8EOxVM8Y/7oDDjggX3zxRXr06JEGDRos9vyzWbNmLfW2FjXrY8eOTe/evTNmzJj0798/U6ZMSevWrRebv6hZb926de644460b98+77zzTlZZZZXKvgwAAAD4wajKXnv06NE5+OCDM3jw4CTJ2LFjc9999+Xqq6/OiSeeuNj8q6++OrNmzcpTTz2V+vXrJ0k6deq07C8GAAAAfoAqHYyPGTOmynauWQcAAICq67XnzZuXiRMnZtiwYWVjderUSb9+/TJhwoQK17n33nvTp0+fHH744bnnnnuy2mqrZb/99ssJJ5yQunXrVkldAAAAUNsqHYwPHDiwSnasWQcAAICFqqrX/uijj7JgwYK0adOm3HibNm0yefLkCtd566238sgjj+SXv/xl7r///rzxxhs57LDDMn/+/IwcObLCdebOnZu5c+eW/T1nzpwqqR8AAACqS6WD8a/78ssvM2/evHJjzZo1W6p1NesAAACwuO/Tay+L0tLStG7dOldccUXq1q2bTTbZJO+//37OP//8Jfbao0aNymmnnVZtNQEAAEBVq1PZFT7//PMMGTIkrVu3zkorrZQWLVqU+6lOX2/WN9lkk+yzzz45+eSTM3bs2CWuM2rUqDRv3rzsp0OHDtVaIwAAAFRWVfXarVq1St26dTN9+vRy49OnT8/qq69e4Tpt27bNuuuuW+5ObOuvv36mTZu2WEC/yLBhwzJ79uyyn/fee2+pawQAAIDaUOlg/Pjjj88jjzySyy+/PA0bNsyf/vSnnHbaaWnXrl2uv/76pd6OZh0AAAAWqqpeu0GDBtlkk00ybty4srHS0tKMGzcuffr0qXCdzTffPG+88UZKS0vLxl577bW0bds2DRo0qHCdhg0bplmzZuV+AAAA4Ies0sH4X//61/zhD3/IXnvtlXr16mWLLbbIKaeckrPPPjs33XTTUm9Hsw4AAAALVVWvnSRDhw7NlVdemeuuuy6vvvpqDj300Hz++ecZPHhwkuSAAw7IsGHDyuYfeuihmTVrVo466qi89tprue+++3L22Wfn8MMPr9LXCAAAALWp0sH4rFmzstZaayVZ+IyzWbNmJUn69u2bxx9/vFLb0qwDAABA1fba++yzT37/+99nxIgR6dmzZ1544YU88MADadOmTZLk3XffzYcfflg2v0OHDvnHP/6RZ599Nt27d8+RRx6Zo446KieeeGIVvToAAACoffUqu8Jaa62VqVOnZs0110zXrl1z2223ZdNNN81f//rXrLLKKpXa1j777JOZM2dmxIgRmTZtWnr27LlYs16nzv/L7hc168ccc0y6d++e9u3b56ijjsoJJ5xQ2ZcBAAAAPxhV2WsnyZAhQzJkyJAKl40fP36xsT59+uTpp5+u9H4AAABgeVHpYHzw4MF58cUXs9VWW+XEE0/MgAEDcumll2b+/PkZPXp0pQvQrAMAALCiq+peGwAAACiv0sH4McccU/Z7v379Mnny5EycODFrr712unfvXqXFAQAAwIpArw0AAADVq9LB+Dd17NgxHTt2rIpaAAAAgOi1AQAAoKotVTB+8cUXL/UGjzzyyGUuBgAAAFYUem0AAACoOUsVjF944YVLtbGSkhLNOgAAACwFvTYAAADUnKUKxqdOnVrddQAAAMAKRa8NAAAANadObRcAAAAAAAAAANVpqa4YHzp0aM4444ystNJKGTp06LfOHT16dJUUBgAAAMVMrw0AAAA1Z6mC8eeffz7z588v+31JSkpKqqYqAAAAKHJ6bQAAAKg5SxWMP/rooxX+DgAAACwbvTYAAADUHM8YBwAAAAAAAKCoLdUV41/35Zdf5pJLLsmjjz6aGTNmpLS0tNzySZMmVVlxAAAAsCLQawMAAED1qnQw/utf/zoPPvhg9t5772y66aaedQYAAADfk14bAAAAqlelg/G//e1vuf/++7P55ptXRz0AAACwwtFrAwAAQPWq9DPG27dvn5VXXrk6agEAAIAVkl4bAAAAqlelg/ELLrggJ5xwQt55553qqAcAAABWOHptAAAAqF6VvpV6r1698uWXX2attdZKkyZNUr9+/XLLZ82aVWXFAQAAwIpArw0AAADVq9LB+L777pv3338/Z599dtq0aZOSkpLqqAsAAABWGHptAAAAqF6VDsafeuqpTJgwIT169KiOevialzcbXtsl1IoNnj6jtksAAACoUXptAAAAqF6VfsZ4165d87///a86agEAAIAVkl4bAAAAqlelrxg/55xz8rvf/S5nnXVWNtxww8Wee9asWbMqKw4AAABWBHptgIXcQREAgOpS6WB8xx13TJJst9125cYLhUJKSkqyYMGCqqkMAAAAVhB6bQAAAKhelQ7GH3300eqoAwAAAFZYem0AAACoXpUOxrfaaqvqqAMAAABWWHptAAAAqF5LFYy/9NJL+dGPfpQ6derkpZde+ta53bt3r5LCAAAAoJjptQEAAKDmLFUw3rNnz0ybNi2tW7dOz549U1JSkkKhsNg8zz0DAACApaPXBgAAgJqzVMH41KlTs9pqq5X9DgAAAHw/em0AAACoOUsVjHfs2LHC3wEAAIBlo9cGAACAmlNnaSe+9tpreeaZZ8qNjRs3Lttss0023XTTnH322VVeHAAAABQzvTYAAADUjKUOxk844YT87W9/K/t76tSpGTBgQBo0aJA+ffpk1KhRGTNmTHXUCAAAAEVJrw0AAAA1Y6lupZ4kzz33XI4//viyv2+66aasu+66+cc//pEk6d69ey655JIcffTRVV4kAAAAFCO9NgAAANSMpb5i/KOPPsoaa6xR9vejjz6aAQMGlP299dZb5+23367S4gAAAKCY6bUBAACgZix1MN6yZct8+OGHSZLS0tI899xz2WyzzcqWz5s3L4VCoeorBAAAgCKl1wYAAICasdTB+NZbb50zzjgj7733XsaMGZPS0tJsvfXWZctfeeWVdOrUqRpKBAAAgOKk1wYAAICasdTPGD/rrLOy/fbbp2PHjqlbt24uvvjirLTSSmXLb7jhhmy77bbVUiQAAAAUI702AAAA1IylDsY7deqUV199NS+//HJWW221tGvXrtzy0047rdxz0QAAAIBvp9cGAACAmrHUwXiS1KtXLz169Khw2ZLGAQAAgCXTawMAAED1W+pnjAMAAAAAAADA8kgwDgAAAAAAAEBRE4wDAAAAAAAAUNQE4wAAAAAAAAAUtWUKxp944on86le/Sp8+ffL+++8nSW644YY8+eSTVVocAAAArCj02gAAAFB9Kh2M/+Uvf0n//v3TuHHjPP/885k7d26SZPbs2Tn77LOrvEAAAAAodnptAAAAqF6VDsbPPPPMjB07NldeeWXq169fNr755ptn0qRJVVocAAAArAj02gAAAFC9Kh2MT5kyJVtuueVi482bN88nn3xSFTUBAADACkWvDQAAANWr0sH46quvnjfeeGOx8SeffDJrrbVWlRQFAAAAKxK9NgAAAFSvSgfjBx98cI466qj861//SklJST744IPcdNNNOfbYY3PooYdWR40AAABQ1PTaAAAAUL3qVXaFE088MaWlpdluu+3yxRdfZMstt0zDhg1z7LHH5ogjjqiOGgEAAKCo6bUBAACgelU6GC8pKcnJJ5+c4447Lm+88UY+++yzdOvWLU2bNq2O+gAAAKDo6bUBAACgelU6GF+kQYMG6datW1XWAgAAACs0vTYAAABUj0oH459//nnOOeecjBs3LjNmzEhpaWm55W+99VaVFQcAAAArAr02AAAAVK9KB+MHHXRQHnvssey///5p27ZtSkpKqqMuAAAAWGHotQEAAKB6VToY//vf/5777rsvm2++eXXUAwAAACscvTYAAABUrzqVXaFFixZp2bJlddQCAAAAKyS9NgAAAFSvSgfjZ5xxRkaMGJEvvviiOuoBAACAFY5eGwAAAKpXpW+lfsEFF+TNN99MmzZt0qlTp9SvX7/c8kmTJlVZcQAAALAi0GsDAABA9ap0ML777rtXQxkAAACw4tJrAwAAQPWqdDA+cuTI6qgDAAAAVlh6bQAAAKhelX7GOAAAAAAAAAAsT5bqivGWLVvmtddeS6tWrdKiRYuUlJQsce6sWbOqrDgAAAAoVnptAKrCy5sNr+0SasUGT59R2yUAAMuZpQrGL7zwwqy88splv39bsw4AAAB8N702AAAA1JylCsYHDhxY9vugQYOqqxYAAABYYei1AQAAoOZU+hnjkyZNyr///e+yv++5557svvvuOemkkzJv3rxlKuKyyy5Lp06d0qhRo/Tu3TvPPPPMUq13yy23pKSkJLvvvvsy7RcAAAB+CPTaAAAAUL2W6orxrzvkkENy4oknZsMNN8xbb72VffbZJ3vuuWduv/32fPHFFxkzZkyltnfrrbdm6NChGTt2bHr37p0xY8akf//+mTJlSlq3br3E9d5+++0ce+yx2WKLLSr7EgCqhGd4AQBQVfTaAAAAUL0qfcX4a6+9lp49eyZJbr/99my11Va5+eabc+211+Yvf/lLpQsYPXp0Dj744AwePDjdunXL2LFj06RJk1x99dVLXGfBggX55S9/mdNOOy1rrbVWpfcJAAAAPyR6bQAAAKhelb5ivFAopLS0NEny8MMPZ9ddd02SdOjQIR999FGltjVv3rxMnDgxw4YNKxurU6dO+vXrlwkTJixxvdNPPz2tW7fOr3/96zzxxBOVfQkAAADwg7K89dpz587N3Llzy/6eM2dOpWqEFYG7jAEAwA9LpYPxXr165cwzz0y/fv3y2GOP5fLLL0+STJ06NW3atKnUtj766KMsWLBgsfXatGmTyZMnV7jOk08+mauuuiovvPDCUu1Ds77i0XgCAADLm+Wt1x41alROO+20StUFAAAAtanSt1IfM2ZMJk2alCFDhuTkk0/O2muvnSS544478pOf/KTKC/y6Tz/9NPvvv3+uvPLKtGrVaqnWGTVqVJo3b17206FDh2qtEQAAACpreeu1hw0bltmzZ5f9vPfee9VaIwAAAHxflb5ivHv37vn3v/+92Pj555+funXrVmpbrVq1St26dTN9+vRy49OnT8/qq6++2Pw333wzb7/9dgYMGFA2tuhWc/Xq1cuUKVPSpUuXcusMGzYsQ4cOLft7zpw5wnEAAAB+UJa3Xrthw4Zp2LBhpeoCAACA2lTpYHyRiRMn5tVXX02SdOvWLRtvvHGlt9GgQYNssskmGTduXHbfffckC5vvcePGZciQIYvN79q162L/Q8Epp5ySTz/9NBdddFGFgbdmHQAAgOXF8tJrAwAAwPKm0sH4jBkzss8+++Sxxx7LKquskiT55JNPss022+SWW27JaqutVqntDR06NAMHDkyvXr2y6aabZsyYMfn8888zePDgJMkBBxyQ9u3bZ9SoUWnUqFF+9KMflVt/UQ3fHAcAAIDlhV4bAAAAqlelnzF+xBFH5LPPPsvLL7+cWbNmZdasWfnPf/6TOXPm5Mgjj6x0Afvss09+//vfZ8SIEenZs2deeOGFPPDAA2nTpk2S5N13382HH35Y6e0CAADA8kKvDQAAANWr0leMP/DAA3n44Yez/vrrl41169Ytl112WXbYYYdlKmLIkCEV3s4tScaPH/+t61577bXLtE8AAAD4odBrAwAAQPWq9BXjpaWlqV+//mLj9evXT2lpaZUUBQAAACsSvTYAAABUr0oH49tuu22OOuqofPDBB2Vj77//fo455phst912VVocAAAArAj02gAAAFC9Kh2MX3rppZkzZ046deqULl26pEuXLuncuXPmzJmTSy65pDpqBAAAgKKm1wYAAIDqVelnjHfo0CGTJk3Kww8/nMmTJydJ1l9//fTr16/KiwMAAIAVgV4bAAAAqlelg/EkKSkpyfbbb5/tt9++qusBAACAFZJeGwAAAKrPUt9K/ZFHHkm3bt0yZ86cxZbNnj07G2ywQZ544okqLQ4AAACKmV4bAAAAasZSB+NjxozJwQcfnGbNmi22rHnz5jnkkEMyevToKi0OAAAAipleGwAAAGrGUgfjL774YnbcccclLt9hhx0yceLEKikKAAAAVgR6bQAAAKgZSx2MT58+PfXr11/i8nr16mXmzJlVUhQAAACsCPTaAAAAUDPqLe3E9u3b5z//+U/WXnvtCpe/9NJLadu2bZUVBgAAAMVOr83y4uXNhtd2CbVig6fPqO0SAACAKrLUV4zvvPPOGT58eL788svFlv3vf//LyJEjs+uuu1ZpcQAAAFDM9NoAAABQM5b6ivFTTjkld955Z9Zdd90MGTIk6623XpJk8uTJueyyy7JgwYKcfPLJ1VYoAAAAFBu9NgAAANSMpQ7G27Rpk6eeeiqHHnpohg0blkKhkCQpKSlJ//79c9lll6VNmzbVVigAAAAUG702AAAA1IylDsaTpGPHjrn//vvz3//+N2+88UYKhULWWWedtGjRorrqAwAAgKKm1wYAAIDqV6lgfJEWLVrkxz/+cVXXAgAAACssvTYAAABUnzq1XQAAAAAAAAAAVCfBOAAAAAAAAABFTTAOAAAAAAAAQFETjAMAAAAAAABQ1ATjAAAAAAAAABQ1wTgAAAAAAAAARU0wDgAAAAAAAEBRE4wDAAAAAAAAUNQE4wAAAAAAAAAUNcE4AAAAAAAAAEVNMA4AAAAAAABAUROMAwAAAAAAAFDUBOMAAAAAAAAAFDXBOAAAAAAAAABFTTAOAAAAAAAAQFETjAMAAAAAAABQ1ATjAAAAAAAAABQ1wTgAAAAAAAAARU0wDgAAAAAAAEBRE4wDAAAAAAAAUNQE4wAAAAAAAAAUNcE4AAAAAAAAAEVNMA4AAAAAAABAUROMAwAAAAAAAFDUBOMAAAAAAAAAFDXBOAAAAAAAAABFTTAOAAAAAAAAQFETjAMAAAAAAABQ1ATjAAAAAAAAABQ1wTgAAAAAAAAARU0wDgAAAAAAAEBRE4wDAAAAAAAAUNQE4wAAAAAAAAAUNcE4AAAAAAAAAEVNMA4AAAAAAABAUROMAwAAAAAAAFDUBOMAAAAAAAAAFDXBOAAAAAAAAABFTTAOAAAAAAAAQFETjAMAAAAAAABQ1ATjAAAAAAAAABQ1wTgAAAAAAAAARU0wDgAAAAAAAEBRE4wDAAAAAAAAUNTq1XYBAAAAADXl5c2G13YJtWKDp8+o7RIAAABqlSvGAQAAAAAAAChqgnEAAAAoQpdddlk6deqURo0apXfv3nnmmWeWOPfKK6/MFltskRYtWqRFixbp16/ft84HAACA5c0PIhjXrAMAAEDVufXWWzN06NCMHDkykyZNSo8ePdK/f//MmDGjwvnjx4/Pvvvum0cffTQTJkxIhw4dssMOO+T999+v4coBAACgetR6MK5ZBwAAgKo1evToHHzwwRk8eHC6deuWsWPHpkmTJrn66qsrnH/TTTflsMMOS8+ePdO1a9f86U9/SmlpacaNG1fDlQMAAED1qPVgXLMOAAAAVWfevHmZOHFi+vXrVzZWp06d9OvXLxMmTFiqbXzxxReZP39+WrZsWV1lAgAAQI2qV5s7X9SsDxs2rGysqpv1uXPnZu7cuWV/z5kz5/sVDQAAAD9gH330URYsWJA2bdqUG2/Tpk0mT568VNs44YQT0q5du3Lh+tfptQEAAFje1OoV49/WrE+bNm2ptvFdzfqoUaPSvHnzsp8OHTp877oBAACgWJ1zzjm55ZZbctddd6VRo0YVztFrAwAAsLyp9Vupfx9L06wPGzYss2fPLvt57733arhKAAAAqDmtWrVK3bp1M3369HLj06dPz+qrr/6t6/7+97/POeeckwcffDDdu3df4jy9NgAAAMubWg3Ga6JZb9iwYZo1a1buBwAAAIpVgwYNsskmm2TcuHFlY6WlpRk3blz69OmzxPXOO++8nHHGGXnggQfSq1evb92HXhsAAIDlTa0G4zXRrAMAAMCKZujQobnyyitz3XXX5dVXX82hhx6azz//PIMHD06SHHDAARk2bFjZ/HPPPTfDhw/P1VdfnU6dOmXatGmZNm1aPvvss9p6CQAAAFCl6tV2AUOHDs3AgQPTq1evbLrpphkzZsxizXr79u0zatSoJAub9REjRuTmm28ua9aTpGnTpmnatGmtvQ4AAAD4odhnn30yc+bMjBgxItOmTUvPnj3zwAMPpE2bNkmSd999N3Xq/L/vyl9++eWZN29e9t5773LbGTlyZE499dSaLB0AAACqRa0H45p1AAAAqHpDhgzJkCFDKlw2fvz4cn+//fbb1V8QAAAA1KJaD8YTzToAAAAAAAAA1adWnzEOAAAAAAAAANVNMA4AAAAAAABAUROMAwAAAAAAAFDUBOMAAAAAAAAAFDXBOAAAAAAAAABFTTAOAAAAAAAAQFETjAMAAAAAAABQ1ATjAAAAAAAAABQ1wTgAAAAAAAAARU0wDgAAAAAAAEBRE4wDAAAAAAAAUNQE4wAAAAAAAAAUNcE4AAAAAAAAAEVNMA4AAAAAAABAUROMAwAAAAAAAFDU6tV2AQAAAAAAUJNe3mx4bZdQKzZ4+ozaLgEAao0rxgEAAAAAAAAoaoJxAAAAAAAAAIqaYBwAAAAAAACAoiYYBwAAAAAAAKCoCcYBAAAAAAAAKGqCcQAAAAAAAACKmmAcAAAAAAAAgKImGAcAAAAAAACgqAnGAQAAAAAAAChqgnEAAAAAAAAAippgHAAAAAAAAICiJhgHAAAAAAAAoKgJxgEAAAAAAAAoaoJxAAAAAAAAAIqaYBwAAAAAAACAoiYYBwAAAAAAAKCoCcYBAAAAAAAAKGqCcQAAAAAAAACKmmAcAAAAAAAAgKImGAcAAAAAAACgqAnGAQAAAAAAAChqgnEAAAAAAAAAippgHAAAAAAAAICiJhgHAAAAAAAAoKgJxgEAAAAAAAAoaoJxAAAAAAAAAIqaYBwAAAAAAACAoiYYBwAAAAAAAKCoCcYBAAAAAAAAKGqCcQAAAAAAAACKmmAcAAAAAAAAgKImGAcAAAAAAACgqAnGAQAAAAAAAChqgnEAAAAAAAAAippgHAAAAAAAAICiJhgHAAAAAAAAoKgJxgEAAAAAAAAoaoJxAAAAAAAAAIqaYBwAAAAAAACAoiYYBwAAAAAAAKCoCcYBAAAAAAAAKGqCcQAAAAAAAACKmmAcAAAAAAAAgKImGAcAAAAAAACgqAnGAQAAAAAAAChqP4hg/LLLLkunTp3SqFGj9O7dO88888y3zr/99tvTtWvXNGrUKBtuuGHuv//+GqoUAAAAlg96bQAAAPh/aj0Yv/XWWzN06NCMHDkykyZNSo8ePdK/f//MmDGjwvlPPfVU9t133/z617/O888/n9133z277757/vOf/9Rw5QAAAPDDpNcGAACA8mo9GB89enQOPvjgDB48ON26dcvYsWPTpEmTXH311RXOv+iii7LjjjvmuOOOy/rrr58zzjgjG2+8cS699NIarhwAAAB+mPTaAAAAUF692tz5vHnzMnHixAwbNqxsrE6dOunXr18mTJhQ4ToTJkzI0KFDy431798/d999d4Xz586dm7lz55b9PXv27CTJnDlzvmf11e+zr+Z+96Qi9H3/bRy3ynPMlo3jVnmO2bJx3CrPMVs2jlvlOWbLxnGrPMfsh2tRjYVCoZYr+X/02t/O+2nZOG6V55gtG8et8hyzZeO4VZ5jtmwct8pzzJaN41Z5jtkPV3X12rUajH/00UdZsGBB2rRpU268TZs2mTx5coXrTJs2rcL506ZNq3D+qFGjctpppy023qFDh2WsmmrX/PzarmD55LhVnmO2bBy3ynPMlo3jVnmO2bJx3CrPMVs2jlvlLUfH7NNPP03z5s1ru4wkem2WYDl6P/2gOG6V55gtG8et8hyzZeO4VZ5jtmwct8pzzJaN41Z5y9Exq+peu1aD8ZowbNiwct96Ly0tzaxZs7LqqqumpKSkFiuj2MyZMycdOnTIe++9l2bNmtV2ORQx5xo1xblGTXGuUVOca1SHQqGQTz/9NO3atavtUmqUXpua4rObmuJco6Y416gpzjVqinON6lBdvXatBuOtWrVK3bp1M3369HLj06dPz+qrr17hOquvvnql5jds2DANGzYsN7bKKqsse9HwHZo1a+bDnxrhXKOmONeoKc41aopzjar2Q7lSfBG9NsXIZzc1xblGTXGuUVOca9QU5xpVrTp67TpVvsVKaNCgQTbZZJOMGzeubKy0tDTjxo1Lnz59KlynT58+5eYnyUMPPbTE+QAAALAi0WsDAADA4mr9VupDhw7NwIED06tXr2y66aYZM2ZMPv/88wwePDhJcsABB6R9+/YZNWpUkuSoo47KVlttlQsuuCC77LJLbrnlljz33HO54ooravNlAAAAwA+GXhsAAADKq/VgfJ999snMmTMzYsSITJs2LT179swDDzyQNm3aJEnefffd1Knz/y5s/8lPfpKbb745p5xySk466aSss846ufvuu/OjH/2otl4CJFl4K8GRI0cudjtBqGrONWqKc42a4lyjpjjXWJHotSkWPrupKc41aopzjZriXKOmONdYnpQUCoVCbRcBAAAAAAAAANWlVp8xDgAAAAAAAADVTTAOAAAAAAAAQFETjAMAAAAAAABQ1ATjAAAAAAAAABQ1wTh8D6NGjcqPf/zjrLzyymndunV23333TJkypbbLYgVwzjnnpKSkJEcffXRtl0IRev/99/OrX/0qq666aho3bpwNN9wwzz33XG2XRZFZsGBBhg8fns6dO6dx48bp0qVLzjjjjBQKhdoujeXc448/ngEDBqRdu3YpKSnJ3XffXW55oVDIiBEj0rZt2zRu3Dj9+vXL66+/XjvFAlAhvTa1Ra9NddJrUxP02lQXvTbFQjAO38Njjz2Www8/PE8//XQeeuihzJ8/PzvssEM+//zz2i6NIvbss8/mj3/8Y7p3717bpVCE/vvf/2bzzTdP/fr18/e//z2vvPJKLrjggrRo0aK2S6PInHvuubn88stz6aWX5tVXX825556b8847L5dcckltl8Zy7vPPP0+PHj1y2WWXVbj8vPPOy8UXX5yxY8fmX//6V1ZaaaX0798/X375ZQ1XCsCS6LWpDXptqpNem5qi16a66LUpFiUFXxWCKjNz5sy0bt06jz32WLbccsvaLoci9Nlnn2XjjTfOH/7wh5x55pnp2bNnxowZU9tlUUROPPHE/POf/8wTTzxR26VQ5Hbddde0adMmV111VdnYXnvtlcaNG+fGG2+sxcooJiUlJbnrrruy++67J1n4DfZ27drld7/7XY499tgkyezZs9OmTZtce+21+cUvflGL1QKwJHptqptem+qm16am6LWpCXptlmeuGIcqNHv27CRJy5Yta7kSitXhhx+eXXbZJf369avtUihS9957b3r16pWf/exnad26dTbaaKNceeWVtV0WRegnP/lJxo0bl9deey1J8uKLL+bJJ5/MTjvtVMuVUcymTp2aadOmlfvvaPPmzdO7d+9MmDChFisD4Nvotaluem2qm16bmqLXpjbotVme1KvtAqBYlJaW5uijj87mm2+eH/3oR7VdDkXolltuyaRJk/Lss8/WdikUsbfeeiuXX355hg4dmpNOOinPPvtsjjzyyDRo0CADBw6s7fIoIieeeGLmzJmTrl27pm7dulmwYEHOOuus/PKXv6zt0ihi06ZNS5K0adOm3HibNm3KlgHww6LXprrptakJem1qil6b2qDXZnkiGIcqcvjhh+c///lPnnzyydouhSL03nvv5aijjspDDz2URo0a1XY5FLHS0tL06tUrZ599dpJko402yn/+85+MHTtWs06Vuu2223LTTTfl5ptvzgYbbJAXXnghRx99dNq1a+dcAwDK6LWpTnptaopem5qi1wb4dm6lDlVgyJAh+dvf/pZHH300a6yxRm2XQxGaOHFiZsyYkY033jj16tVLvXr18thjj+Xiiy9OvXr1smDBgtoukSLRtm3bdOvWrdzY+uuvn3fffbeWKqJYHXfccTnxxBPzi1/8IhtuuGH233//HHPMMRk1alRtl0YRW3311ZMk06dPLzc+ffr0smUA/HDotaluem1qil6bmqLXpjbotVmeCMbheygUChkyZEjuuuuuPPLII+ncuXNtl0SR2m677fLvf/87L7zwQtlPr1698stf/jIvvPBC6tatW9slUiQ233zzTJkypdzYa6+9lo4dO9ZSRRSrL774InXqlP9/RevWrZvS0tJaqogVQefOnbP66qtn3LhxZWNz5szJv/71r/Tp06cWKwPg6/Ta1BS9NjVFr01N0WtTG/TaLE/cSh2+h8MPPzw333xz7rnnnqy88splz8to3rx5GjduXMvVUUxWXnnlxZ6nt9JKK2XVVVf1nD2q1DHHHJOf/OQnOfvss/Pzn/88zzzzTK644opcccUVtV0aRWbAgAE566yzsuaaa2aDDTbI888/n9GjR+fAAw+s7dJYzn322Wd54403yv6eOnVqXnjhhbRs2TJrrrlmjj766Jx55plZZ5110rlz5wwfPjzt2rXL7rvvXntFA1COXpuaotempui1qSl6baqLXptiUVIoFAq1XQQsr0pKSiocv+aaazJo0KCaLYYVztZbb52ePXtmzJgxtV0KReZvf/tbhg0bltdffz2dO3fO0KFDc/DBB9d2WRSZTz/9NMOHD89dd92VGTNmpF27dtl3330zYsSINPj/2LvzeKvqen/8r8N0AJnkKqMoOCsEKDiQetFEQY0kb0XecsosB3Lga85MYqJ2RZxxpkGNtNJuzpKIA2aKeJNEQyVxADRTRBENzu8Pf546AcrBc87mrPN8Ph778WCv9Vlrv/e6Oy9vXp/1Wc2albo86rHp06dnr732WmX7YYcdlilTpqSioiJjxozJ1Vdfnbfffju77757rrjiimy99dYlqBaA1dFrU0p6bWqLXpu6oNemtui1KQrBOAAAAAAAAACF5hnjAAAAAAAAABSaYBwAAAAAAACAQhOMAwAAAAAAAFBognEAAAAAAAAACk0wDgAAAAAAAEChCcYBAAAAAAAAKDTBOAAAAAAAAACFJhgHAAAAAAAAoNAE4wBAjZkyZUratWtX6jIAAACgMPTaAFAzBOMAsJ47/PDDU1ZWtspr3rx5NfYZZWVlue222z5z3IMPPpgvfelLad++fVq2bJmtttoqhx12WD788MMkyfDhw/P888/XWF0AAABQG/TaANDwCMYBoB4YMmRIXn/99SqvHj161GkNf/7znzNkyJD0798/M2bMyJ/+9KdceumladasWVasWJEkadGiRTp06FCndQEAAMC60GsDQMMiGAeAeqC8vDydOnWq8mrcuHGSj2eW77zzzikvL0/nzp1z2mmn5R//+EflsXvuuWeOP/74nHLKKWnfvn06deqUsWPHVu7v3r17kuSrX/1qysrKKt//u3vvvTedOnXKBRdckF69emWLLbbIkCFDcs0116RFixZJVl3erXv37qudgf+JBQsW5Bvf+EbatWuX9u3b58ADD8z8+fNr5JoBAADAp9FrA0DDIhgHgHrs1Vdfzf7775+ddtopTz/9dK688spcd911Oeecc6qM+8lPfpINNtggf/jDH3LBBRfk7LPPzn333Zck+eMf/5gkueGGG/L6669Xvv93nTp1yuuvv54ZM2asdX1//OMfK2fdv/LKK9l1112zxx57JEk++uijDB48OK1bt85DDz2URx55JK1atcqQIUMql4sDAACAuqbXBoBialLqAgCAz/a73/0urVq1qny/33775ZZbbskVV1yRbt265bLLLktZWVm23XbbvPbaazn11FMzevToNGr08Ry43r17Z8yYMUmSrbbaKpdddlmmTZuWffbZJxtvvHGSpF27dunUqdMaa/j617+ee+65JwMHDkynTp2y6667Zu+9986hhx6aNm3arPaYT86dJCeccEKVfwyYOnVqVq5cmWuvvbZyZvsNN9yQdu3aZfr06dl3330/xxUDAACAT6fXBoCGxR3jAFAP7LXXXpk9e3bl65JLLkmSPPvssxkwYECVJdN22223LF26NK+88krltt69e1c5X+fOnbN48eJq1dC4cePccMMNeeWVV3LBBReka9euOffcc9OzZ8+8/vrrn3rs1Vdfneuuuy6//e1vKxv4p59+OvPmzUvr1q3TqlWrtGrVKu3bt88HH3yQF154oVq1AQAAQHXptQGgYXHHOADUAxtssEG23HLLdT6+adOmVd6XlZVl5cqV63Surl275pBDDskhhxyS8ePHZ+utt87kyZMzbty41Y5/4IEH8oMf/CA333xzlX80WLp0afr165cbb7xxlWP+dfY7AAAA1Aa9NgA0LIJxAKjHtttuu/zqV79KRUVF5Uz2Rx55JK1bt84mm2yy1udp2rRpVqxYUe3P33DDDdO5c+e89957q90/b968fO1rX8sZZ5yRgw46qMq+HXfcMVOnTk2HDh3WuDwcAAAA1DW9NgAUk6XUAaAeO/bYY7NgwYL84Ac/yNy5c3P77bdnzJgxGTlyZOUzz9ZG9+7dM23atCxcuDB///vfVzvmqquuyjHHHJN77703L7zwQubMmZNTTz01c+bMydChQ1cZv2zZsgwdOjQ77LBDvve972XhwoWVryT51re+lY022igHHnhgHnroobz00kuZPn16jj/++CpL0wEAAEBd0msDQDEJxgGgHuvatWvuvPPOPP744+nTp0+OPvroHHnkkTnrrLOqdZ4LL7ww9913X7p165YddthhtWN23nnnLF26NEcffXR69uyZgQMH5rHHHsttt92WgQMHrjJ+0aJFmTt3bqZNm5YuXbqkc+fOla8kadmyZWbMmJFNN900Bx10ULbbbrsceeSR+eCDD8xqBwAAoGT02gBQTGUVFRUVpS4CAAAAAAAAAGqLO8YBAAAAAAAAKDTBOAAAAAAAAACFJhgHAAAAAAAAoNAE4wAAAAAAAAAUmmAcAAAAAAAAgEITjAMAAAAAAABQaIJxAAAAAAAAAApNMA4AAAAAAABAoQnGAQAAAAAAACg0wTgAAAAAAAAAhSYYBwAAAAAAAKDQBOMAAAAAAAAAFJpgHAAAAAAAAIBCE4wDAAAAAAAAUGiCcQAAAAAAAAAKTTAOAAAAAAAAQKEJxgEAAAAAAAAoNME4ABTE2LFjU1ZWljfffLNGzrfnnntmzz33rHw/ffr0lJWV5dZbb62R8wMAAAC1Qw8PAKsSjAMAAAAAwP/v0UcfzdixY/P2229/6ri33347HTp0WKcA+v3338/YsWMzffr0dS8UAKgWwTgAsFr33ntv7r333lKXAQAAAHXq0Ucfzbhx4z4zGB89enTef//9dfqM999/P+PGjROMA0AdEowDAKvVrFmzNGvWrNRlAAAAwHrnmWeeyZVXXplTTz211KVU8Y9//CMffvhhqcsAgPWSYBwACubtt9/O4Ycfnnbt2qVt27Y54ogjqsxgv+GGG/KlL30pHTp0SHl5ebbffvtceeWVq5zn358xvjrLly/Pl7/85bRt2zaPPvpo5s+fn7KyskyZMmWVsWVlZRk7duzn/HYAAACwqunTp6d///5p3rx5tthii1x11VUZO3ZsysrKKseUlZVlxIgRufHGG7PNNtukefPm6devX2bMmFE5ZuzYsfnhD3+YJOnRo0fKyspSVlaW+fPnV/m8E044IV/96lezxx57VLvW+fPnZ+ONN06SjBs3rvIzPumZ19SPH3744enevXuV85SVleV//ud/MmnSpGyxxRYpLy/Pn//858oxK1asyBlnnJFOnTplgw02yFe+8pUsWLBglXPfcsst6devX1q0aJGNNtoo3/72t/Pqq69W+7sBwPqsSakLAABq1je+8Y306NEjEyZMyKxZs3LttdemQ4cOOf/885MkV155ZXr27JmvfOUradKkSf73f/83xx57bFauXJnjjjturT9n2bJlOfDAA/PEE0/k/vvvz0477bTKPxQAAABAbXvqqacyZMiQdO7cOePGjcuKFSty9tlnV4bP/+rBBx/M1KlTc/zxx6e8vDxXXHFFhgwZkscffzy9evXKQQcdlOeffz4333xzLrroomy00UZJUuVct9xySx599NE8++yz69QHb7zxxrnyyitzzDHH5Ktf/WoOOuigJEnv3r3X6fvfcMMN+eCDD/K9730v5eXlad++feUy8D/60Y9SVlaWU089NYsXL86kSZMyaNCgzJ49Oy1atEiSTJkyJUcccUR22mmnTJgwIYsWLcrFF1+cRx55JE899VTatWu3TnUBwPpGMA4ABbPDDjvkuuuuq3z/t7/9Ldddd11lMP7ggw9WNr9JMmLEiAwZMiQTJ05c62B86dKl+fKXv5w5c+bk97//ffr27Vuj3wEAAADW1pgxY9K4ceM88sgj6dKlS5KPJ41vt912q4x95pln8sQTT6Rfv35Jkm9+85vZZpttMnr06Pz6179O7969s+OOO+bmm2/OsGHDqtyhnXw8Sfzkk0/OSSedlO7du69TML7BBhvka1/7Wo455pj07t073/72t6t9jn/1yiuvZN68eVXC+xdffDFJ8tZbb+XZZ59N69atkyQ77rhjvvGNb+Saa67J8ccfn48++iinnnpqevXqlRkzZqR58+ZJkt133z1f/vKXc9FFF2XcuHGfqz4AWF9YSh0ACuboo4+u8n6PPfbI3/72tyxZsiRJqoTi77zzTt58880MHDgwL774Yt55553PPP8777yTfffdN3Pnzs306dOF4gAAAJTMihUrcv/992fYsGGVoXiSbLnlltlvv/1WGT9gwIDKUDxJNt100xx44IG55557smLFis/8vPPOOy8fffRRzjjjjJr5AjXgv/7rv1Z7d3ySHHrooZWheJJ87WtfS+fOnXPnnXcmSZ544oksXrw4xx57bGUoniQHHHBAtt1229xxxx21WzwA1CF3jANAwWy66aZV3m+44YZJkr///e9p06ZNHnnkkYwZMyYzZ86s8uzx5OPQu23btp96/hNPPDEffPBBnnrqqfTs2bNmiwcAAIBqWLx4cZYtW5Ytt9xylX2r27bVVlutsm3rrbfO+++/nzfeeCOdOnVa42fNnz8/P/7xj3P55ZenVatWn6/wGtSjR4817vv371tWVpYtt9yy8k73v/71r0mSbbbZZpVjt9122zz88MM1VygAlJg7xgGgYBo3brza7RUVFXnhhRey9957580338zEiRNzxx135L777stJJ52UJFm5cuVnnv/AAw9MRUVFzjvvvFXGl5WVrfaYtZl1DwAAAOuz0aNHp2vXrtlzzz0zf/78zJ8/PwsXLkySvPHGG5k/f/5a9dWfpbq99b+uDAcArJk7xgGgAfnf//3fLF++PL/97W+r3Fn+wAMPrPU5hg0bln333TeHH354WrdunSuvvLJy3yd3p7/99ttVjvlkBjoAAADUpA4dOqR58+aZN2/eKvtWt+0vf/nLKtuef/75tGzZsnI58jUF0y+//HLmzZuXzTfffJV9xx57bJKPV2tr167dZ9a9ps9IPu6tP3lG+L9al976379vRUVF5s2bl969eydJNttssyTJc889ly996UtVxj733HOV+wGgCNwxDgANyCd3k1dUVFRue+edd3LDDTdU6zyHHnpoLrnkkkyePDmnnnpq5fY2bdpko402yowZM6qMv+KKKz5H1QAAALB6jRs3zqBBg3Lbbbfltddeq9w+b9683HXXXauMnzlzZmbNmlX5fsGCBbn99tuz7777VvbMG2ywQZJVJ32fc845+c1vflPlNX78+CTJKaeckt/85jeVx36Wli1brvYzkmSLLbbI3Llz88Ybb1Rue/rpp/PII4+s1bn/1U9/+tO8++67le9vvfXWvP7665XPX+/fv386dOiQyZMnZ/ny5ZXj7rrrrjz77LM54IADqv2ZALC+csc4ADQg++67b5o1a5ahQ4fm+9//fpYuXZprrrkmHTp0yOuvv16tc40YMSJLlizJmWeembZt2+aMM85Iknz3u9/Neeedl+9+97vp379/ZsyYkeeff742vg4AAABk7Nixuffee7PbbrvlmGOOyYoVK3LZZZelV69emT17dpWxvXr1yuDBg3P88cenvLy8ciL3uHHjKsf069cvSXLmmWfmm9/8Zpo2bZqhQ4dm9913X+WzP7k7fKeddsqwYcPWuuYWLVpk++23z9SpU7P11lunffv26dWrV3r16pXvfOc7mThxYgYPHpwjjzwyixcvzuTJk9OzZ88sWbKkWtemffv22X333XPEEUdk0aJFmTRpUrbccsscddRRSZKmTZvm/PPPzxFHHJGBAwfm4IMPzqJFi3LxxRene/fulY9eA4AicMc4ADQg22yzTW699daUlZXl5JNPzuTJk/O9730vJ5xwwjqd74wzzsgpp5ySM888M5dffnmSj5+5duSRR+bWW2/NKaeckhUrVqx2lj4AAADUhH79+uWuu+7KhhtumFGjRuW6667L2Wefnb333jvNmzevMnbgwIGZNGlSfvazn2X06NFp37597rrrrsqlxZOPQ+7x48fn6aefzuGHH56DDz64yt3bNeXaa69N165dc9JJJ+Xggw/OrbfemiTZbrvt8tOf/jTvvPNORo4cmd/+9rf52c9+lh133LHan3HGGWfkgAMOyIQJE3LxxRdn7733zrRp0yrvWE+Sww8/PFOnTs2HH36YU089NVdddVW++tWv5uGHH16rZeEBoL4oq/jXtVQBAAAAAKAAhg0bljlz5lQ+Z7usrCzHHXdcLrvsshJXBgCUgjvGAQAAAACo15YtW1bl/V/+8pfceeed2XPPPUtTEACw3vGMcQAAAAAA6rXNN988hx9+eDbffPP89a9/zZVXXplmzZrllFNOqdM6VqxY8ZnLrrdq1SqtWrWqo4oAgE8IxgEAAAAAqNeGDBmSm2++OQsXLkx5eXkGDBiQc889N1tttVWd1rFgwYL06NHjU8eMGTMmY8eOrZuCAIBKnjEOAAAAAAA14IMPPsjDDz/8qWM233zzbL755nVUEQDwCcE4AAAAAAAAAIXWqNQFAAAAAAAAAEBtanDPGF+5cmVee+21tG7dOmVlZaUuBwAAgHqsoqIi7777brp06ZJGjRru3HO9NgAAADWltnrtBheMv/baa+nWrVupywAAAKBAFixYkE022aTUZZSMXhsAAICaVtO9doMLxlu3bp3k4wvZpk2bElcDAABAfbZkyZJ069atstdsqPTaAAAA1JTa6rUbXDD+yZJubdq00awDAABQIxr68uF6bQAAAGpaTffaDfcBaAAAAAAAAAA0CIJxAAAAAAAAAApNMA4AAAAAAABAoQnGAQAAAAAAACi0kgbjM2bMyNChQ9OlS5eUlZXltttu+8xjpk+fnh133DHl5eXZcsstM2XKlFqvEwAAAAAAAID6q6TB+HvvvZc+ffrk8ssvX6vxL730Ug444IDstddemT17dk488cR897vfzT333FPLlQIAAAAAAABQX5U0GN9vv/1yzjnn5Ktf/epajZ88eXJ69OiRCy+8MNttt11GjBiRr33ta7noootquVIAAACoH6zOBgAAAKuqV88YnzlzZgYNGlRl2+DBgzNz5swSVQQAAADrF6uzAQAAwKqalLqA6li4cGE6duxYZVvHjh2zZMmSLFu2LC1atFjlmOXLl2f58uWV75csWVLrdQIAAECp7Lffftlvv/3Wevy/rs6WJNttt10efvjhXHTRRRk8eHBtlQkAAAB1ql7dMb4uJkyYkLZt21a+unXrVuqSAAAAYL2xLquzLV++PEuWLKnyAgAAgPVZvQrGO3XqlEWLFlXZtmjRorRp02a1d4snyemnn5533nmn8rVgwYK6KBUAAADqhc9anW11TEIHAACgvqlXwfiAAQMybdq0Ktvuu+++DBgwYI3HlJeXp02bNlVeAAAAwLozCR0AAID6pqTPGF+6dGnmzZtX+f6ll17K7Nmz0759+2y66aY5/fTT8+qrr+anP/1pkuToo4/OZZddllNOOSXf+c538vvf/z6//OUvc8cdd5TqKwAAAEC9ti6rs5WXl6e8vLwuygMAAIAaUdI7xp944onssMMO2WGHHZIkI0eOzA477JDRo0cnSV5//fW8/PLLleN79OiRO+64I/fdd1/69OmTCy+8MNdee20GDx5ckvoBAACgvluX1dkAAACgvinpHeN77rlnKioq1rh/ypQpqz3mqaeeqsWqAAAA1i9zdh1V6hJKoudj40tdQr1kdTYAAOoz/c+6cd3gs5U0GAcAAABq1hNPPJG99tqr8v3IkSOTJIcddlimTJmyxtXZTjrppFx88cXZZJNNrM4GAAAUnskEDY9gHAAAAArE6mwAAACwqpI+YxwAAAAAAAAAaptgHAAAAAAAAIBCE4wDAAAAAAAAUGiCcQAAAAAAAAAKTTAOAAAAAAAAQKEJxgEAAAAAAAAoNME4AAAAAAAAAIUmGAcAAAAAAACg0JqUugAAAKBhmbPrqFKXUBI9Hxtf6hIAAAAAGix3jAMAAAAAAABQaIJxAAAAAAAAAApNMA4AAAAAAABAoXnGOAAAAAAAQC2Ys+uoUpdQEj0fG1/qEgBW4Y5xAAAAAAAAAApNMA4AAAAAAABAoQnGAQAAAAAAACg0wTgAAAAAAAAAhSYYBwAAAAAAAKDQBOMAAAAAAAAAFJpgHAAAAAAAAIBCE4wDAAAAAAAAUGiCcQAAAAAAAAAKTTAOAAAAAAAAQKEJxgEAAAAAAAAotCalLgAAAAAAAFi/zdl1VKlLKImej40vdQkA1BB3jAMAAAAAAABQaIJxAAAAAAAAAApNMA4AAAAAAABAoQnGAQAAAAAAACg0wTgAAAAAAAAAhSYYBwAAAAAAAKDQBOMAAAAAAAAAFJpgHAAAAAAAAIBCa1LqAgAAoL6as+uoUpdQEj0fG1/qEgAAAACgWtwxDgAAAAAAAEChCcYBAAAAAAAAKDTBOAAAAAAAAACFJhgHAAAAAAAAoNAE4wAAAAAAAAAUWpNSFwAAfLo5u44qdQkl0fOx8aUuAQAAAACAgnDHOAAAAAAAAACFJhgHAAAAAAAAoNAE4wAAAAAAAAAUmmAcAAAAAAAAgEITjAMAAAAAAABQaIJxAAAAAAAAAApNMA4AAAAAAABAoQnGAQAAAAAAACg0wTgAAAAAAAAAhSYYBwAAAAAAAKDQBOMAAAAAAAAAFJpgHAAAAAAAAIBCE4wDAAAAAAAAUGiCcQAAAAAAAAAKTTAOAAAAAAAAQKEJxgEAAAAAAAAoNME4AAAAAAAAAIUmGAcAAAAAAACg0EoejF9++eXp3r17mjdvnl122SWPP/74p46fNGlSttlmm7Ro0SLdunXLSSedlA8++KCOqgUAAAAAAACgvilpMD516tSMHDkyY8aMyaxZs9KnT58MHjw4ixcvXu34m266KaeddlrGjBmTZ599Ntddd12mTp2aM844o44rBwAAAAAAAKC+KGkwPnHixBx11FE54ogjsv3222fy5Mlp2bJlrr/++tWOf/TRR7Pbbrvlv//7v9O9e/fsu+++Ofjggz/zLnMAAABoSKzOBgAAAFWVLBj/8MMP8+STT2bQoEH/LKZRowwaNCgzZ85c7TFf/OIX8+STT1Y29C+++GLuvPPO7L///nVSMwAAAKzvrM4GAAAAq2pSqg9+8803s2LFinTs2LHK9o4dO2bu3LmrPea///u/8+abb2b33XdPRUVF/vGPf+Too4/+1GZ9+fLlWb58eeX7JUuW1MwXAAAAgPXQv67OliSTJ0/OHXfckeuvvz6nnXbaKuP/dXW2JOnevXsOPvjg/OEPf6jTugEAAKA2lXQp9eqaPn16zj333FxxxRWZNWtWfv3rX+eOO+7I+PHj13jMhAkT0rZt28pXt27d6rBiAAAAqDt1tTrb8uXLs2TJkiovAAAAWJ+V7I7xjTbaKI0bN86iRYuqbF+0aFE6deq02mNGjRqVQw45JN/97neTJF/4whfy3nvv5Xvf+17OPPPMNGq0as5/+umnZ+TIkZXvlyxZIhwHAACgkOpqdbYJEyZk3LhxNVo7AAAA1KaS3THerFmz9OvXL9OmTavctnLlykybNi0DBgxY7THvv//+KuF348aNkyQVFRWrPaa8vDxt2rSp8gIAAAA+ti6rs51++ul55513Kl8LFiyow4oBAACg+kp2x3iSjBw5Mocddlj69++fnXfeOZMmTcp7771X+Ry0Qw89NF27ds2ECROSJEOHDs3EiROzww47ZJdddsm8efMyatSoDB06tDIgBwAAgIaqrlZnKy8vT3l5ec1/AQAAAKglJQ3Ghw8fnjfeeCOjR4/OwoUL07dv39x9992VS769/PLLVRrws846K2VlZTnrrLPy6quvZuONN87QoUPzox/9qFRfAQAAANYb/7o627Bhw5L8c3W2ESNGrPaYdVmdDQAAAOqbkgbjSTJixIg1NufTp0+v8r5JkyYZM2ZMxowZUweVAQAAQP1jdTYAAABYVcmDcQAAAKDmWJ0NAAAAViUYBwAAgIKxOhsAfLo5u44qdQkl0fOx8aUuAQBKptFnDwEAAAAAAACA+kswDgAAAAAAAEChCcYBAAAAAAAAKDTBOAAAAAAAAACFJhgHAAAAAAAAoNAE4wAAAAAAAAAUmmAcAAAAAAAAgEITjAMAAAAAAABQaIJxAAAAAAAAAApNMA4AAAAAAABAoTUpdQEAAKwf5uw6qtQllETPx8aXugQAAAAAoJa5YxwAAAAAAACAQhOMAwAAAAAAAFBognEAAAAAAAAACk0wDgAAAAAAAEChCcYBAAAAAAAAKDTBOAAAAAAAAACFJhgHAAAAAAAAoNAE4wAAAAAAAAAUmmAcAAAAAAAAgEITjAMAAAAAAABQaIJxAAAAAAAAAApNMA4AAAAAAABAoQnGAQAAAAAAACg0wTgAAAAAAAAAhSYYBwAAAAAAAKDQBOMAAAAAAAAAFJpgHAAAAAAAAIBCE4wDAAAAAAAAUGiCcQAAAAAAAAAKTTAOAAAAAAAAQKEJxgEAAAAAAAAoNME4AAAAAAAAAIUmGAcAAAAAAACg0ATjAAAAAAAAABRatYPxF198sTbqAAAAgAZLrw0AAAC1q9rB+JZbbpm99torP//5z/PBBx/URk0AAADQoOi1AQAAoHZVOxifNWtWevfunZEjR6ZTp075/ve/n8cff7w2agMAAIAGQa8NAAAAtavawXjfvn1z8cUX57XXXsv111+f119/Pbvvvnt69eqViRMn5o033qiNOgEAAKCw9NoAAABQu6odjH+iSZMmOeigg3LLLbfk/PPPz7x583LyySenW7duOfTQQ/P666/XZJ0AAABQeHptAAAAqB1N1vXAJ554Itdff31+8YtfZIMNNsjJJ5+cI488Mq+88krGjRuXAw880LJvAAAAUA16bQCqa86uo0pdQkn0fGx8qUsAAOqZagfjEydOzA033JDnnnsu+++/f376059m//33T6NGH9983qNHj0yZMiXdu3ev6VoBAACgkPTaAAAAULuqHYxfeeWV+c53vpPDDz88nTt3Xu2YDh065LrrrvvcxQEAAEBDoNcGAACA2lXtYPy+++7LpptuWjlr/RMVFRVZsGBBNt100zRr1iyHHXZYjRUJAAAARabXBgAAgNrV6LOHVLXFFlvkzTffXGX7W2+9lR49etRIUQAAANCQ6LUBAACgdlU7GK+oqFjt9qVLl6Z58+afuyAAAABoaPTaAAAAULvWein1kSNHJknKysoyevTotGzZsnLfihUr8oc//CF9+/at8QIBAACgqPTaAAAAUDfWOhh/6qmnknw8i/1Pf/pTmjVrVrmvWbNm6dOnT04++eSarxAAAAAKSq8NAAAAdWOtg/EHHnggSXLEEUfk4osvTps2bWqtKAAAAGgI9NoAAABQN9Y6GP/EDTfcUBt1AAAAQIOl1wYAAIDatVbB+EEHHZQpU6akTZs2Oeiggz517K9//esaKQwAAACKTK8NAAAAdWetgvG2bdumrKys8s8AAADA56PXBgAAgLqzVsH4J0u6VVRUZNy4cdl4443TokWLWi0MAAAAikyvDQAAAHWnUXUGV1RUZMstt8wrr7xSW/UAAABAg6LXBgAAgNpXrWC8UaNG2WqrrfK3v/2ttuoBAACABkWvDQAAALWvWsF4kpx33nn54Q9/mGeeeaY26gEAAIAGR68NAAAAtWutnjH+rw499NC8//776dOnT5o1a7bK88/eeuutGisOAAAAGgK9NgAAANSuagfjkyZNqoUyAAAAoOHSawMAAEDtqnYwfthhh9VoAZdffnl+/OMfZ+HChenTp08uvfTS7Lzzzmsc//bbb+fMM8/Mr3/967z11lvZbLPNMmnSpOy///41WhcAAADUlZrutQEAAICqqv2M8X/1wQcfZMmSJVVe1TF16tSMHDkyY8aMyaxZs9KnT58MHjw4ixcvXu34Dz/8MPvss0/mz5+fW2+9Nc8991yuueaadO3a9fN8DQAAAFhvfN5eO/l4Enr37t3TvHnz7LLLLnn88cc/dfzbb7+d4447Lp07d055eXm23nrr3Hnnnev6FQAAAGC9U+07xt97772ceuqp+eUvf5m//e1vq+xfsWLFWp9r4sSJOeqoo3LEEUckSSZPnpw77rgj119/fU477bRVxl9//fV566238uijj6Zp06ZJku7du1f3KwAAAMB6pSZ77U8moU+ePDm77LJLJk2alMGDB+e5555Lhw4dVhn/yST0Dh065NZbb03Xrl3z17/+Ne3atfs8XwkAAADWK9W+Y/yUU07J73//+1x55ZUpLy/Ptddem3HjxqVLly756U9/utbn+fDDD/Pkk09m0KBB/yymUaMMGjQoM2fOXO0xv/3tbzNgwIAcd9xx6dixY3r16pVzzz23Wv9AAAAAAOubmuq1k6qT0LfffvtMnjw5LVu2zPXXX7/a8Z9MQr/tttuy2267pXv37hk4cGD69OlTE18NAAAA1gvVDsb/93//N1dccUX+67/+K02aNMkee+yRs846K+eee25uvPHGtT7Pm2++mRUrVqRjx45Vtnfs2DELFy5c7TEvvvhibr311qxYsSJ33nlnRo0alQsvvDDnnHPOGj9n+fLln3sJOgAAAKhNNdVrm4QOAAAAq1ftYPytt97K5ptvniRp06ZN3nrrrSTJ7rvvnhkzZtRsdf9m5cqV6dChQ66++ur069cvw4cPz5lnnpnJkyev8ZgJEyakbdu2la9u3brVao0AAABQXTXVa5uEDgAAAKtX7WB88803z0svvZQk2XbbbfPLX/4yycez26vz/LGNNtoojRs3zqJFi6psX7RoUTp16rTaYzp37pytt946jRs3rty23XbbZeHChfnwww9Xe8zpp5+ed955p/K1YMGCta4RAAAA6kJN9drrwiR0AAAAGoIm1T3giCOOyNNPP52BAwfmtNNOy9ChQ3PZZZflo48+ysSJE9f6PM2aNUu/fv0ybdq0DBs2LMnHzfi0adMyYsSI1R6z22675aabbsrKlSvTqNHHmf7zzz+fzp07p1mzZqs9pry8POXl5dX7kgBAvTZn11GlLqEkej42vtQlALCOaqrXXtdJ6E2bNl3jJPTV9dunn356Ro4cWfl+yZIlwnEAAADWa9UOxk866aTKPw8aNChz587Nk08+mS233DK9e/eu1rlGjhyZww47LP3798/OO++cSZMm5b333ssRRxyRJDn00EPTtWvXTJgwIUlyzDHH5LLLLssJJ5yQH/zgB/nLX/6Sc889N8cff3x1vwYAAACsN2qq1zYJHQAAAFav2sH4v9tss82y2WabrdOxw4cPzxtvvJHRo0dn4cKF6du3b+6+++7KZ6G9/PLLlU15knTr1i333HNPTjrppPTu3Ttdu3bNCSeckFNPPfXzfg0AAABYb3yeXtskdAAAAFjVWgXjl1xyyVqfsLqN84gRI9Y4a3369OmrbBswYEAee+yxan0GAAAArG9qq9c2CR0AAABWtVbB+EUXXbRWJysrKzOjHAAAANZCbfbaJqEDAABAVWsVjL/00ku1XQcAAAA0KHptgFXN2XVUqUsoiZ6PjS91CQAAhdfos4cAAAAAAAAAQP21VneMjxw5MuPHj88GG2yQkSNHfurYiRMn1khhAAAAUGR6bQAAAKg7axWMP/XUU/noo48q/7wmZWVlNVMVAAAAFJxeGwAAAOrOWgXjDzzwwGr/DAAAAKwbvTYAAADUHc8YBwAAAAAAAKDQ1uqO8X/1wQcf5NJLL80DDzyQxYsXZ+XKlVX2z5o1q8aKAwAAgIZArw0AAAC1q9rB+JFHHpl77703X/va17Lzzjt71hkAAAB8TnptAAAAqF3VDsZ/97vf5c4778xuu+1WG/UAAABAg6PXBgAAgNpV7WeMd+3aNa1bt66NWgAAAKBB0msDAABA7ap2MH7hhRfm1FNPzV//+tfaqAcAAAAaHL02AAAA1K5qL6Xev3//fPDBB9l8883TsmXLNG3atMr+t956q8aKAwAAgIZArw0AAAC1q9rB+MEHH5xXX3015557bjp27JiysrLaqAsAAAAaDL02FM+cXUeVuoSS6PnY+FKXAAAAq1XtYPzRRx/NzJkz06dPn9qoBwAAABocvTYAAADUrmo/Y3zbbbfNsmXLaqMWAAAAaJD02gAAAFC7qh2Mn3feefl//+//Zfr06fnb3/6WJUuWVHkBAAAA1aPXBgAAgNpV7aXUhwwZkiTZe++9q2yvqKhIWVlZVqxYUTOVAQAAQAOh1wYAAIDaVe1g/IEHHqiNOgAAAKDB0msDAABA7ap2MD5w4MDaqAMAAAAaLL02AAAA1K61Csb/7//+L7169UqjRo3yf//3f586tnfv3jVSGAAAABSZXhsAAADqzloF43379s3ChQvToUOH9O3bN2VlZamoqFhlnOeeAQAAwNrRawMAAEDdWatg/KWXXsrGG29c+WcAAADg89FrAwAAQN1Zq2B8s802W+2fAQAAgHWj1wYAAIC602htBz7//PN5/PHHq2ybNm1a9tprr+y8884599xza7w4AAAAKDK9NgAAANSNtQ7GTz311Pzud7+rfP/SSy9l6NChadasWQYMGJAJEyZk0qRJtVEjAAAAFJJeGwAAAOrGWi2lniRPPPFETjnllMr3N954Y7beeuvcc889SZLevXvn0ksvzYknnljjRQIAAEAR6bUBAACgbqz1HeNvvvlmNtlkk8r3DzzwQIYOHVr5fs8998z8+fNrtDgAAAAoMr02AAAA1I21Dsbbt2+f119/PUmycuXKPPHEE9l1110r93/44YepqKio+QoBAACgoPTaAAAAUDfWOhjfc889M378+CxYsCCTJk3KypUrs+eee1bu//Of/5zu3bvXQokAAABQTHptAAAAqBtr/YzxH/3oR9lnn32y2WabpXHjxrnkkkuywQYbVO7/2c9+li996Uu1UiQAAAAUkV4bAAAA6sZaB+Pdu3fPs88+mzlz5mTjjTdOly5dquwfN25cleeiAQAAAJ9Orw0AAAB1Y62D8SRp0qRJ+vTps9p9a9oOAAAArJleGwAAAGrfWj9jHAAAAAAAAADqI8E4AAAAAAAAAIUmGAcAAAAAAACg0ATjAAAAAAAAABTaOgXjDz30UL797W9nwIABefXVV5MkP/vZz/Lwww/XaHEAAADQUOi1AQAAoPZUOxj/1a9+lcGDB6dFixZ56qmnsnz58iTJO++8k3PPPbfGCwQAAICi02sDAABA7ap2MH7OOedk8uTJueaaa9K0adPK7bvttltmzZpVo8UBAABAQ6DXBgAAgNpV7WD8ueeey3/+53+usr1t27Z5++23a6ImAAAAaFD02gAAAFC7qh2Md+rUKfPmzVtl+8MPP5zNN9+8RooCAACAhkSvDQAAALWr2sH4UUcdlRNOOCF/+MMfUlZWltdeey033nhjTj755BxzzDG1USMAAAAUml4bAAAAaleT6h5w2mmnZeXKldl7773z/vvv5z//8z9TXl6ek08+OT/4wQ9qo0YAAAAoNL02AAAA1K5qB+NlZWU588wz88Mf/jDz5s3L0qVLs/3226dVq1a1UR8AAAAUnl4bAAAAale1g/FPNGvWLNtvv31N1gIAAAANml4bAAAAake1g/H33nsv5513XqZNm5bFixdn5cqVVfa/+OKLNVYcAMUyZ9dRpS6hJHo+Nr7UJQAA6zm9NgAAANSuagfj3/3ud/Pggw/mkEMOSefOnVNWVlYbdQEAAECDodcGAACA2lXtYPyuu+7KHXfckd1226026gEAAIAGR68NAAAAtatRdQ/YcMMN0759+9qoBQAAABokvTYAAADUrmoH4+PHj8/o0aPz/vvv10Y9AAAA0ODotQEAAKB2VXsp9QsvvDAvvPBCOnbsmO7du6dp06ZV9s+aNavGigMAAICGQK8NAAAAtavawfiwYcNqoQwAAABouPTaAAAAULuqHYyPGTOmNuoAAACABkuvDQAAALWr2sE4AB+bs+uoUpdQEj0fG1/qEgAAAAAAAKplrYLx9u3b5/nnn89GG22UDTfcMGVlZWsc+9Zbb9VYcQAAAFBUem0AAACoO2sVjF900UVp3bp15Z8/rVkHAAAAPpteGwAAAOrOWgXjhx12WOWfDz/88NqqBQAAABoMvTYAAADUnUbVPWDWrFn505/+VPn+9ttvz7Bhw3LGGWfkww8/rNHiAAAAoCHQawMAAEDtqnYw/v3vfz/PP/98kuTFF1/M8OHD07Jly9xyyy055ZRTarxAAAAAKDq9NgAAANSuagfjzz//fPr27ZskueWWWzJw4MDcdNNNmTJlSn71q1+tUxGXX355unfvnubNm2eXXXbJ448/vlbH/eIXv0hZWVmGDRu2Tp8LAAAA64Pa6LUBAACAf6p2MF5RUZGVK1cmSe6///7sv//+SZJu3brlzTffrHYBU6dOzciRIzNmzJjMmjUrffr0yeDBg7N48eJPPW7+/Pk5+eSTs8cee1T7MwEAAGB9UtO9dmISOgAAAPyragfj/fv3zznnnJOf/exnefDBB3PAAQckSV566aV07Nix2gVMnDgxRx11VI444ohsv/32mTx5clq2bJnrr79+jcesWLEi3/rWtzJu3Lhsvvnm1f5MAAAAWJ/UdK9tEjoAAABUVe1gfNKkSZk1a1ZGjBiRM888M1tuuWWS5NZbb80Xv/jFap3rww8/zJNPPplBgwb9s6BGjTJo0KDMnDlzjcedffbZ6dChQ4488sjqlg8AAADrnZrstROT0AEAAODfNanuAb17986f/vSnVbb/+Mc/TuPGjat1rjfffDMrVqxYZfZ7x44dM3fu3NUe8/DDD+e6667L7Nmz1+ozli9fnuXLl1e+X7JkSbVqBAAAgNpWk732J5PQTz/99Mpt1Z2E/tBDD33qZ+i1AQAAqG+qHYx/4sknn8yzzz6bJNl+++2z44471lhRa/Luu+/mkEMOyTXXXJONNtporY6ZMGFCxo0bV8uVQf02Z9dRpS6hJHo+Nr7UJQAAQBU10WvXxSR0vTYAAAD1TbWD8cWLF2f48OF58MEH065duyTJ22+/nb322iu/+MUvsvHGG6/1uTbaaKM0btw4ixYtqrJ90aJF6dSp0yrjX3jhhcyfPz9Dhw6t3LZy5cqPv0iTJnnuueeyxRZbVDnm9NNPz8iRIyvfL1myJN26dVvrGgEAAKC21WSvXV3rMgldrw0AAEB9U+1njP/gBz/I0qVLM2fOnLz11lt566238swzz2TJkiU5/vjjq3WuZs2apV+/fpk2bVrltpUrV2batGkZMGDAKuO33Xbb/OlPf8rs2bMrX1/5yley1157Zfbs2attwsvLy9OmTZsqLwAAAFif1GSv/XkmoTdp0iRNmjTJT3/60/z2t79NkyZN8sILL6xyjF4bAACA+qbad4zffffduf/++7PddttVbtt+++1z+eWXZ9999612ASNHjsxhhx2W/v37Z+edd86kSZPy3nvv5YgjjkiSHHrooenatWsmTJiQ5s2bp1evXlWO/2Qm/b9vBwAAgPqiJnvtf52EPmzYsCT/nIQ+YsSIVcZ/Mgn9X5111ll59913c/HFF7sTHAAAgEKodjC+cuXKNG3adJXtTZs2rVzWvDqGDx+eN954I6NHj87ChQvTt2/f3H333ZXPQnv55ZfTqFG1b2wHAACAeqOme22T0AEAAKCqagfjX/rSl3LCCSfk5ptvTpcuXZIkr776ak466aTsvffe61TEiBEjVjtrPUmmT5/+qcdOmTJlnT4TAAAA1hc13WubhA4AAABVVTsYv+yyy/KVr3wl3bt3r1xObcGCBenVq1d+/vOf13iBAAAAUHS10WubhA4AAAD/VO1gvFu3bpk1a1buv//+zJ07N0my3XbbZdCgQTVeHAAAADQEem0AAACoXdUOxpOkrKws++yzT/bZZ5+argcAAAAaJL02AAAA1J61fqDY73//+2y//fZZsmTJKvveeeed9OzZMw899FCNFgcAAABFptcGAACAurHWd4xPmjQpRx11VNq0abPKvrZt2+b73/9+Jk6cmD322KNGCwQAAICi0mvXvTm7jip1CSXR87HxpS4BAACgpNb6jvGnn346Q4YMWeP+fffdN08++WSNFAUAAAANgV4bAAAA6sZaB+OLFi1K06ZN17i/SZMmeeONN2qkKAAAAGgI9NoAAABQN9Y6GO/atWueeeaZNe7/v//7v3Tu3LlGigIAAICGQK8NAAAAdWOtg/H9998/o0aNygcffLDKvmXLlmXMmDH58pe/XKPFAQAAQJHptQEAAKBuNFnbgWeddVZ+/etfZ+utt86IESOyzTbbJEnmzp2byy+/PCtWrMiZZ55Za4UCAABA0ei1AQAAoG6sdTDesWPHPProoznmmGNy+umnp6KiIklSVlaWwYMH5/LLL0/Hjh1rrVAAAAAoGr02AAAA1I21DsaTZLPNNsudd96Zv//975k3b14qKiqy1VZbZcMNN6yt+gAAAKDQ9NoAAABQ+6oVjH9iww03zE477VTTtQAAAECDpdcGAACA2tOo1AUAAAAAAAAAQG0SjAMAAAAAAABQaIJxAAAAAAAAAApNMA4AAAAAAABAoQnGAQAAAAAAACg0wTgAAAAAAAAAhSYYBwAAAAAAAKDQBOMAAAAAAAAAFJpgHAAAAAAAAIBCE4wDAAAAAAAAUGhNSl0A1LQ5u44qdQkl0fOx8aUuAQAAAAAAANZL7hgHAAAAAAAAoNAE4wAAAAAAAAAUmmAcAAAAAAAAgEITjAMAAAAAAABQaIJxAAAAAAAAAApNMA4AAAAAAABAoTUpdQEAAAAArN/m7Dqq1CWURM/Hxpe6BAAAoIa4YxwAAAAAAACAQhOMAwAAAAAAAFBognEAAAAAAAAACk0wDgAAAAAAAEChCcYBAAAAAAAAKDTBOAAAAAAAAACFJhgHAAAAAAAAoNAE4wAAAAAAAAAUmmAcAAAAAAAAgEITjAMAAAAAAABQaIJxAAAAAAAAAApNMA4AAAAAAABAoQnGAQAAAAAAACg0wTgAAAAAAAAAhSYYBwAAAAAAAKDQBOMAAAAAAAAAFJpgHAAAAAAAAIBCE4wDAAAAAAAAUGiCcQAAAAAAAAAKTTAOAAAAAAAAQKEJxgEAAAAAAAAoNME4AAAAAAAAAIXWpNQFsGZzdh1V6hJKoudj40tdAgAAAAAAAFAg7hgHAAAAAAAAoNAE4wAAAAAAAAAUmmAcAAAAAAAAgEITjAMAAAAAAABQaIJxAAAAAAAAAApNMA4AAAAAAABAoa0Xwfjll1+e7t27p3nz5tlll13y+OOPr3HsNddckz322CMbbrhhNtxwwwwaNOhTxwMAAAAAAADQsJU8GJ86dWpGjhyZMWPGZNasWenTp08GDx6cxYsXr3b89OnTc/DBB+eBBx7IzJkz061bt+y777559dVX67hyAAAAWH+ZhA4AAAD/VPJgfOLEiTnqqKNyxBFHZPvtt8/kyZPTsmXLXH/99asdf+ONN+bYY49N3759s+222+baa6/NypUrM23atDquHAAAANZPJqEDAABAVSUNxj/88MM8+eSTGTRoUOW2Ro0aZdCgQZk5c+ZaneP999/PRx99lPbt29dWmQAAAFCvmIQOAAAAVTUp5Ye/+eabWbFiRTp27Fhle8eOHTN37ty1Osepp56aLl26VAnX/9Xy5cuzfPnyyvdLlixZ94IBAABgPffJJPTTTz+9cltNT0LXawMAAFDflHwp9c/jvPPOyy9+8Yv85je/SfPmzVc7ZsKECWnbtm3lq1u3bnVcJQAAANSdT5uEvnDhwrU6x2dNQtdrAwAAUN+UNBjfaKON0rhx4yxatKjK9kWLFqVTp06feuz//M//5Lzzzsu9996b3r17r3Hc6aefnnfeeafytWDBghqpHQAAAIpobSah67UBAACob0oajDdr1iz9+vWr8syyT55hNmDAgDUed8EFF2T8+PG5++67079//0/9jPLy8rRp06bKCwAAAIqqLiah67UBAACob0q+lPrIkSNzzTXX5Cc/+UmeffbZHHPMMXnvvfdyxBFHJEkOPfTQKs9FO//88zNq1Khcf/316d69exYuXJiFCxdm6dKlpfoKAAAAsN6oi0noAAAAUN80KXUBw4cPzxtvvJHRo0dn4cKF6du3b+6+++7KZ6G9/PLLadTon/n9lVdemQ8//DBf+9rXqpxnzJgxGTt2bF2WDgAAAOulkSNH5rDDDkv//v2z8847Z9KkSatMQu/atWsmTJiQ5ONJ6KNHj85NN91UOQk9SVq1apVWrVqV7HsAAABATSl5MJ4kI0aMyIgRI1a7b/r06VXez58/v/YLAgAAgHrMJHQAAACoar0IxgEAAICaZRI6AAAA/FPJnzEOAAAAAAAAALVJMA4AAAAAAABAoQnGAQAAAAAAACg0wTgAAAAAAAAAhSYYBwAAAAAAAKDQBOMAAAAAAAAAFJpgHAAAAAAAAIBCE4wDAAAAAAAAUGiCcQAAAAAAAAAKTTAOAAAAAAAAQKEJxgEAAAAAAAAoNME4AAAAAAAAAIUmGAcAAAAAAACg0ATjAAAAAAAAABSaYBwAAAAAAACAQhOMAwAAAAAAAFBognEAAAAAAAAACk0wDgAAAAAAAEChCcYBAAAAAAAAKDTBOAAAAAAAAACFJhgHAAAAAAAAoNAE4wAAAAAAAAAUmmAcAAAAAAAAgEITjAMAAAAAAABQaIJxAAAAAAAAAApNMA4AAAAAAABAoQnGAQAAAAAAACg0wTgAAAAAAAAAhSYYBwAAAAAAAKDQBOMAAAAAAAAAFJpgHAAAAAAAAIBCE4wDAAAAAAAAUGiCcQAAAAAAAAAKTTAOAAAAAAAAQKEJxgEAAAAAAAAoNME4AAAAAAAAAIUmGAcAAAAAAACg0ATjAAAAAAAAABSaYBwAAAAAAACAQhOMAwAAAAAAAFBognEAAAAAAAAACk0wDgAAAAAAAEChCcYBAAAAAAAAKDTBOAAAAAAAAACFJhgHAAAAAAAAoNAE4wAAAAAAAAAUmmAcAAAAAAAAgEITjAMAAAAAAABQaIJxAAAAAAAAAApNMA4AAAAAAABAoQnGAQAAAAAAACg0wTgAAAAAAAAAhSYYBwAAAAAAAKDQBOMAAAAAAAAAFJpgHAAAAAAAAIBCE4wDAAAAAAAAUGiCcQAAAAAAAAAKTTAOAAAAAAAAQKEJxgEAAAAAAAAotPUiGL/88svTvXv3NG/ePLvssksef/zxTx1/yy23ZNttt03z5s3zhS98IXfeeWcdVQoAAAD1g14bAAAA/qnkwfjUqVMzcuTIjBkzJrNmzUqfPn0yePDgLF68eLXjH3300Rx88ME58sgj89RTT2XYsGEZNmxYnnnmmTquHAAAANZPem0AAACoquTB+MSJE3PUUUfliCOOyPbbb5/JkyenZcuWuf7661c7/uKLL86QIUPywx/+MNttt13Gjx+fHXfcMZdddlkdVw4AAADrJ702AAAAVFXSYPzDDz/Mk08+mUGDBlVua9SoUQYNGpSZM2eu9piZM2dWGZ8kgwcPXuN4AAAAaEj02gAAALCqJqX88DfffDMrVqxIx44dq2zv2LFj5s6du9pjFi5cuNrxCxcuXO345cuXZ/ny5ZXv33nnnSTJkiVLPk/pdWLpP5Z/9qAC+rz/t3Hdqs81WzeuW/W5ZuvGdas+12zduG7V55qtG9et+lyz9dcnNVZUVJS4kn/Sa386/3taN65b9blm68Z1qz7XbN24btXnmq0b1636XLN147pVn2u2/qqtXrukwXhdmDBhQsaNG7fK9m7dupWgGtZK2x+XuoL6yXWrPtds3bhu1eearRvXrfpcs3XjulWfa7ZuXLfqq0fX7N13303btm1LXUad0WvXQ/Xof0/rFdet+lyzdeO6VZ9rtm5ct+pzzdaN61Z9rtm6cd2qrx5ds5rutUsajG+00UZp3LhxFi1aVGX7okWL0qlTp9Ue06lTp2qNP/300zNy5MjK9ytXrsxbb72V//iP/0hZWdnn/AbwT0uWLEm3bt2yYMGCtGnTptTlUGB+a9QVvzXqit8adcVvjdpQUVGRd999N126dCl1KZX02hSJ/3ZTV/zWqCt+a9QVvzXqit8ataG2eu2SBuPNmjVLv379Mm3atAwbNizJx830tGnTMmLEiNUeM2DAgEybNi0nnnhi5bb77rsvAwYMWO348vLylJeXV9nWrl27migfVqtNmzb+40+d8FujrvitUVf81qgrfmvUtPXtTnG9NkXkv93UFb816orfGnXFb4264rdGTauNXrvkS6mPHDkyhx12WPr375+dd945kyZNynvvvZcjjjgiSXLooYema9eumTBhQpLkhBNOyMCBA3PhhRfmgAMOyC9+8Ys88cQTufrqq0v5NQAAAGC9odcGAACAqkoejA8fPjxvvPFGRo8enYULF6Zv3765++6707FjxyTJyy+/nEaNGlWO/+IXv5ibbropZ511Vs4444xstdVWue2229KrV69SfQUAAABYr+i1AQAAoKqSB+NJMmLEiDUu5zZ9+vRVtn3961/P17/+9VquCqqnvLw8Y8aMWWU5QahpfmvUFb816orfGnXFb42GRq9NEfhvN3XFb4264rdGXfFbo674rVGflFVUVFSUuggAAAAAAAAAqC2NPnsIAAAAAAAAANRfgnEAAAAAAAAACk0wDgAAAAAAAEChCcbhc5gwYUJ22mmntG7dOh06dMiwYcPy3HPPlbosGoDzzjsvZWVlOfHEE0tdCgX06quv5tvf/nb+4z/+Iy1atMgXvvCFPPHEE6Uui4JZsWJFRo0alR49eqRFixbZYostMn78+FRUVJS6NOq5GTNmZOjQoenSpUvKyspy2223VdlfUVGR0aNHp3PnzmnRokUGDRqUv/zlL6UpFoDV0mtTKnptapNem7qg16a26LUpCsE4fA4PPvhgjjvuuDz22GO577778tFHH2XffffNe++9V+rSKLA//vGPueqqq9K7d+9Sl0IB/f3vf89uu+2Wpk2b5q677sqf//znXHjhhdlwww1LXRoFc/755+fKK6/MZZddlmeffTbnn39+Lrjgglx66aWlLo167r333kufPn1y+eWXr3b/BRdckEsuuSSTJ0/OH/7wh2ywwQYZPHhwPvjggzquFIA10WtTCnptapNem7qi16a26LUpirIKU4Wgxrzxxhvp0KFDHnzwwfznf/5nqcuhgJYuXZodd9wxV1xxRc4555z07ds3kyZNKnVZFMhpp52WRx55JA899FCpS6HgvvzlL6djx4657rrrKrf913/9V1q0aJGf//znJayMIikrK8tvfvObDBs2LMnHM9i7dOmS//f//l9OPvnkJMk777yTjh07ZsqUKfnmN79ZwmoBWBO9NrVNr01t02tTV/Ta1AW9NvWZO8ahBr3zzjtJkvbt25e4EorquOOOywEHHJBBgwaVuhQK6re//W369++fr3/96+nQoUN22GGHXHPNNaUuiwL64he/mGnTpuX5559Pkjz99NN5+OGHs99++5W4MorspZdeysKFC6v8/9G2bdtml112ycyZM0tYGQCfRq9NbdNrU9v02tQVvTaloNemPmlS6gKgKFauXJkTTzwxu+22W3r16lXqciigX/ziF5k1a1b++Mc/lroUCuzFF1/MlVdemZEjR+aMM87IH//4xxx//PFp1qxZDjvssFKXR4GcdtppWbJkSbbddts0btw4K1asyI9+9KN861vfKnVpFNjChQuTJB07dqyyvWPHjpX7AFi/6LWpbXpt6oJem7qi16YU9NrUJ4JxqCHHHXdcnnnmmTz88MOlLoUCWrBgQU444YTcd999ad68eanLocBWrlyZ/v3759xzz02S7LDDDnnmmWcyefJkzTo16pe//GVuvPHG3HTTTenZs2dmz56dE088MV26dPFbAwAq6bWpTXpt6opem7qi1wb4dJZShxowYsSI/O53v8sDDzyQTTbZpNTlUEBPPvlkFi9enB133DFNmjRJkyZN8uCDD+aSSy5JkyZNsmLFilKXSEF07tw522+/fZVt2223XV5++eUSVURR/fCHP8xpp52Wb37zm/nCF76QQw45JCeddFImTJhQ6tIosE6dOiVJFi1aVGX7okWLKvcBsP7Qa1Pb9NrUFb02dUWvTSnotalPBOPwOVRUVGTEiBH5zW9+k9///vfp0aNHqUuioPbee+/86U9/yuzZsytf/fv3z7e+9a3Mnj07jRs3LnWJFMRuu+2W5557rsq2559/PptttlmJKqKo3n///TRqVPWvoo0bN87KlStLVBENQY8ePdKpU6dMmzatctuSJUvyhz/8IQMGDChhZQD8K702dUWvTV3Ra1NX9NqUgl6b+sRS6vA5HHfccbnpppty++23p3Xr1pXPy2jbtm1atGhR4uooktatW6/yPL0NNtgg//Ef/+E5e9Sok046KV/84hdz7rnn5hvf+EYef/zxXH311bn66qtLXRoFM3To0PzoRz/Kpptump49e+app57KxIkT853vfKfUpVHPLV26NPPmzat8/9JLL2X27Nlp3759Nt1005x44ok555xzstVWW6VHjx4ZNWpUunTpkmHDhpWuaACq0GtTV/Ta1BW9NnVFr01t0WtTFGUVFRUVpS4C6quysrLVbr/hhhty+OGH120xNDh77rln+vbtm0mTJpW6FArmd7/7XU4//fT85S9/SY8ePTJy5MgcddRRpS6Lgnn33XczatSo/OY3v8nixYvTpUuXHHzwwRk9enSaNWtW6vKox6ZPn5699tprle2HHXZYpkyZkoqKiowZMyZXX3113n777ey+++654oorsvXWW5egWgBWR69NKem1qS16beqCXpvaotemKATjAAAAAAAAABSaZ4wDAAAAAAAAUGiCcQAAAAAAAAAKTTAOAAAAAAAAQKEJxgEAAAAAAAAoNME4AAAAAAAAAIUmGAcAAAAAAACg0ATjAAAAAAAAABSaYBwAAAAAAACAQhOMAwA1ZsqUKWnXrl2pywAAAIDC0GsDQM0QjAPAeu7www9PWVnZKq958+bV2GeUlZXltttu+8xxDz74YL70pS+lffv2admyZbbaaqscdthh+fDDD5Mkw4cPz/PPP19jdQEAAEBt0GsDQMMjGAeAemDIkCF5/fXXq7x69OhRpzX8+c9/zpAhQ9K/f//MmDEjf/rTn3LppZemWbNmWbFiRZKkRYsW6dChQ53WBQAAAOtCrw0ADYtgHADqgfLy8nTq1KnKq3Hjxkk+nlm+8847p7y8PJ07d85pp52Wf/zjH5XH7rnnnjn++ONzyimnpH379unUqVPGjh1bub979+5Jkq9+9aspKyurfP/v7r333nTq1CkXXHBBevXqlS222CJDhgzJNddckxYtWiRZdXm37t27r3YG/icWLFiQb3zjG2nXrl3at2+fAw88MPPnz6+RawYAAACfRq8NAA2LYBwA6rFXX301+++/f3baaac8/fTTufLKK3PdddflnHPOqTLuJz/5STbYYIP84Q9/yAUXXJCzzz479913X5Lkj3/8Y5LkhhtuyOuvv175/t916tQpr7/+embMmLHW9f3xj3+snHX/yiuvZNddd80ee+yRJPnoo48yePDgtG7dOg899FAeeeSRtGrVKkOGDKlcLg4AAADqml4bAIqpSakLAAA+2+9+97u0atWq8v1+++2XW265JVdccUW6deuWyy67LGVlZdl2223z2muv5dRTT83o0aPTqNHHc+B69+6dMWPGJEm22mqrXHbZZZk2bVr22WefbLzxxkmSdu3apVOnTmus4etf/3ruueeeDBw4MJ06dcquu+6avffeO4ceemjatGmz2mM+OXeSnHDCCVX+MWDq1KlZuXJlrr322sqZ7TfccEPatWuX6dOnZ9999/0cVwwAAAA+nV4bABoWd4wDQD2w1157Zfbs2ZWvSy65JEny7LPPZsCAAVWWTNttt92ydOnSvPLKK5XbevfuXeV8nTt3zuLFi6tVQ+PGjXPDDTfklVdeyQUXXJCuXbvm3HPPTc+ePfP6669/6rFXX311rrvuuvz2t7+tbOCffvrpzJs3L61bt06rVq3SqlWrtG/fPh988EFeeOGFatUGAAAA1aXXBoCGxR3jAFAPbLDBBtlyyy3X+fimTZtWeV9WVpaVK1eu07m6du2aQw45JIccckjGjx+frbfeOpMnT864ceNWO/6BBx7ID37wg9x8881V/tFg6dKl6devX2688cZVjvnX2e8AAABQG/TaANCwCMYBoB7bbrvt8qtf/SoVFRWVM9kfeeSRtG7dOptssslan6dp06ZZsWJFtT9/ww03TOfOnfPee++tdv+8efPyta99LWeccUYOOuigKvt23HHHTJ06NR06dFjj8nAAAABQ1/TaAFBMllIHgHrs2GOPzYIFC/KDH/wgc+fOze23354xY8Zk5MiRlc88Wxvdu3fPtGnTsnDhwvz9739f7ZirrroqxxxzTO6999688MILmTNnTk499dTMmTMnQ4cOXWX8smXLMnTo0Oywww753ve+l4ULF1a+kuRb3/pWNtpooxx44IF56KGH8tJLL2X69Ok5/vjjqyxNBwAAAHVJrw0AxSQYB4B6rGvXrrnzzjvz+OOPp0+fPjn66KNz5JFH5qyzzqrWeS688MLcd9996datW3bYYYfVjtl5552zdOnSHH300enZs2cGDhyYxx57LLfddlsGDhy4yvhFixZl7ty5mTZtWrp06ZLOnTtXvpKkZcuWmTFjRjbddNMcdNBB2W677XLkkUfmgw8+MKsdAACAktFrA0AxlVVUVFSUuggAAAAAAAAAqC3uGAcAAAAAAACg0ATjAAAAAAAAABSaYBwAAAAAAACAQhOMAwAAAAAAAFBognEAAAAAAAAACk0wDgAAAAAAAEChCcYBAAAAAAAAKDTBOAAAAAAAAACFJhgHAAAAAAAAoNAE4wAAAAAAAAAUmmAcAAAAAAAAgEITjAMAAAAAAABQaIJxAAAAAAAAAApNMA4AAAAAAABAoQnGAQAAAAAAACg0wTgAAAAAAAAAhSYYBwAAAAAAAKDQBOMAAAAAAFBNY8eOTVlZWbWOmT9/fsrKyjJlypTaKQoAWCPBOABQxaOPPpqxY8fm7bff/tRxb7/9djp06JCysrLceuutdVMcAAAAAACsA8E4AFDFo48+mnHjxn1mMD569Oi8//77dVMUAAAArGfOOuusLFu2rFrHbLbZZlm2bFkOOeSQWqoKAFgTwTgAUG3PPPNMrrzyypx66qmlLgUAAABKokmTJmnevHm1jikrK0vz5s3TuHHjWqoKAFgTwTgAFMD06dPTv3//NG/ePFtssUWuuuqqVZ51VlZWlhEjRuTGG2/MNttsk+bNm6dfv36ZMWNG5ZixY8fmhz/8YZKkR48eKSsrS1lZWebPn1/l80444YR89atfzR577LHGmp566qnst99+adOmTVq1apW99947jz32WM1+cQAAAKhht956a8rKyvLggw+usu+qq65KWVlZnnnmmdU+Y/y+++7L7rvvnnbt2qVVq1bZZpttcsYZZ1TuX9Mzxn//+99njz32yAYbbJB27drlwAMPzLPPPltlzCefN2/evBx++OFp165d2rZtmyOOOMKKbgCwFpqUugAA4PN56qmnMmTIkHTu3Dnjxo3LihUrcvbZZ2fjjTdeZeyDDz6YqVOn5vjjj095eXmuuOKKDBkyJI8//nh69eqVgw46KM8//3xuvvnmXHTRRdloo42SpMq5brnlljz66KN59tlnVwnMPzFnzpzsscceadOmTU455ZQ0bdo0V111Vfbcc888+OCD2WWXXWrlWgAAAMDndcABB6RVq1b55S9/mYEDB1bZN3Xq1PTs2TO9evXKrbfeWmXfnDlz8uUvfzm9e/fO2WefnfLy8sybNy+PPPLIp37e/fffn/322y+bb755xo4dm2XLluXSSy/NbrvtllmzZqV79+5Vxn/jG99Ijx49MmHChMyaNSvXXnttOnTokPPPP79Gvj8AFJVgHADquTFjxqRx48Z55JFH0qVLlyQfN8nbbbfdKmOfeeaZPPHEE+nXr1+S5Jvf/Ga22WabjB49Or/+9a/Tu3fv7Ljjjrn55pszbNiwVZrvZcuW5eSTT85JJ52U7t27rzEYP+uss/LRRx/l4Ycfzuabb54kOfTQQ7PNNtvklFNOWe2sewAAAFgftGjRIkOHDs2tt96aSy65pHLZ84ULF+bBBx/M2LFjV3vcfffdlw8//DB33XVX5UTztfHDH/4w7du3z8yZM9O+ffskybBhw7LDDjtkzJgx+clPflJl/A477JDrrruu8v3f/va3XHfddYJxAPgMllIHgHpsxYoVuf/++zNs2LDKUDxJttxyy+y3336rjB8wYEBlKJ4km266aQ488MDcc889WbFixWd+3nnnnZePPvqoyjJwq6vp3nvvzbBhwypD8STp3Llz/vu//zsPP/xwlixZsrZfEQAAAOrc8OHDs3jx4kyfPr1y26233pqVK1dm+PDhqz2mXbt2SZLbb789K1euXKvPef311zN79uwcfvjhlaF4kvTu3Tv77LNP7rzzzlWOOfroo6u832OPPfK3v/1Nrw0An0EwDgD12OLFi7Ns2bJsueWWq+xb3batttpqlW1bb7113n///bzxxhuf+lnz58/Pj3/84/zoRz9Kq1at1jjujTfeyPvvv59tttlmlX3bbbddVq5cmQULFnzqZwEAAEApDRkyJG3bts3UqVMrt02dOjV9+/bN1ltvvdpjhg8fnt122y3f/e5307Fjx3zzm9/ML3/5y08Nyf/6178myRp76DfffDPvvfdele2bbrpplfcbbrhhkuTvf//72n05AGigBOMAwFoZPXp0unbtmj333DPz58/P/Pnzs3DhwiQfh+Hz589f6xnxAAAAsD4rLy/PsGHD8pvf/Cb/+Mc/8uqrr+aRRx5Z493iycdLsM+YMSP3339/DjnkkPzf//1fhg8fnn322WetVmlbW58s7f7vKioqauwzAKCIPGMcAOqxDh06pHnz5pk3b94q+1a37S9/+csq255//vm0bNkyG2+8cZKkrKxstZ/18ssvZ968eVWWR//Esccem+Tj2ekbb7xxWrZsmeeee26VcXPnzk2jRo3SrVu3T/9iAAAAUGLDhw/PT37yk0ybNi3PPvtsKioqPjUYT5JGjRpl7733zt57752JEyfm3HPPzZlnnpkHHngggwYNWmX8ZpttliRr7KE32mijbLDBBjXzhQCggROMA0A91rhx4wwaNCi33XZbXnvttcrnjM+bNy933XXXKuNnzpyZWbNmZccdd0ySLFiwILfffnuGDBlSOeP8k4b77bffrnLsOeeckzfffLPKtmeeeSajRo3KKaeckgEDBmSDDTZI48aNs+++++b222/P/Pnz07179yTJokWLctNNN2X33XdPmzZtavIyAAAAQI0bNGhQ2rdvn6lTp+bZZ5/NzjvvnB49eqxx/FtvvVXlOeFJ0rdv3yTJ8uXLV3tM586d07dv3/zkJz/J6aefXvmc8meeeSb33ntvvv3tb9fIdwEABOMAUO+NHTs29957b3bbbbccc8wxWbFiRS677LL06tUrs2fPrjK2V69eGTx4cI4//viUl5fniiuuSJKMGzeucky/fv2SJGeeeWa++c1vpmnTphk6dGh23333VT77k4Z9p512yrBhwyq3n3POObnvvvuy++6759hjj02TJk1y1VVXZfny5bngggtq9gIAAABALWjatGkOOuig/OIXv8h7772X//mf//nU8WeffXZmzJiRAw44IJtttlkWL16cK664Iptssslqe+pP/PjHP85+++2XAQMG5Mgjj8yyZcty6aWXpm3bthk7dmwNfysAaLgE4wBQz/Xr1y933XVXTj755IwaNSrdunXL2WefnWeffTZz586tMnbgwIEZMGBAxo0bl5dffjnbb799pkyZkt69e1eO2WmnnTJ+/PhMnjw5d999d1auXJmXXnqpWku39ezZMw899FBOP/30TJgwIStXrswuu+ySn//859lll11q7LsDAABAbRo+fHiuvfbalJWV5Rvf+Manjv3KV76S+fPn5/rrr8+bb76ZjTbaKAMHDsy4cePStm3bNR43aNCg3H333RkzZkxGjx6dpk2bZuDAgTn//PM/9Q51AKB6yioqKipKXQQAUPOGDRuWOXPmVD5XvKysLMcdd1wuu+yyElcGAAAAAAB1q1GpCwAAPr9ly5ZVef+Xv/wld955Z/bcc8/SFAQAAAAAAOsRS6kDQAFsvvnmOfzww7P55pvnr3/9a6688so0a9Ysp5xySqlLAwAAAACAkhOMA0ABDBkyJDfffHMWLlyY8vLyDBgwIOeee2622mqrUpcGAAAAAAAl5xnjAAAAAAAAABSaZ4wDAAAAAAAAUGiCcQAAAAAAAAAKrcE9Y3zlypV57bXX0rp165SVlZW6HAAAAOqxioqKvPvuu+nSpUsaNWq4c8/12gAAANSU2uq1G1ww/tprr6Vbt26lLgMAAIACWbBgQTbZZJNSl1Eyem0AAABqWk332g0uGG/dunWSjy9kmzZtSlwNAAAA9dmSJUvSrVu3yl6zodJrAwAAUFNqq9ducMH4J0u6tWnTRrMOAABAjWjoy4frtQEAAKhpNd1rN9wHoAEAAAAAAADQIAjGAQAAAAAAACg0wTgAAAAAAAAAhSYYBwAAAAAAAKDQBOMAAAAAAAAAFJpgHAAAAAAAAIBCE4wDAAAAAAAAUGiCcQAAAAAAAAAKTTAOAAAAAAAAQKEJxgEAAAAAAAAotJIG4zNmzMjQoUPTpUuXlJWV5bbbbvvMY6ZPn54dd9wx5eXl2XLLLTNlypRarxMAAADqC702AAAArKqkwfh7772XPn365PLLL1+r8S+99FIOOOCA7LXXXpk9e3ZOPPHEfPe7380999xTy5UCAABA/aDXBgAAgFU1KeWH77ffftlvv/3WevzkyZPTo0ePXHjhhUmS7bbbLg8//HAuuuiiDB48uLbKBAAAgHpDrw0AAACrqlfPGJ85c2YGDRpUZdvgwYMzc+bMNR6zfPnyLFmypMoLAAAA+Ni69NoAAABQ39SrYHzhwoXp2LFjlW0dO3bMkiVLsmzZstUeM2HChLRt27by1a1bt7ooFQAAAOqFdem1TUIHAACgvinpUup14fTTT8/IkSMr3y9ZskQ4DgBAjZiz66hSl1ASPR8b/7mOd92qzzVjfTNhwoSMGzeu1GUAsB5oqH9PWZOa+PuLa7oq17XmuaY1zzWtHa5rzWvIvXa9CsY7deqURYsWVdm2aNGitGnTJi1atFjtMeXl5SkvL6+L8gAAAKDeWZde2yR0oD7yj+Krasj/MA4ANDz1KhgfMGBA7rzzzirb7rvvvgwYMKBEFQEAFEdD/YdC/xgINHTr0mubhA4AAEB9U9JnjC9dujSzZ8/O7NmzkyQvvfRSZs+enZdffjnJxzPQDz300MrxRx99dF588cWccsopmTt3bq644or88pe/zEknnVSK8gEAAGC9o9cGAACAVZU0GH/iiSeyww47ZIcddkiSjBw5MjvssENGjx6dJHn99dcrG/ck6dGjR+64447cd9996dOnTy688MJce+21GTx4cEnqBwAAgPWNXhsAAABWVdKl1Pfcc89UVFSscf+UKVNWe8xTTz1Vi1UBAABA/aXXBgAAgFXVq2eMAwCsDc/KBgCgvmuof6ddE3/XBQDg8yrpUuoAAAAAAAAAUNsE4wAAAAAAAAAUmmAcAAAAAAAAgEITjAMAAAAAAABQaIJxAAAAAAAAAApNMA4AAAAAAABAoQnGAQAAAAAAACi0JqUuAAD4dHN2HVXqEkqi52PjS10CAAAAAAAF4Y5xAAAAAAAAAApNMA4AAAAAAABAoQnGAQAAAAAAACg0wTgAAAAAAAAAhSYYBwAAAAAAAKDQBOMAAAAAAAAAFJpgHAAAAAAAAIBCE4wDAAAAAAAAUGiCcQAAAAAAAAAKTTAOAAAAAAAAQKEJxgEAAAAAAAAoNME4AAAAAAAAAIUmGAcAAAAAAACg0JqUugAAGo45u44qdQkl0fOx8aUuAQAAAAAAGjR3jAMAAAAAAABQaO4YBwAAAOBzaairQ62JVaMAAGD9445xAAAAAAAAAApNMA4AAAAAAABAoQnGAQAAAAAAACg0wTgAAAAAAAAAhSYYBwAAAAAAAKDQBOMAAAAAAAAAFJpgHAAAAAAAAIBCE4wDAAAAAAAAUGiCcQAAAAAAAAAKTTAOAAAAAAAAQKEJxgEAAAAAAAAoNME4AAAAAAAAAIUmGAcAAAAAAACg0ATjAAAAAAAAABSaYBwAAAAAAACAQhOMAwAAAAAAAFBognEAAAAAAAAACk0wDgAAAAAAAEChCcYBAAAAAAAAKDTBOAAAAAAAAACF1qTUBQDUV3N2HVXqEkqi52PjS10CAAAAAABAtbhjHAAAAAAAAIBCE4wDAAAAAAAAUGiCcQAAAAAAAAAKTTAOAAAAAAAAQKEJxgEAAAAAAAAoNME4AAAAAAAAAIUmGAcAAAAAAACg0ATjAAAAAAAAABSaYBwA4P9j797DrKrr/YG/ZwYZQAU1ZEAkx2uKCigcELHUxPDooTx2QesIcczKpMw5luIFIg3sIpGKUiZaqUeyzPqpoZ4JvCRKgpaal1BMUrlFQmIMxszvDx+nM4fRZnT2bGbzej3Pep7Z3/X9rv3Zy93l43uvtQAAAAAAKGmCcQAAAAAAAABKmmAcAAAAAAAAgJImGAcAAAAAAACgpAnGAQAAAAAAAChpRQ/GZ86cmerq6nTp0iXDhg3LwoUL33L+jBkz8p73vCddu3ZNv379cuaZZ2bDhg3tVC0AAABs+fTaAAAA0FRRg/E5c+akpqYmkydPzuLFizNw4MCMGjUqK1eubHb+DTfckHPOOSeTJ0/OE088kauvvjpz5szJueee286VAwAAwJZJrw0AAACbK2owPn369Jx66qkZP358+vfvn1mzZqVbt26ZPXt2s/Pvv//+jBgxIh//+MdTXV2dD3zgAznppJP+6S/fAQAAYGuh1wYAAIDNFS0Y37hxYxYtWpSRI0f+o5jy8owcOTILFixods2hhx6aRYsWNTbnzz77bG6//fYce+yxb/o+dXV1WbduXZMNAAAASlF79doAAADQ0XQq1huvXr06mzZtSlVVVZPxqqqqPPnkk82u+fjHP57Vq1fnsMMOS0NDQ/7+97/ns5/97Fve3m3atGmZMmVKm9YOAAAAW6L26rXr6upSV1fX+NqP0AEAANjSFfVW6q01f/78TJ06NVdccUUWL16cm2++ObfddlsuvPDCN10zceLErF27tnFbtmxZO1YMAAAAW7a302tPmzYtPXr0aNz69evXjhUDAABA6xXtivGePXumoqIiK1asaDK+YsWK9O7du9k1F1xwQU4++eR86lOfSpIceOCBWb9+fT796U/nvPPOS3n55jl/ZWVlKisr2/4DAAAAwBamvXrtiRMnpqampvH1unXrhOMAAABs0Yp2xXjnzp0zePDg1NbWNo7V19entrY2w4cPb3bNq6++ullDXlFRkSRpaGgoXLEAAADQAbRXr11ZWZnu3bs32QAAAGBLVrQrxpOkpqYm48aNy5AhQzJ06NDMmDEj69evz/jx45MkY8eOTd++fTNt2rQkyejRozN9+vQcdNBBGTZsWJYsWZILLrggo0ePbmzaAQAAYGum1wYAAIDNFTUYHzNmTFatWpVJkyZl+fLlGTRoUObOnZuqqqokyfPPP9/kV+vnn39+ysrKcv755+eFF17IzjvvnNGjR+drX/tasT4CAAAAbFH02gAAALC5ogbjSTJhwoRMmDCh2X3z589v8rpTp06ZPHlyJk+e3A6VAQAAQMek1wYAAICmivaMcQAAAAAAAABoD4JxAAAAAAAAAEqaYBwAAAAAAACAkiYYBwAAAAAAAKCkCcYBAAAAAAAAKGmCcQAAAAAAAABKmmAcAAAAAAAAgJImGAcAAAAAAACgpAnGAQAAAAAAAChpgnEAAAAAAAAASppgHAAAAAAAAICSJhgHAAAAAAAAoKQJxgEAAAAAAAAoaYJxAAAAAAAAAEqaYBwAAAAAAACAkiYYBwAAAAAAAKCkCcYBAAAAAAAAKGmCcQAAAAAAAABKmmAcAAAAAAAAgJImGAcAAAAAAACgpAnGAQAAAAAAAChpgnEAAAAAAAAASppgHAAAAAAAAICSJhgHAAAAAAAAoKQJxgEAAAAAAAAoaYJxAAAAAAAAAEqaYBwAAAAAAACAkiYYBwAAAAAAAKCkCcYBAAAAAAAAKGmCcQAAAAAAAABKmmAcAAAAAAAAgJImGAcAAAAAAACgpLU6GH/22WcLUQcAAABstfTaAAAAUFitDsb32muvHHnkkbnuuuuyYcOGQtQEAAAAWxW9NgAAABRWq4PxxYsXZ8CAAampqUnv3r3zmc98JgsXLixEbQAAALBV0GsDAABAYbU6GB80aFC+853v5MUXX8zs2bPz0ksv5bDDDssBBxyQ6dOnZ9WqVYWoEwAAAEqWXhsAAAAKq9XB+Bs6deqUE044ITfddFO+/vWvZ8mSJTnrrLPSr1+/jB07Ni+99FJb1gkAAAAlT68NAAAAhfG2g/GHHnoon/vc59KnT59Mnz49Z511Vp555pncddddefHFF/OhD32oLesEAACAkqfXBgAAgMLo1NoF06dPzzXXXJOnnnoqxx57bH74wx/m2GOPTXn56xn77rvvnmuvvTbV1dVtXSsAAACUJL02AAAAFFarg/Err7wy//mf/5lPfvKT6dOnT7NzevXqlauvvvodFwcAAABbA702AAAAFFarg/G77ror7373uxt/tf6GhoaGLFu2LO9+97vTuXPnjBs3rs2KBAAAgFKm1wYAAIDCavUzxvfcc8+sXr16s/E1a9Zk9913b5OiAAAAYGui1wYAAIDCanUw3tDQ0Oz4K6+8ki5durzjggAAAGBro9cGAACAwmrxrdRramqSJGVlZZk0aVK6devWuG/Tpk158MEHM2jQoDYvEAAAAEqVXhsAAADaR4uD8YcffjjJ679if/TRR9O5c+fGfZ07d87AgQNz1llntX2FAAAAUKL02gAAANA+WhyMz5s3L0kyfvz4fOc730n37t0LVhQAAABsDfTaAAAA0D5aHIy/4ZprrilEHQAAALDV0msDAABAYbUoGD/hhBNy7bXXpnv37jnhhBPecu7NN9/cJoUBAABAKdNrAwAAQPtpUTDeo0ePlJWVNf4NAAAAvDN6bQAAAGg/LQrG37ilW0NDQ6ZMmZKdd945Xbt2LWhhAAAAUMr02gAAANB+ylszuaGhIXvttVf+9Kc/FaoeAAAA2KrotQEAAKDwWnTF+BvKy8uz9957589//nP23nvvQtUEAAAAWw29dvt6/JALil3CFmX/By4sdgkAAADtolVXjCfJxRdfnC996Ut57LHHClEPAAAAbHX02gAAAFBYrbpiPEnGjh2bV199NQMHDkznzp03e/7ZmjVr2qw4AAAA2BrotQEAAKCwWh2Mz5gxowBlAAAAwNZLrw0AAACF1epgfNy4cYWoAwAAALZaem0AAAAorFYH4//bhg0bsnHjxiZj3bt3f0cFAQAAwNZMrw0AAABtr7y1C9avX58JEyakV69e2XbbbbPjjjs22QAAAIDW0WsDAABAYbU6GP/yl7+cX/3qV7nyyitTWVmZ73//+5kyZUp22WWX/PCHPyxEjQAAAFDS9NoAAABQWK0Oxv/f//t/ueKKK/LhD384nTp1ynvf+96cf/75mTp1aq6//vpWFzBz5sxUV1enS5cuGTZsWBYuXPiW819++eWcfvrp6dOnTyorK7PPPvvk9ttvb/X7AgAAwJZCrw0AAACF1epgfM2aNdljjz2SvP6MszVr1iRJDjvssNxzzz2tOtacOXNSU1OTyZMnZ/HixRk4cGBGjRqVlStXNjt/48aNOfroo/Pcc8/lJz/5SZ566qlcddVV6du3b2s/BgAAAGwx9NoAAABQWK0OxvfYY48sXbo0SbLvvvvmxz/+cZLXf92+ww47tOpY06dPz6mnnprx48enf//+mTVrVrp165bZs2c3O3/27NlZs2ZNbrnllowYMSLV1dU5/PDDM3DgwNZ+DAAAANhi6LUBAACgsFodjI8fPz6//e1vkyTnnHNOZs6cmS5duuTMM8/Ml770pRYfZ+PGjVm0aFFGjhz5j2LKyzNy5MgsWLCg2TW/+MUvMnz48Jx++umpqqrKAQcckKlTp2bTpk1v+j51dXVZt25dkw0AAAC2JB2t1wYAAICOplNrF5x55pmNf48cOTJPPvlkFi1alL322isDBgxo8XFWr16dTZs2paqqqsl4VVVVnnzyyWbXPPvss/nVr36VT3ziE7n99tuzZMmSfO5zn8trr72WyZMnN7tm2rRpmTJlSovrAgAAgPbW0Xrturq61NXVNb72I3QAAAC2dK0Oxv+v3XbbLbvttltb1PJP1dfXp1evXvne976XioqKDB48OC+88EK++c1vvmmzPnHixNTU1DS+XrduXfr169cu9QIAAMDbsaX32n6EDgAAQEfTomD80ksvbfEBv/CFL7RoXs+ePVNRUZEVK1Y0GV+xYkV69+7d7Jo+ffpkm222SUVFRePYfvvtl+XLl2fjxo3p3LnzZmsqKytTWVnZ4voBAACgPXTkXtuP0AEAAOhoWhSMf/vb327RwcrKylrcrHfu3DmDBw9ObW1tjj/++CSv/0q9trY2EyZMaHbNiBEjcsMNN6S+vj7l5a8/Hv3pp59Onz59mm3UAQAAYEvVkXttP0IHAACgo2lRML506dKCvHlNTU3GjRuXIUOGZOjQoZkxY0bWr1+f8ePHJ0nGjh2bvn37Ztq0aUmS0047LZdffnnOOOOMfP7zn88f/vCHTJ06tcX/ggAAAAC2FHptAAAAaD/v+Bnj78SYMWOyatWqTJo0KcuXL8+gQYMyd+7cVFVVJUmef/75xl+rJ0m/fv1yxx135Mwzz8yAAQPSt2/fnHHGGTn77LOL9REAAABgi6LXBgAAgM21KBivqanJhRdemG233bbJM8SaM3369FYVMGHChDe9ndv8+fM3Gxs+fHgeeOCBVr0HAAAAbGn02gAAANB+WhSMP/zww3nttdca/34zZWVlbVMVAAAAlDi9NgAAALSfFgXj8+bNa/ZvAAAA4O3RawMAAED7Kf/nUwAAAAAAAACg42rRFeP/24YNG3LZZZdl3rx5WblyZerr65vsX7x4cZsVBwAAAFsDvTYAAAAUVquD8VNOOSV33nlnPvKRj2To0KGedQYAAADvkF4bAAAACqvVwfitt96a22+/PSNGjChEPQAAALDV0WsDAABAYbX6GeN9+/bN9ttvX4haAAAAYKuk1wYAAIDCanUwfskll+Tss8/OH//4x0LUAwAAAFsdvTYAAAAUVqtvpT5kyJBs2LAhe+yxR7p165Ztttmmyf41a9a0WXEAAACwNdBrAwAAQGG1Ohg/6aST8sILL2Tq1KmpqqpKWVlZIeoCAACArYZeGwAAAAqr1cH4/fffnwULFmTgwIGFqAcAAAC2OnptAAAAKKxWP2N83333zd/+9rdC1AIAAABbJb02AAAAFFarg/GLL744//Vf/5X58+fnz3/+c9atW9dkAwAAAFpHrw0AAACF1epbqR9zzDFJkqOOOqrJeENDQ8rKyrJp06a2qQwAAAC2EnptAAAAKKxWB+Pz5s0rRB0AAACw1dJrAwAAQGG1Ohg//PDDC1EHAAAAbLX02gAAAFBYLQrGf/e73+WAAw5IeXl5fve7373l3AEDBrRJYQAAAFDK9NoAAADQfloUjA8aNCjLly9Pr169MmjQoJSVlaWhoWGzeZ57BgAAAC2j1wYAAID206JgfOnSpdl5550b/wYAAADeGb02AAAAtJ8WBeO77bZbs38DAAAAb49eGwAAANpPeUsnPv3001m4cGGTsdra2hx55JEZOnRopk6d2ubFAQAAQCnTawMAAED7aHEwfvbZZ+fWW29tfL106dKMHj06nTt3zvDhwzNt2rTMmDGjEDUCAABASdJrAwAAQPto0a3Uk+Shhx7Kl7/85cbX119/ffbZZ5/ccccdSZIBAwbksssuyxe/+MU2LxIorMcPuaDYJRTF/g9cWOwSAADYyum1AQAAoH20+Irx1atXZ9ddd218PW/evIwePbrx9RFHHJHnnnuuTYsDAACAUqbXBgAAgPbR4mB8p512yksvvZQkqa+vz0MPPZRDDjmkcf/GjRvT0NDQ9hUCAABAidJrAwAAQPtocTB+xBFH5MILL8yyZcsyY8aM1NfX54gjjmjc//vf/z7V1dUFKBEAAABKk14bAAAA2keLnzH+ta99LUcffXR22223VFRU5NJLL822227buP9HP/pR3v/+9xekSAAAAChFem0AAABoHy0Oxqurq/PEE0/k8ccfz84775xddtmlyf4pU6Y0eS4aAAAA8Nb02gAAANA+WhyMJ0mnTp0ycODAZve92TgAAADw5vTaAAAAUHgtfsY4AAAAAAAAAHREgnEAAAAAAAAASppgHAAAAAAAAICS1qpnjENH8PghFxS7hKLY/4ELi10CAAAAAAAAbJHe1hXj9957b/7jP/4jw4cPzwsvvJAk+dGPfpT77ruvTYsDAACArYVeGwAAAAqn1cH4T3/604waNSpdu3bNww8/nLq6uiTJ2rVrM3Xq1DYvEAAAAEqdXhsAAAAKq9XB+EUXXZRZs2blqquuyjbbbNM4PmLEiCxevLhNiwMAAICtgV4bAAAACqvVwfhTTz2V973vfZuN9+jRIy+//HJb1AQAAABbFb02AAAAFFarg/HevXtnyZIlm43fd9992WOPPdqkKAAAANia6LUBAACgsFodjJ966qk544wz8uCDD6asrCwvvvhirr/++px11lk57bTTClEjAAAAlDS9NgAAABRWp9YuOOecc1JfX5+jjjoqr776at73vvelsrIyZ511Vj7/+c8XokYAAAAoaXptAAAAKKxWB+NlZWU577zz8qUvfSlLlizJK6+8kv79+2e77bYrRH0AAABQ8vTaAAAAUFitDsbf0Llz5/Tv378tawEAAICtml4bAAAACqPVwfj69etz8cUXp7a2NitXrkx9fX2T/c8++2ybFQcAAABbA702AAAAFFarg/FPfepTufvuu3PyySenT58+KSsrK0RdAAAAsNXQawMAAEBhtToY/+Uvf5nbbrstI0aMKEQ9AAAAsNXRawMAAEBhlbd2wY477piddtqpELUAAADAVkmvDQAAAIXV6mD8wgsvzKRJk/Lqq68Woh4AAADY6ui1AQAAoLBafSv1Sy65JM8880yqqqpSXV2dbbbZpsn+xYsXt1lxAAAAsDXQawMAAEBhtToYP/744wtQBgAAAGy99NoAAABQWK0OxidPnlyIOgAAAGCrpdcGAACAwmr1M8YBAAAAAAAAoCNp0RXjO+20U55++un07NkzO+64Y8rKyt507po1a9qsOAAAAChVem0AAABoPy0Kxr/97W9n++23b/z7rZp1AAAA4J/TawMAAED7aVEwPm7cuMa/P/nJTxaqFgAAANhq6LUBAACg/bT6GeOLFy/Oo48+2vj65z//eY4//vice+652bhxY5sWBwAAAFsDvTYAAAAUVquD8c985jN5+umnkyTPPvtsxowZk27duuWmm27Kl7/85TYvEAAAAEqdXhsAAAAKq9XB+NNPP51BgwYlSW666aYcfvjhueGGG3Lttdfmpz/9aVvXBwAAACVPrw0AAACF1epgvKGhIfX19UmS//mf/8mxxx6bJOnXr19Wr17dttUBAADAVkCvDQAAAIXV6mB8yJAhueiii/KjH/0od999d4477rgkydKlS1NVVdXmBQIAAECp02sDAABAYbU6GJ8xY0YWL16cCRMm5Lzzzstee+2VJPnJT36SQw899G0VMXPmzFRXV6dLly4ZNmxYFi5c2KJ1N954Y8rKynL88ce/rfcFAACALYFeGwAAAAqrU2sXDBgwII8++uhm49/85jdTUVHR6gLmzJmTmpqazJo1K8OGDcuMGTMyatSoPPXUU+nVq9ebrnvuuedy1lln5b3vfW+r3xMAAAC2JHptAAAAKKxWXzH+hkWLFuW6667Lddddl8WLF6dLly7ZZpttWn2c6dOn59RTT8348ePTv3//zJo1K926dcvs2bPfdM2mTZvyiU98IlOmTMkee+zxdj8CAAAAbFH02gAAAFAYrb5ifOXKlRkzZkzuvvvu7LDDDkmSl19+OUceeWRuvPHG7Lzzzi0+1saNG7No0aJMnDixcay8vDwjR47MggUL3nTdV7/61fTq1SunnHJK7r333rd8j7q6utTV1TW+XrduXYvrAwAAgPag1wYAAIDCavUV45///Ofzyiuv5PHHH8+aNWuyZs2aPPbYY1m3bl2+8IUvtOpYq1evzqZNm1JVVdVkvKqqKsuXL292zX333Zerr746V111VYveY9q0aenRo0fj1q9fv1bVCAAAAIWm1wYAAIDCanUwPnfu3FxxxRXZb7/9Gsf69++fmTNn5pe//GWbFvd//fWvf83JJ5+cq666Kj179mzRmokTJ2bt2rWN27JlywpaIwAAALSWXhsAAAAKq9W3Uq+vr2/2+WbbbLNN6uvrW3Wsnj17pqKiIitWrGgyvmLFivTu3Xuz+c8880yee+65jB49ukk9SdKpU6c89dRT2XPPPZusqaysTGVlZavqAgAAgPak1wYAAIDCavUV4+9///tzxhln5MUXX2wce+GFF3LmmWfmqKOOatWxOnfunMGDB6e2trZxrL6+PrW1tRk+fPhm8/fdd988+uijeeSRRxq3D37wgznyyCPzyCOPuHUbAAAAHZJeGwAAAAqr1VeMX3755fngBz+Y6urqxuZ42bJlOeCAA3Lddde1uoCampqMGzcuQ4YMydChQzNjxoysX78+48ePT5KMHTs2ffv2zbRp09KlS5cccMABTdbvsMMOSbLZOAAAAHQUem0AAAAorFYH4/369cvixYvzP//zP3nyySeTJPvtt19Gjhz5tgoYM2ZMVq1alUmTJmX58uUZNGhQ5s6dm6qqqiTJ888/n/LyVl/YDgAAAB2GXhsAAAAKq9XBeJKUlZXl6KOPztFHH90mRUyYMCETJkxodt/8+fPfcu21117bJjUAAABAMem1AQAAoHBa/PPwX/3qV+nfv3/WrVu32b61a9dm//33z7333tumxQEAAEAp02sDAABA+2hxMD5jxoyceuqp6d69+2b7evTokc985jOZPn16mxYHAAAApUyvDQAAAO2jxcH4b3/72xxzzDFvuv8DH/hAFi1a1CZFAQAAwNZArw0AAADto8XB+IoVK7LNNtu86f5OnTpl1apVbVIUAAAAbA302gAAANA+WhyM9+3bN4899tib7v/d736XPn36tElRAAAAsDXQawMAAED7aHEwfuyxx+aCCy7Ihg0bNtv3t7/9LZMnT86//du/tWlxAAAAUMr02gAAANA+OrV04vnnn5+bb745++yzTyZMmJD3vOc9SZInn3wyM2fOzKZNm3LeeecVrFAAAAAoNXptAAAAaB8tDsarqqpy//3357TTTsvEiRPT0NCQJCkrK8uoUaMyc+bMVFVVFaxQAAAAKDV6bQAAAGgfLQ7Gk2S33XbL7bffnr/85S9ZsmRJGhoasvfee2fHHXcsVH0AAABQ0vTaAAAAUHitCsbfsOOOO+Zf/uVf2roWAAAA2GrptQEAAKBwyotdAAAAAAAAAAAUkmAcAAAAAAAAgJImGAcAAAAAAACgpAnGAQAAAAAAAChpgnEAAAAAAAAASppgHAAAAAAAAICSJhgHAAAAAAAAoKQJxgEAAAAAAAAoaYJxAAAAAAAAAEqaYBwAAAAAAACAkiYYBwAAAAAAAKCkdSp2Aby5xw+5oNglFMX+D1xY7BIAAAAAAACAEuKKcQAAAAAAAABKmmAcAAAAAAAAgJImGAcAAAAAAACgpAnGAQAAAAAAAChpgnEAAAAAAAAASppgHAAAAAAAAICSJhgHAAAAAAAAoKQJxgEAAAAAAAAoaYJxAAAAAAAAAEqaYBwAAAAAAACAkiYYBwAAAAAAAKCkCcYBAAAAAAAAKGmCcQAAAAAAAABKmmAcAAAAAAAAgJImGAcAAAAAAACgpAnGAQAAAAAAAChpgnEAAAAAAAAASppgHAAAAAAAAICSJhgHAAAAAAAAoKQJxgEAAAAAAAAoaYJxAAAAAAAAAEqaYBwAAAAAAACAkiYYBwAAAAAAAKCkCcYBAAAAAAAAKGmCcQAAAAAAAABKmmAcAAAAAAAAgJImGAcAAAAAAACgpAnGAQAAAAAAAChpgnEAAAAAAAAASppgHAAAAAAAAICSJhgHAAAAAAAAoKQJxgEAAAAAAAAoaYJxAAAAAAAAAEqaYBwAAAAAAACAkiYYBwAAAAAAAKCkCcYBAAAAAAAAKGmCcQAAAAAAAABK2hYRjM+cOTPV1dXp0qVLhg0bloULF77p3Kuuuirvfe97s+OOO2bHHXfMyJEj33I+AAAAbI302gAAAPAPRQ/G58yZk5qamkyePDmLFy/OwIEDM2rUqKxcubLZ+fPnz89JJ52UefPmZcGCBenXr18+8IEP5IUXXmjnygEAAGDLpNcGAACApooejE+fPj2nnnpqxo8fn/79+2fWrFnp1q1bZs+e3ez866+/Pp/73OcyaNCg7Lvvvvn+97+f+vr61NbWtnPlAAAAsGXSawMAAEBTRQ3GN27cmEWLFmXkyJGNY+Xl5Rk5cmQWLFjQomO8+uqree2117LTTjs1u7+uri7r1q1rsgEAAECp0msDAADA5ooajK9evTqbNm1KVVVVk/GqqqosX768Rcc4++yzs8suuzRp+P+3adOmpUePHo1bv3793nHdAAAAsKXSawMAAMDmin4r9Xfi4osvzo033pif/exn6dKlS7NzJk6cmLVr1zZuy5Yta+cqAQAAoOPQawMAAFCKOhXzzXv27JmKioqsWLGiyfiKFSvSu3fvt1z7rW99KxdffHH+53/+JwMGDHjTeZWVlamsrGyTegEAAGBLp9cGAACAzRX1ivHOnTtn8ODBqa2tbRyrr69PbW1thg8f/qbrvvGNb+TCCy/M3LlzM2TIkPYoFQAAADoEvTYAAABsrqhXjCdJTU1Nxo0blyFDhmTo0KGZMWNG1q9fn/HjxydJxo4dm759+2batGlJkq9//euZNGlSbrjhhlRXVzc+H2277bbLdtttV7TPAQAAAFsKvTYAAAA0VfRgfMyYMVm1alUmTZqU5cuXZ9CgQZk7d26qqqqSJM8//3zKy/9xYfuVV16ZjRs35iMf+UiT40yePDlf+cpX2rN0AAAA2CLptQEAAKCpogfjSTJhwoRMmDCh2X3z589v8vq5554rfEEAAADQwem1AQAA4B+K+oxxAAAAAAAAACg0wTgAAAAAAAAAJU0wDgAAAAAAAEBJE4wDAAAAAAAAUNIE4wAAAAAAAACUNME4AAAAAAAAACVNMA4AAAAAAABASROMAwAAAAAAAFDSBOMAAAAAAAAAlDTBOAAAAAAAAAAlTTAOAAAAAAAAQEkTjAMAAAAAAABQ0gTjAAAAAAAAAJQ0wTgAAAAAAAAAJU0wDgAAAAAAAEBJE4wDAAAAAAAAUNIE4wAAAAAAAACUNME4AAAAAAAAACVNMA4AAAAAAABASROMAwAAAAAAAFDSBOMAAAAAAAAAlDTBOAAAAAAAAAAlTTAOAAAAAAAAQEkTjAMAAAAAAABQ0gTjAAAAAAAAAJQ0wTgAAAAAAAAAJU0wDgAAAAAAAEBJE4wDAAAAAAAAUNIE4wAAAAAAAACUNME4AAAAAAAAACVNMA4AAAAAAABASROMAwAAAAAAAFDSBOMAAAAAAAAAlDTBOAAAAAAAAAAlTTAOAAAAAAAAQEkTjAMAAAAAAABQ0gTjAAAAAAAAAJQ0wTgAAAAAAAAAJU0wDgAAAAAAAEBJE4wDAAAAAAAAUNIE4wAAAAAAAACUNME4AAAAAAAAACVNMA4AAAAAAABASROMAwAAAAAAAFDSBOMAAAAAAAAAlDTBOAAAAAAAAAAlTTAOAAAAAAAAQEkTjAMAAAAAAABQ0gTjAAAAAAAAAJQ0wTgAAAAAAAAAJU0wDgAAAAAAAEBJE4wDAAAAAAAAUNIE4wAAAAAAAACUNME4AAAAAAAAACVNMA4AAAAAAABASROMAwAAAAAAAFDSBOMAAAAAAAAAlDTBOAAAAAAAAAAlTTAOAAAAAAAAQEnbIoLxmTNnprq6Ol26dMmwYcOycOHCt5x/0003Zd99902XLl1y4IEH5vbbb2+nSgEAAKBj0GsDAADAPxQ9GJ8zZ05qamoyefLkLF68OAMHDsyoUaOycuXKZufff//9Oemkk3LKKafk4YcfzvHHH5/jjz8+jz32WDtXDgAAAFsmvTYAAAA0VfRgfPr06Tn11FMzfvz49O/fP7NmzUq3bt0ye/bsZud/5zvfyTHHHJMvfelL2W+//XLhhRfm4IMPzuWXX97OlQMAAMCWSa8NAAAATXUq5ptv3LgxixYtysSJExvHysvLM3LkyCxYsKDZNQsWLEhNTU2TsVGjRuWWW25pdn5dXV3q6uoaX69duzZJsm7dundYfeG98ve6fz6pBL3TfzbOW+s5Z2+P89Z6ztnb47y1nnP29jhvreecvT3OW+s5Z1uuN2psaGgociX/oNd+a1vrf57eTFv9M3Nem2qL8+qcNuWcFobz2vac08JwXtuec9r2nNPCcF7bXkfo2wrVaxc1GF+9enU2bdqUqqqqJuNVVVV58sknm12zfPnyZucvX7682fnTpk3LlClTNhvv16/f26yaguvxzWJX0DE5b63nnL09zlvrOWdvj/PWes7Z2+O8tZ5z9vY4b63Xgc7ZX//61/To0aPYZSTRa9NKHeg/Zx2K89r2nNPCcF7bnnNaGM5r23NO255zWhjOa9vrQOe0rXvtogbj7WHixIlNfvVeX1+fNWvW5F3velfKysqKWBmlZt26denXr1+WLVuW7t27F7scSpjvGu3Fd4324rtGe/FdoxAaGhry17/+NbvsskuxS2lXeu13xn8f0VH4rtJR+K7SUfiu0lH4rlJsheq1ixqM9+zZMxUVFVmxYkWT8RUrVqR3797Nrundu3er5ldWVqaysrLJ2A477PD2i4Z/onv37v6Hgnbhu0Z78V2jvfiu0V5812hrW8qV4m/Qa3cc/vuIjsJ3lY7Cd5WOwneVjsJ3lWIqRK9d3uZHbIXOnTtn8ODBqa2tbRyrr69PbW1thg8f3uya4cOHN5mfJHfdddebzgcAAICtiV4bAAAANlf0W6nX1NRk3LhxGTJkSIYOHZoZM2Zk/fr1GT9+fJJk7Nix6du3b6ZNm5YkOeOMM3L44YfnkksuyXHHHZcbb7wxDz30UL73ve8V82MAAADAFkOvDQAAAE0VPRgfM2ZMVq1alUmTJmX58uUZNGhQ5s6dm6qqqiTJ888/n/Lyf1zYfuihh+aGG27I+eefn3PPPTd77713brnllhxwwAHF+giQ5PVbCU6ePHmz2wlCW/Ndo734rtFefNdoL75rbE302ls2/31ER+G7Skfhu0pH4btKR+G7Sqkqa2hoaCh2EQAAAAAAAABQKEV9xjgAAAAAAAAAFJpgHAAAAAAAAICSJhgHAAAAAAAAoKQJxgEAAAAAAAAoaYJxeAemTZuWf/mXf8n222+fXr165fjjj89TTz1V7LLYClx88cUpKyvLF7/4xWKXQgl64YUX8h//8R9517vela5du+bAAw/MQw89VOyyKDGbNm3KBRdckN133z1du3bNnnvumQsvvDANDQ3FLo0O7p577sno0aOzyy67pKysLLfcckuT/Q0NDZk0aVL69OmTrl27ZuTIkfnDH/5QnGKBrY4eko5I/8mWTP9KR6D/ZUulf2ZrJBiHd+Duu+/O6aefngceeCB33XVXXnvttXzgAx/I+vXri10aJew3v/lNvvvd72bAgAHFLoUS9Je//CUjRozINttsk1/+8pf5/e9/n0suuSQ77rhjsUujxHz961/PlVdemcsvvzxPPPFEvv71r+cb3/hGLrvssmKXRge3fv36DBw4MDNnzmx2/ze+8Y1ceumlmTVrVh588MFsu+22GTVqVDZs2NDOlQJbIz0kHY3+ky2Z/pWOQv/Llkr/zNaorMHPkqDNrFq1Kr169crdd9+d973vfcUuhxL0yiuv5OCDD84VV1yRiy66KIMGDcqMGTOKXRYl5Jxzzsmvf/3r3HvvvcUuhRL3b//2b6mqqsrVV1/dOPbhD384Xbt2zXXXXVfEyiglZWVl+dnPfpbjjz8+yeu/dt9ll13yX//1XznrrLOSJGvXrk1VVVWuvfbanHjiiUWsFtga6SHZkuk/2dLpX+ko9L90BPpnthauGIc2tHbt2iTJTjvtVORKKFWnn356jjvuuIwcObLYpVCifvGLX2TIkCH56Ec/ml69euWggw7KVVddVeyyKEGHHnpoamtr8/TTTydJfvvb3+a+++7Lv/7rvxa5MkrZ0qVLs3z58ib/O9qjR48MGzYsCxYsKGJlwNZKD8mWTP/Jlk7/Skeh/6Uj0j9TqjoVuwAoFfX19fniF7+YESNG5IADDih2OZSgG2+8MYsXL85vfvObYpdCCXv22Wdz5ZVXpqamJueee25+85vf5Atf+EI6d+6ccePGFbs8Ssg555yTdevWZd99901FRUU2bdqUr33ta/nEJz5R7NIoYcuXL0+SVFVVNRmvqqpq3AfQXvSQbMn0n3QE+lc6Cv0vHZH+mVIlGIc2cvrpp+exxx7LfffdV+xSKEHLli3LGWeckbvuuitdunQpdjmUsPr6+gwZMiRTp05Nkhx00EF57LHHMmvWLP9igTb14x//ONdff31uuOGG7L///nnkkUfyxS9+MbvssovvGgBbBT0kWyr9Jx2F/pWOQv8LsOVwK3VoAxMmTMitt96aefPmZddddy12OZSgRYsWZeXKlTn44IPTqVOndOrUKXfffXcuvfTSdOrUKZs2bSp2iZSIPn36pH///k3G9ttvvzz//PNFqohS9aUvfSnnnHNOTjzxxBx44IE5+eSTc+aZZ2batGnFLo0S1rt37yTJihUrmoyvWLGicR9Ae9BDsiXTf9JR6F/pKPS/dET6Z0qVYBzegYaGhkyYMCE/+9nP8qtf/Sq77757sUuiRB111FF59NFH88gjjzRuQ4YMySc+8Yk88sgjqaioKHaJlIgRI0bkqaeeajL29NNPZ7fdditSRZSqV199NeXlTf+vaEVFRerr64tUEVuD3XffPb17905tbW3j2Lp16/Lggw9m+PDhRawM2FroIekI9J90FPpXOgr9Lx2R/plS5Vbq8A6cfvrpueGGG/Lzn/8822+/feOzNXr06JGuXbsWuTpKyfbbb7/Zcwe33XbbvOtd7/I8QtrUmWeemUMPPTRTp07Nxz72sSxcuDDf+9738r3vfa/YpVFiRo8ena997Wt597vfnf333z8PP/xwpk+fnv/8z/8sdml0cK+88kqWLFnS+Hrp0qV55JFHstNOO+Xd7353vvjFL+aiiy7K3nvvnd133z0XXHBBdtlllxx//PHFKxrYaugh6Qj0n3QU+lc6Cv0vWyr9M1ujsoaGhoZiFwEdVVlZWbPj11xzTT75yU+2bzFsdY444ogMGjQoM2bMKHYplJhbb701EydOzB/+8Ifsvvvuqampyamnnlrssigxf/3rX3PBBRfkZz/7WVauXJlddtklJ510UiZNmpTOnTsXuzw6sPnz5+fII4/cbHzcuHG59tpr09DQkMmTJ+d73/teXn755Rx22GG54oorss8++xShWmBro4eko9J/sqXSv9IR6H/ZUumf2RoJxgEAAAAAAAAoaZ4xDgAAAAAAAEBJE4wDAAAAAAAAUNIE4wAAAAAAAACUNME4AAAAAAAAACVNMA4AAAAAAABASROMAwAAAAAAAFDSBOMAAAAAAAAAlDTBOAAAAAAAAAAlTTAOALSZa6+9NjvssEOxywAAAICSodcGgLYhGAeALdwnP/nJlJWVbbYtWbKkzd6jrKwst9xyyz+dd/fdd+f9739/dtppp3Tr1i177713xo0bl40bNyZJxowZk6effrrN6gIAAIBC0GsDwNZHMA4AHcAxxxyTl156qcm2++67t2sNv//973PMMcdkyJAhueeee/Loo4/msssuS+fOnbNp06YkSdeuXdOrV692rQsAAADeDr02AGxdBOMA0AFUVlamd+/eTbaKiookr/+yfOjQoamsrEyfPn1yzjnn5O9//3vj2iOOOCJf+MIX8uUvfzk77bRTevfuna985SuN+6urq5Mk//7v/56ysrLG1//XnXfemd69e+cb3/hGDjjggOy555455phjctVVV6Vr165JNr+9W3V1dbO/wH/DsmXL8rGPfSw77LBDdtppp3zoQx/Kc8891ybnDAAAAN6KXhsAti6CcQDowF544YUce+yx+Zd/+Zf89re/zZVXXpmrr746F110UZN5P/jBD7LtttvmwQcfzDe+8Y189atfzV133ZUk+c1vfpMkueaaa/LSSy81vv6/evfunZdeein33HNPi+v7zW9+0/ir+z/96U855JBD8t73vjdJ8tprr2XUqFHZfvvtc++99+bXv/51tttuuxxzzDGNt4sDAACA9qbXBoDS1KnYBQAA/9ytt96a7bbbrvH1v/7rv+amm27KFVdckX79+uXyyy9PWVlZ9t1337z44os5++yzM2nSpJSXv/4buAEDBmTy5MlJkr333juXX355amtrc/TRR2fnnXdOkuywww7p3bv3m9bw0Y9+NHfccUcOP/zw9O7dO4ccckiOOuqojB07Nt27d292zRvHTpIzzjijyb8MmDNnTurr6/P973+/8Zft11xzTXbYYYfMnz8/H/jAB97BGQMAAIC3ptcGgK2LK8YBoAM48sgj88gjjzRul156aZLkiSeeyPDhw5vcMm3EiBF55ZVX8qc//alxbMCAAU2O16dPn6xcubJVNVRUVOSaa67Jn/70p3zjG99I3759M3Xq1Oy///556aWX3nLt9773vVx99dX5xS9+0djA//a3v82SJUuy/fbbZ7vttst2222XnXbaKRs2bMgzzzzTqtoAAACgtfTaALB1ccU4AHQA2267bfbaa6+3vX6bbbZp8rqsrCz19fVv61h9+/bNySefnJNPPjkXXnhh9tlnn8yaNStTpkxpdv68efPy+c9/Pv/93//d5F8avPLKKxk8eHCuv/76zdb871+/AwAAQCHotQFg6yIYB4AObL/99stPf/rTNDQ0NP6S/de//nW233777Lrrri0+zjbbbJNNmza1+v133HHH9OnTJ+vXr292/5IlS/KRj3wk5557bk444YQm+w4++ODMmTMnvXr1etPbwwEAAEB702sDQGlyK3UA6MA+97nPZdmyZfn85z+fJ598Mj//+c8zefLk1NTUND7zrCWqq6tTW1ub5cuX5y9/+Uuzc7773e/mtNNOy5133plnnnkmjz/+eM4+++w8/vjjGT169Gbz//a3v2X06NE56KCD8ulPfzrLly9v3JLkE5/4RHr27JkPfehDuffee7N06dLMnz8/X/jCF5rcmg4AAADak14bAEqTYBwAOrC+ffvm9ttvz8KFCzNw4MB89rOfzSmnnJLzzz+/Vce55JJLctddd6Vfv3456KCDmp0zdOjQvPLKK/nsZz+b/fffP4cffngeeOCB3HLLLTn88MM3m79ixYo8+eSTqa2tzS677JI+ffo0bknSrVu33HPPPXn3u9+dE044Ifvtt19OOeWUbNiwwa/aAQAAKBq9NgCUprKGhoaGYhcBAAAAAAAAAIXiinEAAAAAAAAASppgHAAAAAAAAICSJhgHAAAAAAAAoKQJxgEAAAAAAAAoaYJxAAAAAAAAAEqaYBwAAAAAAACAkiYYBwAAAAAAAKCkCcYBAAAAAAAAKGmCcQAAAAAAAABKmmAcAAAAAAAAgJImGAcAAAAAAACgpAnGAQAAAAAAAChpgnEAAAAAAAAASppgHAAAAAAAAICSJhgHAAAAAAAAoKQJxgEAAAAAAAAoaYJxAAAAAAAAAEqaYBwAAAAAAACAkiYYB4AtxP3335+vfOUrefnll4tdyhbliiuuyLXXXlvsMgAAAAAA6MAE4wCwhbj//vszZcoUwfj/IRgHAAAAAOCdEowDAG2ivr4+GzZsKHYZAAAAAACwGcE4AGwBvvKVr+RLX/pSkmT33XdPWVlZysrK8txzzyVJrrvuugwePDhdu3bNTjvtlBNPPDHLli1rcow//OEP+fCHP5zevXunS5cu2XXXXXPiiSdm7dq1jXPuuuuuHHbYYdlhhx2y3Xbb5T3veU/OPffcJsepq6vL5MmTs9dee6WysjL9+vXLl7/85dTV1TWZV1ZWlgkTJuT666/P/vvvn8rKysydOzdJ8q1vfSuHHnpo3vWud6Vr164ZPHhwfvKTnzT72a+77roMHTo03bp1y4477pj3ve99ufPOO5Mk1dXVefzxx3P33Xc3npMjjjjibZ9nAAAAAAC2TmUNDQ0NxS4CALZ2v/vd73LxxRfnv//7v/Ptb387PXv2TJL8+7//e2bMmJELLrggH/vYx3L44Ydn1apVueyyy7Lddtvl4Ycfzg477JCNGzdm3333TV1dXT73uc+ld+/eeeGFF3Lrrbfmpptuym677ZbHH388Bx98cAYMGJCTTz45lZWVWbJkSRYuXJi77747yetXff/rv/5r7rvvvnz605/Ofvvtl0cffTSzZs3Kcccdl1tuuaWx5rKysuy3335ZvXp1JkyYkJ49e+bQQw/NoEGD0q9fv3zwgx9M//79s3Hjxtx4441ZuHBhbr311hx33HGNx5gyZUq+8pWv5NBDD82///u/p3PnznnwwQfTr1+/XHzxxbnlllvy+c9/Ptttt13OO++8JElVVVWOPvro9vuHAwAAAABAhycYB4AtxLe+9a186UtfytKlS1NdXZ0k+eMf/5g999wzX/3qV5tc2f3YY4/loIMOypQpU3LuuefmkUceyUEHHZSbbropH/nIR5o9/owZM3LmmWdm1apVjcH7/3Xddddl3Lhxufvuu3PYYYc1jn/3u9/NZz/72fz617/OoYcemuT1YLy8vDyPPvpo+vfv3+Q4f/vb39K1a9fG16+99loOPvjg9OrVK7W1tUmSJUuW5D3veU8+9KEP5Sc/+UnKy/9xI5uGhoaUlZUlSQ444ID07Nkz8+fPb+GZBAAAAACAptxKHQC2YDfffHPq6+vzsY99LKtXr27cevfunb333jvz5s1LkvTo0SNJcscdd+TVV19t9lg77LBDkuTnP/956uvrm51z0003Zb/99su+++7b5P3e//73J0nj+73h8MMP3ywUT9IkFP/LX/6StWvX5r3vfW8WL17cOH7LLbekvr4+kyZNahKKJ2kMxQEAAAAAoC0IxgFgC/aHP/whDQ0N2XvvvbPzzjs32Z544omsXLkyyevPJa+pqcn3v//99OzZM6NGjcrMmTObPF98zJgxGTFiRD71qU+lqqoqJ554Yn784x83Ccn/8Ic/5PHHH9/svfbZZ58kaXy/N+y+++7N1n3rrbfmkEMOSZcuXbLTTjtl5513zpVXXtmknmeeeSbl5eXNBusAAAAAANCWOhW7AADgzdXX16esrCy//OUvU1FRsdn+7bbbrvHvSy65JJ/85Cfz85//PHfeeWe+8IUvZNq0aXnggQey6667pmvXrrnnnnsyb9683HbbbZk7d27mzJmT97///bnzzjtTUVGR+vr6HHjggZk+fXqz9fTr16/J6/99Zfgb7r333nzwgx/M+973vlxxxRXp06dPttlmm1xzzTW54YYb3uEZAQAAAACA1hOMA8AWornbh++5555paGjI7rvv3njV9ls58MADc+CBB+b888/P/fffnxEjRmTWrFm56KKLkiTl5eU56qijctRRR2X69OmZOnVqzjvvvMybNy8jR47Mnnvumd/+9rc56qij3vbtzH/605+mS5cuueOOO1JZWdk4fs0112z22err6/P73/8+gwYNetPjua06AAAAAADvlFupA8AWYtttt02SvPzyy41jJ5xwQioqKjJlypQ0NDQ0md/Q0JA///nPSZJ169bl73//e5P9Bx54YMrLy1NXV5ckWbNmzWbv+UYg/cacj33sY3nhhRdy1VVXbTb3b3/7W9avX/9PP0dFRUXKysqyadOmxrHnnnsut9xyS5N5xx9/fMrLy/PVr351s2ee/+/Puu222zY5JwAAAAAA0FquGAeALcTgwYOTJOedd15OPPHEbLPNNhk9enQuuuiiTJw4Mc8991yOP/74bL/99lm6dGl+9rOf5dOf/nTOOuus/OpXv8qECRPy0Y9+NPvss0/+/ve/50c/+lEqKiry4Q9/OEny1a9+Nffcc0+OO+647Lbbblm5cmWuuOKK7LrrrjnssMOSJCeffHJ+/OMf57Of/WzmzZuXESNGZNOmTXnyySfz4x//OHfccUeGDBnylp/juOOOy/Tp03PMMcfk4x//eFauXJmZM2dmr732yu9+97vGeXvttVfOO++8XHjhhXnve9+bE044IZWVlfnNb36TXXbZJdOmTWs8L1deeWUuuuii7LXXXunVq1fe//73F+IfAQAAAAAAJaqs4f9efgYAFM1FF12UWbNm5aWXXkp9fX2WLl2a6urq3Hzzzfn2t7+dhx9+OMnrz/o+6qij8oUvfCH77LNPli5dmosuuih33313XnjhhXTr1i0DBw7Meeedl6OOOipJ8qtf/SqXXnppfvOb32T16tXp2bNnDj/88EyZMiV77713Yw2vvfZavv3tb+eHP/xhlixZkm7dumWPPfbIBz/4wXzxi19M9+7dk7x+i/PTTz89l19++WafY/bs2bn44ovz/PPPZ/fdd8/ZZ5+d5557rtkr36+55ppcdtll+f3vf59u3bplwIABOf/88zNy5MgkyYoVK3LKKafknnvuyV//+tccfvjhmT9/fiFOPwAAAAAAJUowDgAAAAAAAEBJ84xxAAAAAAAAAEqaYBwAAAAAAACAkiYYBwAAgBJyzz33ZPTo0dlll11SVlaWW265qHM32QAATktJREFU5Z+umT9/fg4++OBUVlZmr732yrXXXlvwOgEAAKA9CcYBAACghKxfvz4DBw7MzJkzWzR/6dKlOe6443LkkUfmkUceyRe/+MV86lOfyh133FHgSgEAAKD9lDU0NDQUuwgAAACg7ZWVleVnP/tZjj/++Dedc/bZZ+e2227LY4891jh24okn5uWXX87cuXPboUoAAAAoPFeMAwAAwFZswYIFGTlyZJOxUaNGZcGCBUWqCAAAANpep2IX0N7q6+vz4osvZvvtt09ZWVmxywEAAKADa2hoyF//+tfssssuKS/vmL89X758eaqqqpqMVVVVZd26dfnb3/6Wrl27bramrq4udXV1ja/r6+uzZs2avOtd79JrAwAA8I4Uqtfe6oLxF198Mf369St2GQAAAJSQZcuWZddddy12Ge1m2rRpmTJlSrHLAAAAoIS1da+91QXj22+/fZLXT2T37t2LXA0AAAAd2bp169KvX7/GXrMj6t27d1asWNFkbMWKFenevXuzV4snycSJE1NTU9P4eu3atXn3u9+t1wYAAOAdK1SvvdUF42/c0q179+6adQAAANpER759+PDhw3P77bc3GbvrrrsyfPjwN11TWVmZysrKzcb12gAAALSVtu61O+YD0AAAAIBmvfLKK3nkkUfyyCOPJEmWLl2aRx55JM8//3yS16/2Hjt2bOP8z372s3n22Wfz5S9/OU8++WSuuOKK/PjHP86ZZ55ZjPIBAACgIATjAAAAUEIeeuihHHTQQTnooIOSJDU1NTnooIMyadKkJMlLL73UGJInye67757bbrstd911VwYOHJhLLrkk3//+9zNq1Kii1A8AAACFUNbQ0NBQ7CLa07p169KjR4+sXbvW7d0AAAB4R/SYr3MeAAAAaCuF6jFdMQ4AAAAAAABASROMAwAAAAAAAFDSBOMAAAAAAAAAlDTBOAAAAAAAAAAlTTAOAAAAAAAAQEkTjAMAAAAAAABQ0gTjAAAAAAAAAJQ0wTgAAAAAAAAAJU0wDgAAAAAAAEBJE4wDAAAAAAAAUNIE4wAAAAAAAACUtE7FLgAAAIC39vghFxS7hKLY/4ELi10CAAAAUCJcMQ4AAAAAAABASSt6MD5z5sxUV1enS5cuGTZsWBYuXPiW82fMmJH3vOc96dq1a/r165czzzwzGzZsaKdqAQAAAAAAAOhoihqMz5kzJzU1NZk8eXIWL16cgQMHZtSoUVm5cmWz82+44Yacc845mTx5cp544olcffXVmTNnTs4999x2rhwAAAAAAACAjqKowfj06dNz6qmnZvz48enfv39mzZqVbt26Zfbs2c3Ov//++zNixIh8/OMfT3V1dT7wgQ/kpJNO+qdXmQMAAAAAAACw9SpaML5x48YsWrQoI0eO/Ecx5eUZOXJkFixY0OyaQw89NIsWLWoMwp999tncfvvtOfbYY9ulZgAAAAAAAAA6nk7FeuPVq1dn06ZNqaqqajJeVVWVJ598stk1H//4x7N69eocdthhaWhoyN///vd89rOffctbqdfV1aWurq7x9bp169rmAwAAAAAAAADQIRT1VuqtNX/+/EydOjVXXHFFFi9enJtvvjm33XZbLrzwwjddM23atPTo0aNx69evXztWDAAAAAAAAECxFe2K8Z49e6aioiIrVqxoMr5ixYr07t272TUXXHBBTj755HzqU59Kkhx44IFZv359Pv3pT+e8885LefnmOf/EiRNTU1PT+HrdunXCcQAAAAAAAICtSNGuGO/cuXMGDx6c2traxrH6+vrU1tZm+PDhza559dVXNwu/KyoqkiQNDQ3NrqmsrEz37t2bbAAAAAAAAABsPYp2xXiS1NTUZNy4cRkyZEiGDh2aGTNmZP369Rk/fnySZOzYsenbt2+mTZuWJBk9enSmT5+egw46KMOGDcuSJUtywQUXZPTo0Y0BOQAAAAAAAAD8b0UNxseMGZNVq1Zl0qRJWb58eQYNGpS5c+emqqoqSfL88883uUL8/PPPT1lZWc4///y88MIL2XnnnTN69Oh87WtfK9ZHAAAAAAAAAGALV9bwZvcgL1Hr1q1Ljx49snbtWrdVBwAAOoTHD7mg2CUUxf4PXFjsEv4pPebrnAcAAADaSqF6zKI9YxwAAAAAAAAA2oNgHAAAAAAAAICSJhgHAAAAAAAAoKQJxgEAAAAAAAAoaYJxAAAAAAAAAEqaYBwAAAAAAACAkiYYBwAAAAAAAKCkCcYBAAAAAAAAKGmCcQAAAAAAAABKmmAcAAAAAAAAgJImGAcAAAAAAACgpAnGAQAAAAAAAChpgnEAAAAAAAAASppgHAAAAAAAAICSJhgHAAAAAAAAoKQJxgEAAAAAAAAoaYJxAAAAAAAAAEqaYBwAAAAAAACAkiYYBwAAAAAAAKCkCcYBAAAAAAAAKGmCcQAAAAAAAABKmmAcAAAAAAAAgJImGAcAAAAAAACgpAnGAQAAAAAAAChpgnEAAAAAAAAASppgHAAAAAAAAICSJhgHAAAAAAAAoKQJxgEAAAAAAAAoaYJxAAAAAAAAAEqaYBwAAAAAAACAktap2AUAAABbl8cPuaDYJRTF/g9cWOwSAAAAALZarhgHAAAAAAAAoKRtEcH4zJkzU11dnS5dumTYsGFZuHDhm8494ogjUlZWttl23HHHtWPFAAAAAAAAAHQURQ/G58yZk5qamkyePDmLFy/OwIEDM2rUqKxcubLZ+TfffHNeeumlxu2xxx5LRUVFPvrRj7Zz5QAAAAAAAAB0BEUPxqdPn55TTz0148ePT//+/TNr1qx069Yts2fPbnb+TjvtlN69ezdud911V7p16yYYBwAAAAAAAKBZRQ3GN27cmEWLFmXkyJGNY+Xl5Rk5cmQWLFjQomNcffXVOfHEE7PtttsWqkwAAAAAAAAAOrBOxXzz1atXZ9OmTamqqmoyXlVVlSeffPKfrl+4cGEee+yxXH311W86p66uLnV1dY2v161b9/YLBgAAAAAAAKDDKfqt1N+Jq6++OgceeGCGDh36pnOmTZuWHj16NG79+vVrxwoBAAAAAAAAKLaiBuM9e/ZMRUVFVqxY0WR8xYoV6d2791uuXb9+fW688caccsopbzlv4sSJWbt2beO2bNmyd1w3AAAAAAAAAB1HUYPxzp07Z/DgwamtrW0cq6+vT21tbYYPH/6Wa2+66abU1dXlP/7jP95yXmVlZbp3795kAwAAgFI2c+bMVFdXp0uXLhk2bFgWLlz4lvNnzJiR97znPenatWv69euXM888Mxs2bGinagEAAKDwin4r9Zqamlx11VX5wQ9+kCeeeCKnnXZa1q9fn/HjxydJxo4dm4kTJ2627uqrr87xxx+fd73rXe1dMgAAAGyx5syZk5qamkyePDmLFy/OwIEDM2rUqKxcubLZ+TfccEPOOeecTJ48OU888USuvvrqzJkzJ+eee247Vw4AAACF06nYBYwZMyarVq3KpEmTsnz58gwaNChz585NVVVVkuT5559PeXnT/P6pp57KfffdlzvvvLMYJQMAAMAWa/r06Tn11FMbf3A+a9as3HbbbZk9e3bOOeeczebff//9GTFiRD7+8Y8nSaqrq3PSSSflwQcfbNe6AQAAoJCKHownyYQJEzJhwoRm982fP3+zsfe85z1paGgocFUAAADQsWzcuDGLFi1qcue18vLyjBw5MgsWLGh2zaGHHprrrrsuCxcuzNChQ/Pss8/m9ttvz8knn/ym71NXV5e6urrG1+vWrWu7DwEAAAAFsEUE4wAAAMA7t3r16mzatKnxLmxvqKqqypNPPtnsmo9//ONZvXp1DjvssDQ0NOTvf/97PvvZz77lrdSnTZuWKVOmtGntAAAAUEhFf8Y4AAAAUDzz58/P1KlTc8UVV2Tx4sW5+eabc9ttt+XCCy980zUTJ07M2rVrG7dly5a1Y8UAAADQeq4YBwAAgBLRs2fPVFRUZMWKFU3GV6xYkd69eze75oILLsjJJ5+cT33qU0mSAw88MOvXr8+nP/3pnHfeeSkv3/w39ZWVlamsrGz7DwAAAAAF4opxAAAAKBGdO3fO4MGDU1tb2zhWX1+f2traDB8+vNk1r7766mbhd0VFRZKkoaGhcMUCAABAO3LFOAAAAJSQmpqajBs3LkOGDMnQoUMzY8aMrF+/PuPHj0+SjB07Nn379s20adOSJKNHj8706dNz0EEHZdiwYVmyZEkuuOCCjB49ujEgBwAAgI5OMA4AAAAlZMyYMVm1alUmTZqU5cuXZ9CgQZk7d26qqqqSJM8//3yTK8TPP//8lJWV5fzzz88LL7yQnXfeOaNHj87Xvva1Yn0EAAAAaHNlDVvZfdHWrVuXHj16ZO3atenevXuxywEAgK3O44dcUOwSimL/By5822udsy2XHvN1zgMAAABtpVA9pmeMAwAAAAAAAFDSBOMAAAAAAAAAlDTBOAAAAAAAAAAlTTAOAAAAAAAAQEkTjAMAAAAAAABQ0gTjAAAAAAAAAJQ0wTgAAAAAAAAAJU0wDgAAAAAAAEBJE4wDAAAAAAAAUNIE4wAAAAAAAACUNME4AAAAAAAAACVNMA4AAAAAAABASROMAwAAAAAAAFDSBOMAAAAAAAAAlDTBOAAAAAAAAAAlTTAOAAAAAAAAQEkTjAMAAAAAAABQ0gTjAAAAAAAAAJQ0wTgAAAAAAAAAJU0wDgAAAAAAAEBJE4wDAAAAAAAAUNIE4wAAAAAAAACUNME4AAAAAAAAACVNMA4AAAAAAABASROMAwAAAAAAAFDSih6Mz5w5M9XV1enSpUuGDRuWhQsXvuX8l19+Oaeffnr69OmTysrK7LPPPrn99tvbqVoAAAAAAAAAOppOxXzzOXPmpKamJrNmzcqwYcMyY8aMjBo1Kk899VR69eq12fyNGzfm6KOPTq9evfKTn/wkffv2zR//+MfssMMO7V88AAAAAAAAAB1CUYPx6dOn59RTT8348eOTJLNmzcptt92W2bNn55xzztls/uzZs7NmzZrcf//92WabbZIk1dXV7VkyAAAAAAAAAB1M0W6lvnHjxixatCgjR478RzHl5Rk5cmQWLFjQ7Jpf/OIXGT58eE4//fRUVVXlgAMOyNSpU7Np06b2KhsAAAAAAACADqZoV4yvXr06mzZtSlVVVZPxqqqqPPnkk82uefbZZ/OrX/0qn/jEJ3L77bdnyZIl+dznPpfXXnstkydPbnZNXV1d6urqGl+vW7eu7T4EAAAAAAAAAFu8ol0x/nbU19enV69e+d73vpfBgwdnzJgxOe+88zJr1qw3XTNt2rT06NGjcevXr187VgwAAAAAAABAsRUtGO/Zs2cqKiqyYsWKJuMrVqxI7969m13Tp0+f7LPPPqmoqGgc22+//bJ8+fJs3Lix2TUTJ07M2rVrG7dly5a13YcAAAAAAAAAYItXtGC8c+fOGTx4cGpraxvH6uvrU1tbm+HDhze7ZsSIEVmyZEnq6+sbx55++un06dMnnTt3bnZNZWVlunfv3mQDAAAAAAAAYOtR1Fup19TU5KqrrsoPfvCDPPHEEznttNOyfv36jB8/PkkyduzYTJw4sXH+aaedljVr1uSMM87I008/ndtuuy1Tp07N6aefXqyPAAAAAAAAAMAWrlMx33zMmDFZtWpVJk2alOXLl2fQoEGZO3duqqqqkiTPP/98ysv/kd3369cvd9xxR84888wMGDAgffv2zRlnnJGzzz67WB8BAAAAAAAAgC1cUYPxJJkwYUImTJjQ7L758+dvNjZ8+PA88MADBa4KAAAAAAAAgFJR1FupAwAAAAAAAEChCcYBAAAAAAAAKGmCcQAAAAAAAABKmmAcAAAAAAAAgJImGAcAAAAAAACgpAnGAQAAAAAAAChpgnEAAAAAAAAASppgHAAAAAAAAICSJhgHAAAAAAAAoKQJxgEAAAAAAAAoaa0Oxp999tlC1AEAAAAAAAAABdHqYHyvvfbKkUcemeuuuy4bNmwoRE0AAAAAAAAA0GZaHYwvXrw4AwYMSE1NTXr37p3PfOYzWbhwYSFqAwAAAAAAAIB3rNXB+KBBg/Kd73wnL774YmbPnp2XXnophx12WA444IBMnz49q1atKkSdAAAAAAAAAPC2tDoYf0OnTp1ywgkn5KabbsrXv/71LFmyJGeddVb69euXsWPH5qWXXmrLOgEAAAAAAADgbXnbwfhDDz2Uz33uc+nTp0+mT5+es846K88880zuuuuuvPjii/nQhz7UlnUCAAAAAAAAwNvSqbULpk+fnmuuuSZPPfVUjj322Pzwhz/Msccem/Ly1zP23XffPddee22qq6vbulYAAAAAAAAAaLVWB+NXXnll/vM//zOf/OQn06dPn2bn9OrVK1dfffU7Lg4AAAAAAAAA3qlWB+N33XVX3v3udzdeIf6GhoaGLFu2LO9+97vTuXPnjBs3rs2KBAAAAAAAAIC3q9XPGN9zzz2zevXqzcbXrFmT3XffvU2KAgAAAAAAAIC20upgvKGhodnxV155JV26dHnHBQEAAAAAAABAW2rxrdRramqSJGVlZZk0aVK6devWuG/Tpk158MEHM2jQoDYvEAAAAAAAAADeiRYH4w8//HCS168Yf/TRR9O5c+fGfZ07d87AgQNz1llntX2FAAAAAAAAAPAOtDgYnzdvXpJk/Pjx+c53vpPu3bsXrCgAAAAAAAAAaCstDsbfcM011xSiDgAAAAAAAAAoiBYF4yeccEKuvfbadO/ePSeccMJbzr355pvbpDAAAAAAAAAAaAvlLZnUo0ePlJWVNf79VhsAAABQXDNnzkx1dXW6dOmSYcOGZeHChW85/+WXX87pp5+ePn36pLKyMvvss09uv/32dqoWAAAACq9FV4y/cfv0hoaGTJkyJTvvvHO6du1a0MIAAACA1pszZ05qamoya9asDBs2LDNmzMioUaPy1FNPpVevXpvN37hxY44++uj06tUrP/nJT9K3b9/88Y9/zA477ND+xQMAAECBtOiK8Tc0NDRkr732yp/+9KdC1QMAAAC8A9OnT8+pp56a8ePHp3///pk1a1a6deuW2bNnNzt/9uzZWbNmTW655ZaMGDEi1dXVOfzwwzNw4MB2rhwAAAAKp1XBeHl5efbee+/8+c9/LlQ9AAAAwNu0cePGLFq0KCNHjmwcKy8vz8iRI7NgwYJm1/ziF7/I8OHDc/rpp6eqqioHHHBApk6dmk2bNrVX2QAAAFBwrQrGk+Tiiy/Ol770pTz22GOFqAcAAAB4m1avXp1NmzalqqqqyXhVVVWWL1/e7Jpnn302P/nJT7Jp06bcfvvtueCCC3LJJZfkoosuetP3qaury7p165psAAAAsCVr0TPG/7exY8fm1VdfzcCBA9O5c+fNnjW+Zs2aNisOAAAAKKz6+vr06tUr3/ve91JRUZHBgwfnhRdeyDe/+c1Mnjy52TXTpk3LlClT2rlSAAAAePtaHYzPmDGjzYuYOXNmvvnNb2b58uUZOHBgLrvssgwdOrTZuddee23Gjx/fZKyysjIbNmxo87oAAOCtPH7IBcUuoSj2f+DCYpcAvImePXumoqIiK1asaDK+YsWK9O7du9k1ffr0yTbbbJOKiorGsf322y/Lly/Pxo0b07lz583WTJw4MTU1NY2v161bl379+rXRpwAAAIC21+pgfNy4cW1awJw5c1JTU5NZs2Zl2LBhmTFjRkaNGpWnnnoqvXr1anZN9+7d89RTTzW+Lisra9OaAAAAoCPq3LlzBg8enNra2hx//PFJXr8ivLa2NhMmTGh2zYgRI3LDDTekvr4+5eWvP3Ht6aefTp8+fZoNxZPXf6BeWVlZkM8AAAAAhdDqZ4z/bxs2bHjHzxSbPn16Tj311IwfPz79+/fPrFmz0q1bt8yePftN15SVlaV3796N2/99dhoAAABsrWpqanLVVVflBz/4QZ544omcdtppWb9+fePd18aOHZuJEyc2zj/ttNOyZs2anHHGGXn66adz2223ZerUqTn99NOL9REAAACgzbX6ivH169fn7LPPzo9//OP8+c9/3mz/pk2bWnysjRs3ZtGiRU0a8vLy8owcOTILFix403WvvPJKdtttt9TX1+fggw/O1KlTs//++zc7t66uLnV1dY2v3054DwAAAB3FmDFjsmrVqkyaNCnLly/PoEGDMnfu3MYflT///PONV4YnSb9+/XLHHXfkzDPPzIABA9K3b9+cccYZOfvss4v1EQAAAKDNtToY//KXv5x58+blyiuvzMknn5yZM2fmhRdeyHe/+91cfPHFrTrW6tWrs2nTps2u+K6qqsqTTz7Z7Jr3vOc9mT17dgYMGJC1a9fmW9/6Vg499NA8/vjj2XXXXTebP23atEyZMqVVdQEAAEBHNmHChDe9dfr8+fM3Gxs+fHgeeOCBAlcFAAAAxdPqW6n/v//3/3LFFVfkwx/+cDp16pT3vve9Of/88zN16tRcf/31haixieHDh2fs2LEZNGhQDj/88Nx8883Zeeed893vfrfZ+RMnTszatWsbt2XLlhW8RgAAAAAAAAC2HK2+YnzNmjXZY489kiTdu3fPmjVrkiSHHXZYTjvttFYdq2fPnqmoqMiKFSuajK9YsSK9e/du0TG22WabHHTQQVmyZEmz+ysrK1NZWdmqugAAAAAAAAAoHa2+YnyPPfbI0qVLkyT77rtvfvzjHyd5/UryHXbYoVXH6ty5cwYPHpza2trGsfr6+tTW1mb48OEtOsamTZvy6KOPpk+fPq16bwAAAAAAAAC2Dq2+Ynz8+PH57W9/m8MPPzznnHNORo8encsvvzyvvfZapk+f3uoCampqMm7cuAwZMiRDhw7NjBkzsn79+owfPz5JMnbs2PTt2zfTpk1Lknz1q1/NIYcckr322isvv/xyvvnNb+aPf/xjPvWpT7X6vQEAAAAAAAAofa0Oxs8888zGv0eOHJknn3wyixYtyl577ZUBAwa0uoAxY8Zk1apVmTRpUpYvX55BgwZl7ty5qaqqSpI8//zzKS//x4Xtf/nLX3Lqqadm+fLl2XHHHTN48ODcf//96d+/f6vfGwAAAAAAAIDS1+pg/P/abbfdsttuu72jY0yYMCETJkxodt/8+fObvP72t7+db3/72+/o/QAAAAAAAADYerQoGL/00ktbfMAvfOELb7sYAAAAAAAAAGhrLQrGW3qFdllZmWAcAAAAAAAAgC1Ki4LxpUuXFroOAAAAAAAAACiI8mIXAAAAAAAAAACF1KIrxmtqanLhhRdm2223TU1NzVvOnT59epsUBgAAAAAAAABtoUXB+MMPP5zXXnut8e83U1ZW1jZVAQAAAAAAAEAbaVEwPm/evGb/BgAAAAAAAIAtnWeMAwAAAAAAAFDSWnTF+P+2YcOGXHbZZZk3b15WrlyZ+vr6JvsXL17cZsUBAAAAAAAAwDvV6mD8lFNOyZ133pmPfOQjGTp0qOeKAwAAAAAAALBFa3Uwfuutt+b222/PiBEjClEPAAAAAAAAALSpVj9jvG/fvtl+++0LUQsAAAAAAAAAtLlWB+OXXHJJzj777Pzxj38sRD0AAAAAAAAA0KZafSv1IUOGZMOGDdljjz3SrVu3bLPNNk32r1mzps2KAwAAAAAAAIB3qtXB+EknnZQXXnghU6dOTVVVVcrKygpRFwAAAAAAAAC0iVYH4/fff38WLFiQgQMHFqIeAAAAAAAAAGhTrX7G+L777pu//e1vhagFAAAAAAAAANpcq4Pxiy++OP/1X/+V+fPn589//nPWrVvXZAMAAAAAAACALUmrb6V+zDHHJEmOOuqoJuMNDQ0pKyvLpk2b2qYyAAAAAAAAAGgDrQ7G582bV4g6AAAAAAAAAKAgWh2MH3744YWoAwAAAAAAAAAKokXB+O9+97sccMABKS8vz+9+97u3nDtgwIA2KQwAAAAAAAAA2kKLgvFBgwZl+fLl6dWrVwYNGpSysrI0NDRsNs8zxgEAAAAAAADY0rQoGF+6dGl23nnnxr8BAAAAAAAAoKNoUTC+2267Nfs3AAAAAAAAAGzpyls68emnn87ChQubjNXW1ubII4/M0KFDM3Xq1DYvDgAAAAAAAADeqRYH42effXZuvfXWxtdLly7N6NGj07lz5wwfPjzTpk3LjBkzClEjAAAAAAAAALxtLbqVepI89NBD+fKXv9z4+vrrr88+++yTO+64I0kyYMCAXHbZZfniF7/Y5kUCAAAAAAAAwNvV4ivGV69enV133bXx9bx58zJ69OjG10cccUSee+65Ni0OAAAAAAAAAN6pFgfjO+20U1566aUkSX19fR566KEccsghjfs3btyYhoaGtq8QAAAAAAAAAN6BFgfjRxxxRC688MIsW7YsM2bMSH19fY444ojG/b///e9TXV1dgBIBAAAAAAAA4O1r8TPGv/a1r+Xoo4/ObrvtloqKilx66aXZdtttG/f/6Ec/yvvf//6CFAkAAAAAAAAAb1eLrxivrq7OE088kYcffjh//OMfc9pppzXZP2XKlJx//vlvq4iZM2emuro6Xbp0ybBhw7Jw4cIWrbvxxhtTVlaW448//m29LwAAAAAAAAClr8XBeJJ06tQpAwcOzC677LLZvoEDB+Zd73pXqwuYM2dOampqMnny5CxevDgDBw7MqFGjsnLlyrdc99xzz+Wss87Ke9/73la/JwAAAAAAAABbj1YF44Uwffr0nHrqqRk/fnz69++fWbNmpVu3bpk9e/abrtm0aVM+8YlPZMqUKdljjz3asVoAAAAAAAAAOpqiBuMbN27MokWLMnLkyMax8vLyjBw5MgsWLHjTdV/96lfTq1evnHLKKf/0Perq6rJu3bomGwAAAAAAAABbj6IG46tXr86mTZtSVVXVZLyqqirLly9vds19992Xq6++OldddVWL3mPatGnp0aNH49avX793XDcAAAAAAAAAHUfRb6XeGn/9619z8skn56qrrkrPnj1btGbixIlZu3Zt47Zs2bICVwkAAAAAAADAlqTT21l077335rvf/W6eeeaZ/OQnP0nfvn3zox/9KLvvvnsOO+ywFh+nZ8+eqaioyIoVK5qMr1ixIr17995s/jPPPJPnnnsuo0ePbhyrr69//YN06pSnnnoqe+65Z5M1lZWVqaysbM3HAwAAAAAAAKCEtPqK8Z/+9KcZNWpUunbtmocffjh1dXVJkrVr12bq1KmtOlbnzp0zePDg1NbWNo7V19entrY2w4cP32z+vvvum0cffTSPPPJI4/bBD34wRx55ZB555BG3SQcAAAAAAABgM62+Yvyiiy7KrFmzMnbs2Nx4442N4yNGjMhFF13U6gJqamoybty4DBkyJEOHDs2MGTOyfv36jB8/PkkyduzY9O3bN9OmTUuXLl1ywAEHNFm/ww47JMlm4wAAAAAAAACQvI1g/Kmnnsr73ve+zcZ79OiRl19+udUFjBkzJqtWrcqkSZOyfPnyDBo0KHPnzk1VVVWS5Pnnn095eYd6FDoAAAAAAAAAW5BWB+O9e/fOkiVLUl1d3WT8vvvuyx577PG2ipgwYUImTJjQ7L758+e/5dprr732bb3n/2/v3qOsLAv9gX8HhAFEESJmgKbGoxagAcoIonnLUSyzqCzyeITI7KIoOlmKFygxwRuHEpIkL+eUHMgu1kqjdBQvRWIQpSYaXg6GzgC/EhITbGZ+f7SazgQkg8Ns2H0+a71rsZ/9vHt/Z69nA3t/531fAAAAAAAAAP41tPpQ7DPPPDMTJ07Mww8/nJKSkrzwwgu57bbbcsEFF+Szn/3szsgIAAAAAAAAADus1UeMX3TRRWlsbMxxxx2XV155JUcddVRKS0tzwQUX5JxzztkZGQEAAAAAAABgh7W6GC8pKckll1ySz3/+81m5cmVefvnlDBo0KN27d98Z+QAAAAAAAADgDWl1Mf43nTt3zqBBg9oyCwAAAAAAAAC0uVYX4xs3bsz06dNTW1ubNWvWpLGxscX9zzzzTJuFAwAAAAAAAIA3qtXF+Cc/+cncf//9Of3009O3b9+UlJTsjFwAAAAAAAAA0CZaXYz/+Mc/zp133pkjjjhiZ+QBAAAAAAAAgDbVobU79OzZM7169doZWQAAAAAAAACgzbW6GJ86dWomT56cV155ZWfkAQAAAAAAAIA21epTqV933XV5+umnU1ZWlsrKynTq1KnF/cuWLWuzcAAAAAAAAADwRrW6GB89evROiAEAAAAAAAAAO0eri/EpU6bsjBwAAAAAAAAAsFO0+hrjAAAAAAAAALA72a5ivFevXlm3bl2SpGfPnunVq9c2NwAAAKDwZs+encrKynTp0iUjRozIkiVLtmu/+fPnp6SkxKXUAAAAKCrbdSr1//zP/8xee+3V/OeSkpKdGgoAAADYcQsWLEhNTU3mzJmTESNGZObMmRk1alSefPLJ9OnTZ5v7Pffcc7ngggty5JFHtmNaAAAA2Pm2qxgfN25c858//vGP76wsAAAAQBuYMWNGzjzzzIwfPz5JMmfOnNx55525+eabc9FFF211n4aGhpx22mn50pe+lAcffDAvvfRSOyYGAACAnavV1xhftmxZHn300ebbP/jBDzJ69OhcfPHF2bx5c5uGAwAAAFpn8+bNWbp0aaqrq5vHOnTokOrq6ixevHib+11++eXp06dPzjjjjPaICQAAAO2q1cX4pz/96Tz11FNJkmeeeSZjxoxJt27dcvvtt+cLX/hCmwcEAAAAtt+6devS0NCQsrKyFuNlZWWpq6vb6j4PPfRQbrrppsydO3e7nmPTpk3ZsGFDiw0AAAB2Za0uxp966qkMHTo0SXL77bfn6KOPzrx583Lrrbfmu9/9blvnAwAAAHaiP/3pTzn99NMzd+7c9O7de7v2mTZtWnr06NG8VVRU7OSUAAAA8MZs1zXG/6+mpqY0NjYmSe655568733vS5JUVFRk3bp1bZsOAAAAaJXevXunY8eOqa+vbzFeX1+f8vLyLeY//fTTee6553LyySc3j/3tc/8ee+yRJ598Mvvtt1+LfSZNmpSamprm2xs2bFCOAwAAsEtr9RHjVVVVueKKK/LNb34z999/f0466aQkybPPPrvFadoAAACA9tW5c+cMGzYstbW1zWONjY2pra3NyJEjt5g/YMCAPProo1m+fHnz9v73vz/HHntsli9fvtXCu7S0NHvvvXeLDQAAAHZlrT5ifObMmTnttNNyxx135JJLLsn++++fJPnOd76Tww8/vM0DAgAAAK1TU1OTcePGpaqqKsOHD8/MmTOzcePGjB8/PkkyduzY9O/fP9OmTUuXLl1y0EEHtdh/n332SZItxgEAAGB31epifPDgwXn00Ue3GL/mmmvSsWPHNgkFAAAA7LgxY8Zk7dq1mTx5curq6jJ06NAsXLiw+Uxvq1atSocOrT6JHAAAAOy2Wl2M/83SpUvzxBNPJEkGDRqUQw45pM1CAQAAAG/MhAkTMmHChK3et2jRon+676233tr2gQAAAKCAWl2Mr1mzJmPGjMn999/ffGq1l156Kccee2zmz5+fN7/5zW2dEQAAAAAAAAB2WKvPm3bOOefk5ZdfzuOPP54//OEP+cMf/pDHHnssGzZsyLnnnrszMgIAAAAAAADADmv1EeMLFy7MPffck4EDBzaPDRo0KLNnz84JJ5zQpuEAAAAAAAAA4I1q9RHjjY2N6dSp0xbjnTp1SmNjY5uEAgAAAAAAAIC20upi/N3vfncmTpyYF154oXls9erVOf/883Pccce1aTgAAAAAAAAAeKNaXYzPmjUrGzZsSGVlZfbbb7/st99+2XfffbNhw4Zcf/31OyMjAAAAAAAAAOywVl9jvKKiIsuWLcs999yTFStWJEkGDhyY6urqNg8HAAAAAAAAAG9Uq4vxJCkpKcnxxx+f448/vq3zAAAAAAAAAECb2u5Tqd97770ZNGhQNmzYsMV969evz4EHHpgHH3xwh0LMnj07lZWV6dKlS0aMGJElS5Zsc+73vve9VFVVZZ999smee+6ZoUOH5pvf/OYOPS8AAAAAAAAAxW+7i/GZM2fmzDPPzN57773FfT169MinP/3pzJgxo9UBFixYkJqamkyZMiXLli3LkCFDMmrUqKxZs2ar83v16pVLLrkkixcvzm9+85uMHz8+48ePz09+8pNWPzcAAAAAAAAAxW+7i/Ff//rXOfHEE7d5/wknnJClS5e2OsCMGTNy5plnZvz48Rk0aFDmzJmTbt265eabb97q/GOOOSYf/OAHM3DgwOy3336ZOHFiBg8enIceeqjVzw0AAAAAAABA8dvuYry+vj6dOnXa5v177LFH1q5d26on37x5c5YuXZrq6uq/B+rQIdXV1Vm8ePHr7t/U1JTa2to8+eSTOeqoo7Y6Z9OmTdmwYUOLDQAAAAAAAIB/HdtdjPfv3z+PPfbYNu//zW9+k759+7bqydetW5eGhoaUlZW1GC8rK0tdXd0291u/fn26d++ezp0756STTsr111+f448/fqtzp02blh49ejRvFRUVrcoIAAAAAAAAwO5tu4vx9773vbnsssvy6quvbnHfn//850yZMiXve9/72jTctuy1115Zvnx5HnnkkXz5y19OTU1NFi1atNW5kyZNyvr165u3559/vl0yAgAAAAAAALBr2GN7J1566aX53ve+l7e//e2ZMGFC3vGOdyRJVqxYkdmzZ6ehoSGXXHJJq568d+/e6dixY+rr61uM19fXp7y8fJv7dejQIfvvv3+SZOjQoXniiScybdq0HHPMMVvMLS0tTWlpaatyAQAAAAAAAFA8trsYLysry89//vN89rOfzaRJk9LU1JQkKSkpyahRozJ79uwtTon+ejp37pxhw4altrY2o0ePTpI0NjamtrY2EyZM2O7HaWxszKZNm1r13AAAAAAAAAD8a9juYjxJ3va2t+Wuu+7KH//4x6xcuTJNTU054IAD0rNnzx0OUFNTk3HjxqWqqirDhw/PzJkzs3HjxowfPz5JMnbs2PTv3z/Tpk1L8tdrhldVVWW//fbLpk2bctddd+Wb3/xmbrjhhh3OAAAAAAAAAEDxalUx/jc9e/bMoYce2iYBxowZk7Vr12by5Mmpq6vL0KFDs3Dhwuajz1etWpUOHf5+KfSNGzfmrLPOyu9///t07do1AwYMyLe+9a2MGTOmTfIAAAAAAAAAUFx2qBhvaxMmTNjmqdMXLVrU4vYVV1yRK664oh1SAQAAAAAAAFAMOrz+FAAAAAAAAADYfSnGAQAAAAAAAChqinEAAAAAAAAAippiHAAAAAAAAICiphgHAAAAAAAAoKgpxgEAAAAAAAAoaopxAAAAAAAAAIqaYhwAAAAAAACAoqYYBwAAAAAAAKCoKcYBAAAAAAAAKGqKcQAAAAAAAACKmmIcAAAAAAAAgKKmGAcAAAAAAACgqCnGAQAAAAAAAChqinEAAAAAAAAAippiHAAAAAAAAICiphgHAAAAAAAAoKgpxgEAAAAAAAAoaopxAAAAAAAAAIqaYhwAAAAAAACAoqYYBwAAAAAAAKCoKcYBAAAAAAAAKGqKcQAAAAAAAACKmmIcAAAAAAAAgKKmGAcAAAAAAACgqCnGAQAAAAAAAChqinEAAAAAAAAAippiHAAAAAAAAICiphgHAAAAAAAAoKgpxgEAAAAAAAAoaopxAAAAAAAAAIqaYhwAAAAAAACAorZLFOOzZ89OZWVlunTpkhEjRmTJkiXbnDt37twceeSR6dmzZ3r27Jnq6up/Oh8AAAAAAACAf20FL8YXLFiQmpqaTJkyJcuWLcuQIUMyatSorFmzZqvzFy1alFNPPTX33XdfFi9enIqKipxwwglZvXp1OycHAAAAAAAAYHdQ8GJ8xowZOfPMMzN+/PgMGjQoc+bMSbdu3XLzzTdvdf5tt92Ws846K0OHDs2AAQPyjW98I42NjamtrW3n5AAAAAAAAADsDgpajG/evDlLly5NdXV181iHDh1SXV2dxYsXb9djvPLKK3nttdfSq1evrd6/adOmbNiwocUGAAAAAAAAwL+Oghbj69atS0NDQ8rKylqMl5WVpa6ubrse48ILL0y/fv1alOv/17Rp09KjR4/mraKi4g3nBgAAAAAAAGD3UfBTqb8R06dPz/z58/P9738/Xbp02eqcSZMmZf369c3b888/384pAQAAAAAAACikPQr55L17907Hjh1TX1/fYry+vj7l5eX/dN9rr70206dPzz333JPBgwdvc15paWlKS0vbJC8AAAAAAAAAu5+CHjHeuXPnDBs2LLW1tc1jjY2Nqa2tzciRI7e539VXX52pU6dm4cKFqaqqao+oAAAAAAAAAOymCnrEeJLU1NRk3LhxqaqqyvDhwzNz5sxs3Lgx48ePT5KMHTs2/fv3z7Rp05IkV111VSZPnpx58+alsrKy+Vrk3bt3T/fu3Qv2cwAAAAAAAACwayp4MT5mzJisXbs2kydPTl1dXYYOHZqFCxemrKwsSbJq1ap06PD3A9tvuOGGbN68OaecckqLx5kyZUq++MUvtmd0AAAAAAAAAHYDBS/Gk2TChAmZMGHCVu9btGhRi9vPPffczg8EAAAAAAAAQNEo6DXGAQAAAAAAAGBnU4wDAABAEZo9e3YqKyvTpUuXjBgxIkuWLNnm3Llz5+bII49Mz54907Nnz1RXV//T+QAAALC7UYwDAABAkVmwYEFqamoyZcqULFu2LEOGDMmoUaOyZs2arc5ftGhRTj311Nx3331ZvHhxKioqcsIJJ2T16tXtnBwAAAB2DsU4AAAAFJkZM2bkzDPPzPjx4zNo0KDMmTMn3bp1y80337zV+bfddlvOOuusDB06NAMGDMg3vvGNNDY2pra2tp2TAwAAwM6hGAcAAIAisnnz5ixdujTV1dXNYx06dEh1dXUWL168XY/xyiuv5LXXXkuvXr22ev+mTZuyYcOGFhsAAADsyhTjAAAAUETWrVuXhoaGlJWVtRgvKytLXV3ddj3GhRdemH79+rUo1/+vadOmpUePHs1bRUXFG84NAAAAO9MehQ4AANDWHj/sskJHKIgDfzG10BEAKALTp0/P/Pnzs2jRonTp0mWrcyZNmpSamprm2xs2bFCOAwAAsEtTjAMAAEAR6d27dzp27Jj6+voW4/X19SkvL/+n+1577bWZPn167rnnngwePHib80pLS1NaWtomeQEAAKA9OJU6AAAAFJHOnTtn2LBhqa2tbR5rbGxMbW1tRo4cuc39rr766kydOjULFy5MVVVVe0QFAACAduOIcQAAACgyNTU1GTduXKqqqjJ8+PDMnDkzGzduzPjx45MkY8eOTf/+/TNt2rQkyVVXXZXJkydn3rx5qaysbL4Weffu3dO9e/eC/RwAAADQVhTjAAAAUGTGjBmTtWvXZvLkyamrq8vQoUOzcOHClJWVJUlWrVqVDh3+fhK5G264IZs3b84pp5zS4nGmTJmSL37xi+0ZHQAAAHYKxTgAAEmSxw+7rNARCuLAX0wtdASAnWLChAmZMGHCVu9btGhRi9vPPffczg8EAAAABeQa4wAAAAAAAAAUNcU4AAAAAAAAAEVNMQ4AAAAAAABAUVOMAwAAAAAAAFDUFOMAAAAAAAAAFDXFOAAAAAAAAABFTTEOAAAAAAAAQFFTjAMAAAAAAABQ1BTjAAAAAAAAABQ1xTgAAAAAAAAARU0xDgAAAAAAAEBRU4wDAAAAAAAAUNQU4wAAAAAAAAAUNcU4AAAAAAAAAEVNMQ4AAAAAAABAUVOMAwAAAAAAAFDUFOMAAAAAAAAAFDXFOAAAAAAAAABFTTEOAAAAAAAAQFEreDE+e/bsVFZWpkuXLhkxYkSWLFmyzbmPP/54PvzhD6eysjIlJSWZOXNm+wUFAAAAAAAAYLdU0GJ8wYIFqampyZQpU7Js2bIMGTIko0aNypo1a7Y6/5VXXsm//du/Zfr06SkvL2/ntAAAAAAAAADsjgpajM+YMSNnnnlmxo8fn0GDBmXOnDnp1q1bbr755q3OP/TQQ3PNNdfkYx/7WEpLS9s5LQAAAAAAAAC7o4IV45s3b87SpUtTXV399zAdOqS6ujqLFy8uVCwAAAAAAAAAiswehXridevWpaGhIWVlZS3Gy8rKsmLFijZ7nk2bNmXTpk3Ntzds2NBmjw0AAAAAAADArq+gp1JvD9OmTUuPHj2at4qKikJHAgAAAAAAAKAdFawY7927dzp27Jj6+voW4/X19SkvL2+z55k0aVLWr1/fvD3//PNt9tgAAAAAAAAA7PoKVox37tw5w4YNS21tbfNYY2NjamtrM3LkyDZ7ntLS0uy9994tNgAAAAAAAAD+dRTsGuNJUlNTk3HjxqWqqirDhw/PzJkzs3HjxowfPz5JMnbs2PTv3z/Tpk1LkmzevDm//e1vm/+8evXqLF++PN27d8/+++9fsJ8DAAAAAAAAgF1XQYvxMWPGZO3atZk8eXLq6uoydOjQLFy4MGVlZUmSVatWpUOHvx/U/sILL+Tggw9uvn3ttdfm2muvzdFHH51Fixa1d3wAAAAAAAAAdgMFLcaTZMKECZkwYcJW7/vHsruysjJNTU3tkAoAAAAAAACAYlGwa4wDAAAAAAAAQHtQjAMAAAAAAABQ1BTjAAAAAAAAABQ1xTgAAAAAAAAARU0xDgAAAAAAAEBRU4wDAAAAAAAAUNQU4wAAAAAAAAAUNcU4AAAAAAAAAEVNMQ4AAAAAAABAUVOMAwAAAAAAAFDUFOMAAAAAAAAAFDXFOAAAAAAAAABFbY9CBwAA/rnHD7us0BEK4sBfTC10BAAAAAAAioQjxgEAAAAAAAAoaopxAAAAAAAAAIqaYhwAAAAAAACAoqYYBwAAAAAAAKCoKcYBAAAAAAAAKGqKcQAAAAAAAACKmmIcAAAAAAAAgKKmGAcAAAAAAACgqCnGAQAAAAAAAChqinEAAAAAAAAAippiHAAAAAAAAICiphgHAAAAAAAAoKgpxgEAAAAAAAAoaopxAAAAAAAAAIqaYhwAAAAAAACAoqYYBwAAAAAAAKCoKcYBAAAAAAAAKGqKcQAAAAAAAACKmmIcAAAAAAAAgKK2SxTjs2fPTmVlZbp06ZIRI0ZkyZIl/3T+7bffngEDBqRLly555zvfmbvuuqudkgIAAMDuwWdtAAAA+LuCF+MLFixITU1NpkyZkmXLlmXIkCEZNWpU1qxZs9X5P//5z3PqqafmjDPOyK9+9auMHj06o0ePzmOPPdbOyQEAAGDX5LM2AAAAtFTwYnzGjBk588wzM378+AwaNChz5sxJt27dcvPNN291/le+8pWceOKJ+fznP5+BAwdm6tSpOeSQQzJr1qx2Tg4AAAC7Jp+1AQAAoKWCFuObN2/O0qVLU11d3TzWoUOHVFdXZ/HixVvdZ/HixS3mJ8moUaO2OR8AAAD+lfisDQAAAFvao5BPvm7dujQ0NKSsrKzFeFlZWVasWLHVferq6rY6v66ubqvzN23alE2bNjXfXr9+fZJkw4YNbyQ6ALSbl/+y6fUnFaE38m+112zHeN1az2u2Y7xurec123X9LWNTU1OBk/ydz9oAAADsznbWZ+2CFuPtYdq0afnSl760xXhFRUUB0gAA263HNYVOsPvxmu0Yr1vrec12jNet9Xaj1+xPf/pTevToUegY7cZnbQAAAHa2//f//l+bftYuaDHeu3fvdOzYMfX19S3G6+vrU15evtV9ysvLWzV/0qRJqampab7d2NiYP/zhD3nTm96UkpKSN/gTwN9t2LAhFRUVef7557P33nsXOg5FzFqjvVhrtBdrjfZirbEzNDU15U9/+lP69etX6CjNCvFZ+6WXXsrb3va2rFq16l/qFwT41+DfD4qdNU4xs74pZtY3xWz9+vV561vfml69erXp4xa0GO/cuXOGDRuW2trajB49Oslfi+va2tpMmDBhq/uMHDkytbW1Oe+885rH7r777owcOXKr80tLS1NaWtpibJ999mmL+LBVe++9t3+EaBfWGu3FWqO9WGu0F2uNtrarFcGF+qyd/PW18P6iWPn3g2JnjVPMrG+KmfVNMevQoUObPl7BT6VeU1OTcePGpaqqKsOHD8/MmTOzcePGjB8/PkkyduzY9O/fP9OmTUuSTJw4MUcffXSuu+66nHTSSZk/f35++ctf5sYbbyzkjwEAAAC7DJ+1AQAAoKWCF+NjxozJ2rVrM3ny5NTV1WXo0KFZuHBhysrKkiSrVq1q8dsAhx9+eObNm5dLL700F198cQ444IDccccdOeiggwr1IwAAAMAuxWdtAAAAaKngxXiSTJgwYZunc1u0aNEWYx/5yEfykY98ZCengtYpLS3NlClTtno6QWhL1hrtxVqjvVhrtBdrjX817flZ2/uLYmZ9U+yscYqZ9U0xs74pZjtrfZc0NTU1tekjAgAAAAAAAMAupG2vWA4AAAAAAAAAuxjFOAAAAAAAAABFTTEOAAAAAAAAQFFTjMMbMG3atBx66KHZa6+90qdPn4wePTpPPvlkoWPxL2D69OkpKSnJeeedV+goFKHVq1fnP/7jP/KmN70pXbt2zTvf+c788pe/LHQsikxDQ0Muu+yy7LvvvunatWv222+/TJ06NU1NTYWOxm7ugQceyMknn5x+/fqlpKQkd9xxR4v7m5qaMnny5PTt2zddu3ZNdXV1fve73xUmLOxmZs+encrKynTp0iUjRozIkiVL/un822+/PQMGDEiXLl3yzne+M3fddVc7JYXWa836njt3bo488sj07NkzPXv2THV19eu+H6DQWvt3+N/Mnz8/JSUlGT169M4NCG9Aa9f3Sy+9lLPPPjt9+/ZNaWlp3v72t/t/Crus1q7vmTNn5h3veEe6du2aioqKnH/++Xn11VfbKS1sv9f7/mZrFi1alEMOOSSlpaXZf//9c+utt7b6eRXj8Abcf//9Ofvss/OLX/wid999d1577bWccMIJ2bhxY6GjUcQeeeSRfP3rX8/gwYMLHYUi9Mc//jFHHHFEOnXqlB//+Mf57W9/m+uuuy49e/YsdDSKzFVXXZUbbrghs2bNyhNPPJGrrroqV199da6//vpCR2M3t3HjxgwZMiSzZ8/e6v1XX311vvrVr2bOnDl5+OGHs+eee2bUqFG+KIDXsWDBgtTU1GTKlClZtmxZhgwZklGjRmXNmjVbnf/zn/88p556as4444z86le/yujRozN69Og89thj7ZwcXl9r1/eiRYty6qmn5r777svixYtTUVGRE044IatXr27n5LB9WrvG/+a5557LBRdckCOPPLKdkkLrtXZ9b968Occff3yee+65fOc738mTTz6ZuXPnpn///u2cHF5fa9f3vHnzctFFF2XKlCl54oknctNNN2XBggW5+OKL2zk5vL7X+/7mHz377LM56aSTcuyxx2b58uU577zz8slPfjI/+clPWvW8JU0Oy4E2s3bt2vTp0yf3339/jjrqqELHoQi9/PLLOeSQQ/K1r30tV1xxRYYOHZqZM2cWOhZF5KKLLsrPfvazPPjgg4WOQpF73/vel7Kystx0003NYx/+8IfTtWvXfOtb3ypgMopJSUlJvv/97zcf4dTU1JR+/frlc5/7XC644IIkyfr161NWVpZbb701H/vYxwqYFnZtI0aMyKGHHppZs2YlSRobG1NRUZFzzjknF1100Rbzx4wZk40bN+ZHP/pR89hhhx2WoUOHZs6cOe2WG7ZHa9f3P2poaEjPnj0za9asjB07dmfHhVbbkTXe0NCQo446Kp/4xCfy4IMP5qWXXtquI7mgvbV2fc+ZMyfXXHNNVqxYkU6dOrV3XGiV1q7vCRMm5IknnkhtbW3z2Oc+97k8/PDDeeihh9otN7TWP35/szUXXnhh7rzzzha/bP2xj30sL730UhYuXLjdz+WIcWhD69evT5L06tWrwEkoVmeffXZOOumkVFdXFzoKReqHP/xhqqqq8pGPfCR9+vTJwQcfnLlz5xY6FkXo8MMPT21tbZ566qkkya9//es89NBDec973lPgZBSzZ599NnV1dS3+He3Ro0dGjBiRxYsXFzAZ7No2b96cpUuXtnjvdOjQIdXV1dt87yxevHiL/7OOGjXKe41dzo6s73/0yiuv5LXXXvNdALukHV3jl19+efr06ZMzzjijPWLCDtmR9f3DH/4wI0eOzNlnn52ysrIcdNBBufLKK9PQ0NBesWG77Mj6Pvzww7N06dLm060/88wzueuuu/Le9763XTLDztRWnzH3aMtQ8K+ssbEx5513Xo444ogcdNBBhY5DEZo/f36WLVuWRx55pNBRKGLPPPNMbrjhhtTU1OTiiy/OI488knPPPTedO3fOuHHjCh2PInLRRRdlw4YNGTBgQDp27JiGhoZ8+ctfzmmnnVboaBSxurq6JElZWVmL8bKysub7gC2tW7cuDQ0NW33vrFixYqv71NXVea+xW9iR9f2PLrzwwvTr188vMLNL2pE1/tBDD+Wmm27K8uXL2yEh7LgdWd/PPPNM7r333px22mm56667snLlypx11ll57bXXMmXKlPaIDdtlR9b3v//7v2fdunV517velaampvzlL3/JZz7zGadSpyhs6zPmhg0b8uc//zldu3bdrsdRjEMbOfvss/PYY485JQk7xfPPP5+JEyfm7rvvTpcuXQodhyLW2NiYqqqqXHnllUmSgw8+OI899ljmzJmjGKdNffvb385tt92WefPm5cADD2y+NlC/fv2sNQBgtzF9+vTMnz8/ixYt8lmNovCnP/0pp59+eubOnZvevXsXOg60ucbGxvTp0yc33nhjOnbsmGHDhmX16tW55pprFOPs9hYtWpQrr7wyX/va1zJixIisXLkyEydOzNSpU3PZZZcVOh7sEhTj0AYmTJiQH/3oR3nggQfylre8pdBxKEJLly7NmjVrcsghhzSPNTQ05IEHHsisWbOyadOmdOzYsYAJKRZ9+/bNoEGDWowNHDgw3/3udwuUiGL1+c9/PhdddFHzNZ3f+c535n//938zbdo0xTg7TXl5eZKkvr4+ffv2bR6vr6/P0KFDC5QKdn29e/dOx44dU19f32K8vr6++X31j8rLy1s1HwplR9b331x77bWZPn167rnnngwePHhnxoQd1to1/vTTT+e5557LySef3DzW2NiYJNljjz3y5JNPZr/99tu5oWE77cjf4X379k2nTp1afI82cODA1NXVZfPmzencufNOzQzba0fW92WXXZbTTz89n/zkJ5P89buWjRs35lOf+lQuueSSdOjg6srsvrb1GXPvvffe7qPFE9cYhzekqakpEyZMyPe///3ce++92XfffQsdiSJ13HHH5dFHH83y5cubt6qqqpx22mlZvny5Upw2c8QRR+TJJ59sMfbUU0/lbW97W4ESUaxeeeWVLT6QdezYsflLN9gZ9t1335SXl6e2trZ5bMOGDXn44YczcuTIAiaDXVvnzp0zbNiwFu+dxsbG1NbWbvO9M3LkyBbzk+Tuu+/2XmOXsyPrO0muvvrqTJ06NQsXLkxVVVV7RIUd0to1PmDAgC2+f3j/+9+fY489NsuXL09FRUV7xod/akf+Dj/iiCOycuXKFp89n3rqqfTt21cpzi5lR9b3tr5rSf7aZcDurK0+YzpiHN6As88+O/PmzcsPfvCD7LXXXs3Xy+vRo0erfkMFXs9ee+21xbXr99xzz7zpTW9yTXva1Pnnn5/DDz88V155ZT760Y9myZIlufHGG3PjjTcWOhpF5uSTT86Xv/zlvPWtb82BBx6YX/3qV5kxY0Y+8YlPFDoau7mXX345K1eubL797LPPZvny5enVq1fe+ta35rzzzssVV1yRAw44IPvuu28uu+yy9OvXL6NHjy5caNgN1NTUZNy4camqqsrw4cMzc+bMbNy4MePHj0+SjB07Nv3798+0adOSJBMnTszRRx+d6667LieddFLmz5+fX/7yl/5PwS6ptev7qquuyuTJkzNv3rxUVlY2fxfQvXv3dO/evWA/B2xLa9Z4ly5dtvieYZ999kkS3z+wS2rt3+Gf/exnM2vWrEycODHnnHNOfve73+XKK6/MueeeW8gfA7aqtev75JNPzowZM3LwwQc3n0r9sssuy8knn+zAKnY5r/f9zaRJk7J69er893//d5LkM5/5TGbNmpUvfOEL+cQnPpF777033/72t3PnnXe26nkV4/AG3HDDDUmSY445psX4Lbfcko9//OPtHwjgDTr00EPz/e9/P5MmTcrll1+efffdNzNnzsxpp51W6GgUmeuvvz6XXXZZzjrrrKxZsyb9+vXLpz/96UyePLnQ0djN/fKXv8yxxx7bfLumpiZJMm7cuNx66635whe+0HwquZdeeinvete7snDhQteFhdcxZsyYrF27NpMnT05dXV2GDh2ahQsXpqysLEmyatWqFkenHH744Zk3b14uvfTSXHzxxTnggANyxx13KFXYJbV2fd9www3ZvHlzTjnllBaPM2XKlHzxi19sz+iwXVq7xmF30tr1XVFRkZ/85Cc5//zzM3jw4PTv3z8TJ07MhRdeWKgfAbaptev70ksvTUlJSS699NKsXr06b37zm5sPTIBdzet9f/Piiy9m1apVzffvu+++ufPOO3P++efnK1/5St7ylrfkG9/4RkaNGtWq5y1pcv4EAAAAAAAAAIqYXwUEAAAAAAAAoKgpxgEAAAAAAAAoaopxAAAAAAAAAIqaYhwAAAAAAACAoqYYBwAAAAAAAKCoKcYBAAAAAAAAKGqKcQAAAAAAAACKmmIcAAAAAAAAgKKmGAcA2sytt96affbZp9AxAAAAAACgBcU4AOziPv7xj6ekpGSLbeXKlW32HCUlJbnjjjted97999+fd7/73enVq1e6deuWAw44IOPGjcvmzZuTJGPGjMlTTz3VZrkAAAAAAKAtKMYBYDdw4okn5sUXX2yx7bvvvu2a4be//W1OPPHEVFVV5YEHHsijjz6a66+/Pp07d05DQ0OSpGvXrunTp0+75gIAAAAAgNejGAeA3UBpaWnKy8tbbB07dkzy16O4hw8fntLS0vTt2zcXXXRR/vKXvzTve8wxx+Tcc8/NF77whfTq1Svl5eX54he/2Hx/ZWVlkuSDH/xgSkpKmm//o5/+9KcpLy/P1VdfnYMOOij77bdfTjzxxMydOzddu3ZNsuWp1CsrK7d6tPvfPP/88/noRz+affbZJ7169coHPvCBPPfcc23ymgEAAAAAwN8oxgFgN7Z69eq8973vzaGHHppf//rXueGGG3LTTTfliiuuaDHvv/7rv7Lnnnvm4YcfztVXX53LL788d999d5LkkUceSZLccsstefHFF5tv/6Py8vK8+OKLeeCBB7Y73yOPPNJ8hPvvf//7HHbYYTnyyCOTJK+99lpGjRqVvfbaKw8++GB+9rOfpXv37jnxxBObT80OAAAAAABtYY9CBwAAXt+PfvSjdO/evfn2e97zntx+++352te+loqKisyaNSslJSUZMGBAXnjhhVx44YWZPHlyOnT46+/ADR48OFOmTEmSHHDAAZk1a1Zqa2tz/PHH581vfnOSZJ999kl5efk2M3zkIx/JT37ykxx99NEpLy/PYYcdluOOOy5jx47N3nvvvdV9/vbYSTJx4sQWxfuCBQvS2NiYb3zjG81Hkd9yyy3ZZ599smjRopxwwglv4BUDAAAAAIC/c8Q4AOwGjj322Cxfvrx5++pXv5okeeKJJzJy5MgWpyc/4ogj8vLLL+f3v/9989jgwYNbPF7fvn2zZs2aVmXo2LFjbrnllvz+97/P1Vdfnf79++fKK6/MgQcemBdffPGf7nvjjTfmpptuyg9/+MPmsvzXv/51Vq5cmb322ivdu3dP9+7d06tXr7z66qt5+umnW5UNAAAAAAD+GUeMA8BuYM8998z++++/w/t36tSpxe2SkpI0Njbu0GP1798/p59+ek4//fRMnTo1b3/72zNnzpx86Utf2ur8++67L+ecc07+53/+p0VB//LLL2fYsGG57bbbttjn/x5pDgAAAAAAb5RiHAB2YwMHDsx3v/vdNDU1NR81/rOf/Sx77bVX3vKWt2z343Tq1CkNDQ2tfv6ePXumb9++2bhx41bvX7lyZU455ZRcfPHF+dCHPtTivkMOOSQLFixInz59tnkqdgAAAAAAaAtOpQ4Au7Gzzjorzz//fM4555ysWLEiP/jBDzJlypTU1NQ0X198e1RWVqa2tjZ1dXX54x//uNU5X//61/PZz342P/3pT/P000/n8ccfz4UXXpjHH388J5988hbz//znP+fkk0/OwQcfnE996lOpq6tr3pLktNNOS+/evfOBD3wgDz74YJ599tksWrQo5557bovTwAMAAAAAwBulGAeA3Vj//v1z1113ZcmSJRkyZEg+85nP5Iwzzsill17aqse57rrrcvfdd6eioiIHH3zwVucMHz48L7/8cj7zmc/kwAMPzNFHH51f/OIXueOOO3L00UdvMb++vj4rVqxIbW1t+vXrl759+zZvSdKtW7c88MADeetb35oPfehDGThwYM4444y8+uqrjiAHAAAAAKBNlTQ1NTUVOgQAAAAAAAAA7CyOGAcAAAAAAACgqCnGAQAAAAAAAChqinEAAAAAAAAAippiHAAAAAAAAICiphgHAAAAAAAAoKgpxgEAAAAAAAAoaopxAAAAAAAAAIqaYhwAAAAAAACAoqYYBwAAAAAAAKCoKcYBAAAAAAAAKGqKcQAAAAAAAACKmmIcAAAAAAAAgKL2/wHqoCsWrTEeOAAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plot_evaluation_metric_for_all_models(evaluation_results, 'Cosine Similarity')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "D9GJEfL8wjRw"
},
"outputs": [],
"source": [
"evaluation_metrics = {\n",
" \"Fuzzy Score\": calculate_fuzzy_score,\n",
" \"CER\": calculate_cer,\n",
" \"WER\": calculate_wer,\n",
" \"BLEU\": calculate_bleu,\n",
" \"Jaccard Index\": calculate_jaccard_index,\n",
" \"Cosine Similarity\": calculate_cosine_similarity\n",
"}\n",
"\n",
"# plot_line_graphs(evaluation_results, evaluation_metrics)\n",
"# plot_heatmaps(evaluation_results, evaluation_metrics)\n",
"# plot_box_plots(evaluation_results, evaluation_metrics)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 653
},
"id": "YqLAlGsHo8HV",
"outputId": "62cb5c2a-dedf-44f0-9d2d-c89344b86808"
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/usr/local/lib/python3.10/dist-packages/nltk/translate/bleu_score.py:552: UserWarning: \n",
"The hypothesis contains 0 counts of 3-gram overlaps.\n",
"Therefore the BLEU score evaluates to 0, independently of\n",
"how many N-gram overlaps of lower order it contains.\n",
"Consider using lower n-gram order or use SmoothingFunction()\n",
" warnings.warn(_msg)\n",
"/usr/local/lib/python3.10/dist-packages/nltk/translate/bleu_score.py:552: UserWarning: \n",
"The hypothesis contains 0 counts of 4-gram overlaps.\n",
"Therefore the BLEU score evaluates to 0, independently of\n",
"how many N-gram overlaps of lower order it contains.\n",
"Consider using lower n-gram order or use SmoothingFunction()\n",
" warnings.warn(_msg)\n",
"/usr/local/lib/python3.10/dist-packages/nltk/translate/bleu_score.py:552: UserWarning: \n",
"The hypothesis contains 0 counts of 2-gram overlaps.\n",
"Therefore the BLEU score evaluates to 0, independently of\n",
"how many N-gram overlaps of lower order it contains.\n",
"Consider using lower n-gram order or use SmoothingFunction()\n",
" warnings.warn(_msg)\n"
]
},
{
"data": {
"application/vnd.google.colaboratory.intrinsic+json": {
"summary": "{\n \"name\": \"evaluate_ocr_models(9)\",\n \"rows\": 8,\n \"fields\": [\n {\n \"column\": \"Models\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 8,\n \"samples\": [\n \"gemini_flash\",\n \"gpt4_turbo\",\n \"gemini_pro\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Fuzzy Score\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 16.30660349246027,\n \"min\": 51.8,\n \"max\": 99.6,\n \"num_unique_values\": 8,\n \"samples\": [\n 51.8,\n 96.2,\n 91.4\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"CER\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.1883000826417473,\n \"min\": 0.08145846504281821,\n \"max\": 0.6201274231036187,\n \"num_unique_values\": 8,\n \"samples\": [\n 0.6201274231036187,\n 0.09927711945144765,\n 0.20839952194852984\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"WER\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.1332343712105184,\n \"min\": 0.3751224553809715,\n \"max\": 3.590325362542492,\n \"num_unique_values\": 8,\n \"samples\": [\n 3.590325362542492,\n 0.5523439578025001,\n 1.1120799847099623\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"BLEU\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.21682159817829272,\n \"min\": 0.22758422399211156,\n \"max\": 0.8850498889601823,\n \"num_unique_values\": 8,\n \"samples\": [\n 0.22758422399211156,\n 0.8320234054525525,\n 0.7061959848707065\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Jaccard Index\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.059989973554716705,\n \"min\": 0.763340201961604,\n \"max\": 0.9305045210040584,\n \"num_unique_values\": 8,\n \"samples\": [\n 0.8238050857829903,\n 0.906389224992381,\n 0.9194949092126512\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Cosine Similarity\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.0884914513532198,\n \"min\": 0.7411261220383015,\n \"max\": 0.997394825369346,\n \"num_unique_values\": 8,\n \"samples\": [\n 0.8722908517458412,\n 0.9805010465062004,\n 0.9749292600430796\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}",
"type": "dataframe"
},
"text/html": [
"\n",
" \n",
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Fuzzy Score | \n",
" CER | \n",
" WER | \n",
" BLEU | \n",
" Jaccard Index | \n",
" Cosine Similarity | \n",
"
\n",
" \n",
" Models | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" gemini_pro | \n",
" 91.400000 | \n",
" 0.208400 | \n",
" 1.112080 | \n",
" 0.706196 | \n",
" 0.919495 | \n",
" 0.974929 | \n",
"
\n",
" \n",
" gemini_flash | \n",
" 51.800000 | \n",
" 0.620127 | \n",
" 3.590325 | \n",
" 0.227584 | \n",
" 0.823805 | \n",
" 0.872291 | \n",
"
\n",
" \n",
" opus | \n",
" 95.666667 | \n",
" 0.087719 | \n",
" 0.469858 | \n",
" 0.818859 | \n",
" 0.930505 | \n",
" 0.983913 | \n",
"
\n",
" \n",
" sonnet | \n",
" 73.933333 | \n",
" 0.370517 | \n",
" 2.215236 | \n",
" 0.543590 | \n",
" 0.763340 | \n",
" 0.741126 | \n",
"
\n",
" \n",
" haiku | \n",
" 87.666667 | \n",
" 0.209490 | \n",
" 1.194556 | \n",
" 0.679309 | \n",
" 0.886219 | \n",
" 0.951519 | \n",
"
\n",
" \n",
" gpt4_turbo | \n",
" 96.200000 | \n",
" 0.099277 | \n",
" 0.552344 | \n",
" 0.832023 | \n",
" 0.906389 | \n",
" 0.980501 | \n",
"
\n",
" \n",
" gpt4o | \n",
" 97.666667 | \n",
" 0.101787 | \n",
" 0.375122 | \n",
" 0.885050 | \n",
" 0.914903 | \n",
" 0.990599 | \n",
"
\n",
" \n",
" vision | \n",
" 99.600000 | \n",
" 0.081458 | \n",
" 0.414169 | \n",
" 0.514288 | \n",
" 0.930115 | \n",
" 0.997395 | \n",
"
\n",
" \n",
"
\n",
"
\n",
"
\n",
"
\n"
],
"text/plain": [
" Fuzzy Score CER WER BLEU Jaccard Index \\\n",
"Models \n",
"gemini_pro 91.400000 0.208400 1.112080 0.706196 0.919495 \n",
"gemini_flash 51.800000 0.620127 3.590325 0.227584 0.823805 \n",
"opus 95.666667 0.087719 0.469858 0.818859 0.930505 \n",
"sonnet 73.933333 0.370517 2.215236 0.543590 0.763340 \n",
"haiku 87.666667 0.209490 1.194556 0.679309 0.886219 \n",
"gpt4_turbo 96.200000 0.099277 0.552344 0.832023 0.906389 \n",
"gpt4o 97.666667 0.101787 0.375122 0.885050 0.914903 \n",
"vision 99.600000 0.081458 0.414169 0.514288 0.930115 \n",
"\n",
" Cosine Similarity \n",
"Models \n",
"gemini_pro 0.974929 \n",
"gemini_flash 0.872291 \n",
"opus 0.983913 \n",
"sonnet 0.741126 \n",
"haiku 0.951519 \n",
"gpt4_turbo 0.980501 \n",
"gpt4o 0.990599 \n",
"vision 0.997395 "
]
},
"execution_count": 133,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"evaluate_ocr_models(9)"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {
"id": "IG2BEKxmkFgV"
},
"outputs": [],
"source": [
"languages = [\"arabic\", \"bengali\", \"chinese\", \"cyrillic\", \"dutch\", \"english\", \"french\", \"german\", \"greek\", \"hebrew\", \"hindi\", \"japanese\", \"korean\", \"latin\", \"spanish\", \"thai\", \"urdu\", \"vietnamese\"]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "cqvwcOYyw9H0",
"outputId": "773fcde2-8b58-495d-e394-384f36106d2b"
},
"outputs": [
{
"data": {
"text/plain": [
"18"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(languages)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "CQlOQ5gG7orW"
},
"source": [
"## **Marker**"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "g973ztuocjjG"
},
"outputs": [],
"source": [
"!pip install marker-pdf"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "1EM1nFCQfSFy"
},
"outputs": [],
"source": [
"!pip install poetry"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "kSOPEJ57d2fL",
"outputId": "fc5eb94a-3575-408c-e67c-6b639bb3e113"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Cloning into 'marker'...\n",
"remote: Enumerating objects: 1177, done.\u001b[K\n",
"remote: Counting objects: 100% (530/530), done.\u001b[K\n",
"remote: Compressing objects: 100% (163/163), done.\u001b[K\n",
"remote: Total 1177 (delta 421), reused 431 (delta 360), pack-reused 647\u001b[K\n",
"Receiving objects: 100% (1177/1177), 1.41 MiB | 7.03 MiB/s, done.\n",
"Resolving deltas: 100% (774/774), done.\n"
]
}
],
"source": [
"!git clone https://github.com/VikParuchuri/marker.git"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "SutZucw-fOn5"
},
"outputs": [],
"source": [
"%cd /content/marker\n",
"!poetry install"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "kc_mWIrVmgrV"
},
"outputs": [],
"source": [
"!marker_single /content/scan1.pdf /content --batch_multiplier 2 --max_pages 10 --langs English"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "bUYM2Ovn7tW9"
},
"source": [
"# **Claude**"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "d44IMxaC84bG"
},
"outputs": [],
"source": [
"!pip install anthropic\n",
"!pip install fitz\n",
"!pip install PyMuPDF"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "Bdakn4AIt2Cj"
},
"outputs": [],
"source": [
"import fitz # PyMuPDF\n",
"import anthropic\n",
"import base64\n",
"import httpx\n",
"from PIL import Image\n",
"import requests"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "2ZYLwD_Bt4JB"
},
"outputs": [],
"source": [
"image_media_type = \"image/png\"\n",
"client = anthropic.Anthropic(\n",
" api_key = \"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\"\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"id": "509VKaGm8z_L"
},
"outputs": [],
"source": [
"def convert_pdf_to_images(pdf_path):\n",
" images = []\n",
" with fitz.open(pdf_path) as doc:\n",
" for page_num in range(len(doc)):\n",
" page = doc.load_page(page_num)\n",
" pix = page.get_pixmap()\n",
" images.append(pix)\n",
" return images\n",
"\n",
"def encode_image_to_base64(image):\n",
" image_bytes = image.tobytes()\n",
" base64_encoded = base64.b64encode(image_bytes)\n",
" base64_string = base64_encoded.decode(\"utf-8\")\n",
" return base64_string"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "SqPIotb99sLB"
},
"source": [
"**Claude - Opus**"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "eDM51V2Ql0av"
},
"outputs": [],
"source": [
"def extract_text_opus(pdf_path):\n",
" images = convert_pdf_to_images(pdf_path)\n",
" extracted_text = \"\"\n",
" for image in images:\n",
" base64_string = encode_image_to_base64(image)\n",
" message = client.messages.create(\n",
" model=\"claude-3-opus-20240229\",\n",
" max_tokens=1024,\n",
" messages=[\n",
" {\n",
" \"role\": \"user\",\n",
" \"content\": [\n",
" {\n",
" \"type\": \"image\",\n",
" \"source\": {\n",
" \"type\": \"base64\",\n",
" \"media_type\": image_media_type,\n",
" \"data\": base64_string,\n",
" },\n",
" },\n",
" {\n",
" \"type\": \"text\",\n",
" \"text\": \"Return the bounding boxes of all the tables present in this image.\"\n",
" }\n",
" ],\n",
" }\n",
" ],\n",
" )\n",
" extracted_text += message.content[0].text\n",
" return extracted_text"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "SdGdnz_NvK7K"
},
"outputs": [],
"source": [
"num_docs = 11\n",
"for language in range(len(languages)):\n",
" extracted_text = extract_text_opus((\"/content/{}.pdf\").format(languages[language]))\n",
" output_file_path = (\"/content/opus_{}_output.txt\").format(languages[language])\n",
" with open(output_file_path, \"w\") as txt_file:\n",
" txt_file.write(extracted_text)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "9OtYd0SG98BY"
},
"source": [
"**Claude - Sonnet**"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "3319Um258rJk"
},
"outputs": [],
"source": [
"def extract_text_sonnet(pdf_path):\n",
" images = convert_pdf_to_images(pdf_path)\n",
" extracted_text = \"\"\n",
" for image in images:\n",
" base64_string = encode_image_to_base64(image)\n",
" message = client.messages.create(\n",
" model=\"claude-3-sonnet-20240229\",\n",
" max_tokens=1024,\n",
" messages=[\n",
" {\n",
" \"role\": \"user\",\n",
" \"content\": [\n",
" {\n",
" \"type\": \"image\",\n",
" \"source\": {\n",
" \"type\": \"base64\",\n",
" \"media_type\": image_media_type,\n",
" \"data\": base64_string,\n",
" },\n",
" },\n",
" {\n",
" \"type\": \"text\",\n",
" \"text\": \"Extract the actual text from this image and don't summarize.\"\n",
" }\n",
" ],\n",
" }\n",
" ],\n",
" )\n",
" extracted_text += message.content[0].text\n",
" return extracted_text"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "ODh6BiUL9VcD"
},
"outputs": [],
"source": [
"for language in range(len(languages)):\n",
" extracted_text = extract_text_sonnet((\"/content/{}.pdf\").format(languages[language]))\n",
" output_file_path = (\"/content/sonnet_{}_output.txt\").format(languages[language])\n",
" with open(output_file_path, \"w\") as txt_file:\n",
" txt_file.write(extracted_text)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "CThXxO7p-BMJ"
},
"source": [
"**Claude - Haiku**"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "L541KQ9J9Lvy"
},
"outputs": [],
"source": [
"def extract_text_haiku(pdf_path):\n",
" images = convert_pdf_to_images(pdf_path)\n",
" extracted_text = \"\"\n",
" for image in images:\n",
" base64_string = encode_image_to_base64(image)\n",
" message = client.messages.create(\n",
" model=\"claude-3-haiku-20240307\",\n",
" max_tokens=1024,\n",
" messages=[\n",
" {\n",
" \"role\": \"user\",\n",
" \"content\": [\n",
" {\n",
" \"type\": \"image\",\n",
" \"source\": {\n",
" \"type\": \"base64\",\n",
" \"media_type\": image_media_type,\n",
" \"data\": base64_string,\n",
" },\n",
" },\n",
" {\n",
" \"type\": \"text\",\n",
" \"text\": \"Extract the text from this image.\"\n",
" }\n",
" ],\n",
" }\n",
" ],\n",
" )\n",
" extracted_text += message.content[0].text\n",
" return extracted_text"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "E-99_Lnj9cJD"
},
"outputs": [],
"source": [
"for language in range(len(languages)):\n",
" extracted_text = extract_text_haiku((\"/content/{}.pdf\").format(languages[language]))\n",
" output_file_path = (\"/content/haiku_{}_output.txt\").format(languages[language])\n",
" with open(output_file_path, \"w\") as txt_file:\n",
" txt_file.write(extracted_text)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "gfKCNSmLyW5f"
},
"source": [
"# **Gemini**"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "iY_ykg3GzNDH"
},
"outputs": [],
"source": [
"!pip install google-generativeai\n",
"!pip install fitz\n",
"!pip install PyMuPDF"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "2BP_rT0vAz1S"
},
"outputs": [],
"source": [
"import fitz # PyMuPDF\n",
"import google.generativeai as genai\n",
"import os\n",
"import pathlib\n",
"import PIL.Image"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "HTnd3kkkA2IP"
},
"outputs": [],
"source": [
"num_docs = 4\n",
"genai.configure(api_key= 'AIzaSyBwk94xRhPOIkvO0E3pYhXQ7Rrk5my5IyY')\n",
"gemini_pro_vision = genai.GenerativeModel('gemini-pro-vision')\n",
"genimi_gemini_flash = genai.GenerativeModel('gemini-1.5-flash-latest')\n",
"prompt = \"Extract the text from this image.\""
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "kcZrMxbj-I2c"
},
"outputs": [],
"source": [
"def extract_text_gemini(model, pdf_path):\n",
" model = genai.GenerativeModel('gemini-1.5-flash-latest')\n",
" extracted_text = \"\"\n",
" with fitz.open(pdf_path) as doc:\n",
" for page_num in range(len(doc)):\n",
" page = doc.load_page(page_num)\n",
" pix = page.get_pixmap()\n",
" img = PIL.Image.frombytes(\"RGB\", [pix.width, pix.height], pix.samples)\n",
" response = model.generate_content(\n",
" [img, prompt], stream=False\n",
" )\n",
" response.resolve()\n",
" extracted_text += response.text\n",
" print(extracted_text)\n",
" return extracted_text"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "5XR-W_cR3vBw"
},
"source": [
"**Gemini 1.5 Pro**"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "Ir2GgoHk17AK"
},
"outputs": [],
"source": [
"num_docs = 9\n",
"for language in range(len(languages)):\n",
" print(languages[language])\n",
" extracted_text = extract_text_gemini(gemini_pro_vision, (\"/content/{}.pdf\").format(languages[language]))\n",
" output_file_path = (\"/content/gemini_pro_{}_output.txt\").format(languages[language])\n",
" with open(output_file_path, \"w\") as txt_file:\n",
" txt_file.write(extracted_text)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "S1lGP9y23y2K"
},
"source": [
"**Gemini 1.5 Flash**"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "SpAq__743nE3"
},
"outputs": [],
"source": [
"num_docs = 11\n",
"for doc_id in range(11, num_docs+1):\n",
" extracted_text = extract_text_gemini(genimi_gemini_flash, (\"/content/scan-font{}.pdf\").format(doc_id))\n",
" output_file_path = (\"/content/gemini_flash_font_output_{}.txt\").format(doc_id)\n",
" with open(output_file_path, \"w\") as txt_file:\n",
" txt_file.write(extracted_text)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "JIY6uTML6Hru"
},
"outputs": [],
"source": [
"import vertexai\n",
"\n",
"from vertexai.generative_models import GenerativeModel, Part\n",
"\n",
"# TODO(developer): Update and un-comment below line\n",
"# project_id = \"PROJECT_ID\"\n",
"\n",
"vertexai.init(project=940337059666, location=\"us-central1\")\n",
"\n",
"model = GenerativeModel(model_name=\"gemini-1.0-pro-vision-001\")\n",
"\n",
"response = model.generate_content(\n",
" [\n",
" Part.from_uri(\n",
" \"gs://cloud-samples-data/generative-ai/image/scones.jpg\",\n",
" mime_type=\"image/jpeg\",\n",
" ),\n",
" \"What is shown in this image?\",\n",
" ]\n",
")\n",
"\n",
"print(response.text)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "czybTmwiKSRW"
},
"source": [
"# **GPT 4**"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "C3x8DAM0KaWr"
},
"outputs": [],
"source": [
"!pip install openai"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "02MxqPcgznWt"
},
"outputs": [],
"source": [
"import openai"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "f1Rfi-5czSG8"
},
"outputs": [],
"source": [
"openai.api_key = 'sk-proj-YOl2xepEsNppWm3xLshlT3BlbkFJL04qQgahGxFcFGEClnQK'\n",
"image_media_type = \"image/png\""
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "szlmMiN9ztl4"
},
"outputs": [],
"source": [
"def extract_text_gpt(model, pdf_path):\n",
" images = convert_pdf_to_images(pdf_path)\n",
" extracted_text = \"\"\n",
" headers = {\n",
" \"Content-Type\": \"application/json\",\n",
" \"Authorization\": f\"Bearer {openai.api_key}\"\n",
" }\n",
"\n",
" for image in images:\n",
" base64_string = encode_image_to_base64(image)\n",
" payload = {\n",
" \"model\": model,\n",
" \"messages\": [\n",
" {\n",
" \"role\": \"user\",\n",
" \"content\": [\n",
" {\n",
" \"type\": \"text\",\n",
" \"text\": \"Extract bounding boxes of all the tables present in this image. Return bounding boxes as liat of lists and don't provide any other text in the response.\"\n",
" },\n",
" {\n",
" \"type\": \"image_url\",\n",
" \"image_url\": {\n",
" \"url\": f\"data:image/jpeg;base64,{base64_string}\"\n",
" }\n",
" }\n",
" ]\n",
" }\n",
" ],\n",
" }\n",
"\n",
" response = requests.post(\"https://api.openai.com/v1/chat/completions\", headers=headers, json=payload)\n",
" response_json = response.json()\n",
"\n",
" if \"choices\" in response_json and len(response_json[\"choices\"]) > 0:\n",
" extracted_text += response_json[\"choices\"][0][\"message\"][\"content\"]\n",
"\n",
" return extracted_text"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"background_save": true,
"base_uri": "https://localhost:8080/",
"height": 52
},
"id": "24_FkL6_flsn",
"outputId": "7a4c2ca4-14bc-40f6-b47c-98f311e6808f"
},
"outputs": [
{
"data": {
"application/vnd.google.colaboratory.intrinsic+json": {
"type": "string"
},
"text/plain": [
"'In the image you provided, there isn\\'t a traditional visual \"table\" with borders, but there is a list that resembles a table structure, with items and corresponding page numbers. I\\'ll provide the bounding box for this section as it contains structured data which could be interpreted similar to a table layout.\\n\\nHere is the bounding box for the textual data that looks like a columnar listing (which may serve as \"table\" in loose terms) present in the image:\\n\\n- **Top-left corner**: (x: 25, y: 470)\\n- **Bottom-right corner**: (x: 415, y: 670)\\n\\nThis bounding box outlines the area where the list of engine components and their corresponding sections in a manual are presented.The image contains two tables with the following bounding boxes:\\n\\n1. The first table, titled \"DIMENSIONS\", has the bounding box:\\n - Top-left corner: (39, 100)\\n - Bottom-right corner: (397, 366)\\n\\n2. The second table, titled \"ENGINE SPECIFICATION\", is located:\\n - Top-left corner: (39, 386)\\n - Bottom-right corner: (397, 599)\\n\\nThese coordinates are approximate and measured in pixels from the top-left corner of the image which is assumed to be (0,0).The image contains a single large table. The bounding box for the table can be approximately described as covering most of the page, with a little margin on all sides. Here is a rough estimation of the bounding box coordinates based on the pixel dimensions given (assuming the total image size is the standard document size, typically at 437 pixels width and 613 pixels height):\\n\\n- **Left:** 30 pixels\\n- **Top:** 70 pixels\\n- **Right:** 407 pixels\\n- **Bottom:** 590 pixels\\n\\nThis encompasses the whole table from the headers \"Light Bulb\", \"Bulb type\", and \"Wattage\" down to the notes at the bottom of the table.The image contains one primary table positioned approximately at the top portion of the image. The bounding box for this table can be described as follows:\\n\\n- Left edge around column 35 pixels\\n- Top edge around row 140 pixels\\n- Right edge around column 403 pixels\\n- Bottom edge around row 385 pixels\\n\\nThese dimensions provide a general bounding box for the visible table in the image.The image contains a single table. Here are the bounding box coordinates for the table:\\n\\n- Top-left corner: (32, 140)\\n- Top-right corner: (408, 140)\\n- Bottom-left corner: (32, 374)\\n- Bottom-right corner: (408, 374)\\n\\nThese coordinates are in pixels and approximate, based on the visible boundaries of the table in the image.The image contains two tables. Here are their bounding boxes described in a format (x, y, width, height) based on a coordinate system with the top-left corner of the image as the origin (0, 0):\\n\\n1. The first table \"Temperature Range for SAE Viscosity Numbers\":\\n - x: 62\\n - y: 433\\n - width: 315\\n - height: 120\\n\\n2. The second table \"Petrol Engine Oil\":\\n - x: 92\\n - y: 580\\n - width: 255\\n - height: 45\\n\\nThese coordinates and dimensions are approximations that match the locations of tables as visible in the image provided.The image you provided doesn\\'t contain any tables. It features a dual column layout with text and images explaining how to locate the vehicle identification number (VIN) and vehicle certification label for a car. Each column includes an image of a car interior and a descriptive text underneath. There are no visible tables to extract bounding boxes from in this image.'"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"extracted_text = extract_text_gpt(\"gpt-4-turbo\", \"/content/hyundai_exter-24-30.pdf\")\n",
"extracted_text"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "slcGEKRq1kwh"
},
"source": [
"**GPT 4 Turbo**"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "24KZ_nZN0DyO"
},
"outputs": [],
"source": [
"for language in range(len(languages)):\n",
" pdf_path = f\"/content/{languages[language]}.pdf\"\n",
" extracted_text = extract_text_gpt(\"gpt-4-turbo\", pdf_path)\n",
" output_file_path = f\"/content/gpt4_turbo_{languages[language]}_output.txt\"\n",
" with open(output_file_path, \"w\") as txt_file:\n",
" txt_file.write(extracted_text)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "-ZBQwUd61znH"
},
"source": [
"**GPT 4o**"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "AmMdPEU51Wtn"
},
"outputs": [],
"source": [
"for language in range(len(languages)):\n",
" pdf_path = f\"/content/{languages[language]}.pdf\"\n",
" extracted_text = extract_text_gpt(\"gpt-4o\", pdf_path)\n",
" output_file_path = f\"/content/gpt4o_{languages[language]}_output.txt\"\n",
" with open(output_file_path, \"w\") as txt_file:\n",
" txt_file.write(extracted_text)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "MN8aesQO4rFx"
},
"source": [
"# **Google Vision**"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "WZr-dP4N5zdl"
},
"outputs": [],
"source": [
"!pip install google-cloud-vision\n",
"!pip install pdf2image"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "dt7RZATJ4ILK",
"collapsed": true
},
"outputs": [],
"source": [
"!sudo apt-get update\n",
"!apt-get install poppler-utils"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"id": "Vd78XcqKElbz"
},
"outputs": [],
"source": [
"import os\n",
"os.environ[\"GOOGLE_APPLICATION_CREDENTIALS\"] = \"/content/ai-drive-test-vision-ocr.json\""
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"id": "jePfJZnC3ZVf"
},
"outputs": [],
"source": [
"from pdf2image import convert_from_path\n",
"import base64\n",
"from io import BytesIO\n",
"from PIL import Image\n",
"from google.cloud import vision\n",
"\n",
"def pdf_to_images(pdf_path):\n",
" images = convert_from_path(pdf_path)\n",
" image_paths = []\n",
" for i, image in enumerate(images):\n",
" image_path = f\"/tmp/page_{i}.png\"\n",
" image.save(image_path, \"PNG\")\n",
" image_paths.append(image_path)\n",
" return image_paths"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"id": "snf2koZ16oYU"
},
"outputs": [],
"source": [
"def extract_text_vision(path):\n",
" client = vision.ImageAnnotatorClient()\n",
"\n",
" with open(path, \"rb\") as image_file:\n",
" content = image_file.read()\n",
"\n",
" image = vision.Image(content=content)\n",
" response = client.document_text_detection(image=image)\n",
"\n",
" extracted_text = \"\"\n",
" for page in response.full_text_annotation.pages:\n",
" for block in page.blocks:\n",
" for paragraph in block.paragraphs:\n",
" for word in paragraph.words:\n",
" word_text = \"\".join([symbol.text for symbol in word.symbols])\n",
" extracted_text += word_text + \" \"\n",
" extracted_text += \"\\n\"\n",
"\n",
" return extracted_text"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"id": "4JsTrKvHEfoy"
},
"outputs": [],
"source": [
"def detect_documents_vision(pdf_path):\n",
" pages = pdf_to_images(pdf_path)\n",
" extracted_text = \"\"\n",
" for pg in pages:\n",
" extracted_text += extract_text_vision(pg)\n",
" return extracted_text"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"id": "IgVJNXqf7n-D"
},
"outputs": [],
"source": [
"for doc_id in range(1, 2):\n",
" pdf_path = \"/content/japanese2.pdf\"\n",
" extracted_text = detect_documents_vision(pdf_path)\n",
" output_file_path = f\"/content/vision_japanese_output.txt\"\n",
" with open(output_file_path, \"w\") as txt_file:\n",
" txt_file.write(extracted_text)"
]
},
{
"cell_type": "markdown",
"source": [
"# **Florence**-2-large"
],
"metadata": {
"id": "tedrUKKhBH-6"
}
},
{
"cell_type": "code",
"source": [
"!pip install einops flash_attn timm"
],
"metadata": {
"id": "B4noKtMMBpaD"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"from PIL import Image, ImageDraw\n",
"from IPython.display import display\n",
"\n",
"def draw_boxes(image_path, boxes):\n",
" image = Image.open(image_path).convert(\"RGB\")\n",
" draw = ImageDraw.Draw(image)\n",
"\n",
" for box in boxes:\n",
" draw.rectangle(box, outline=\"red\", width=3)\n",
" display(image)"
],
"metadata": {
"id": "14KPiTfyUpMi"
},
"execution_count": 22,
"outputs": []
},
{
"cell_type": "code",
"source": [
"import fitz\n",
"import requests\n",
"from PIL import Image\n",
"from transformers import AutoProcessor, AutoModelForCausalLM"
],
"metadata": {
"id": "ve5DeQuwBPbg"
},
"execution_count": 3,
"outputs": []
},
{
"cell_type": "code",
"source": [
"model = AutoModelForCausalLM.from_pretrained(\"microsoft/Florence-2-large\", trust_remote_code=True)\n",
"processor = AutoProcessor.from_pretrained(\"microsoft/Florence-2-large\", trust_remote_code=True)"
],
"metadata": {
"id": "MaXP9YRMBhXl"
},
"execution_count": 19,
"outputs": []
},
{
"cell_type": "code",
"source": [
"model = AutoModelForCausalLM.from_pretrained(\"microsoft/Florence-2-base\", trust_remote_code=True)\n",
"processor = AutoProcessor.from_pretrained(\"microsoft/Florence-2-base\", trust_remote_code=True)"
],
"metadata": {
"id": "1rcc-e5AGn_n"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"prompt = \"Extract bounding boxes of all the tables present in this page\""
],
"metadata": {
"id": "xwgEmKdvBknf"
},
"execution_count": 16,
"outputs": []
},
{
"cell_type": "code",
"source": [
"def extract_text_florence(pdf_path):\n",
" images = convert_from_path(pdf_path)\n",
" extracted_text = \"\"\n",
" # for image in images:\n",
" image = images[1]\n",
" inputs = processor(text=prompt, images=image, return_tensors=\"pt\")\n",
"\n",
" generated_ids = model.generate(\n",
" input_ids=inputs[\"input_ids\"],\n",
" pixel_values=inputs[\"pixel_values\"],\n",
" max_new_tokens=1024,\n",
" num_beams=3,\n",
" do_sample=False\n",
" )\n",
" generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]\n",
"\n",
" parsed_answer = processor.post_process_generation(generated_text, task=\"\", image_size=(image.width, image.height))\n",
"\n",
" print(parsed_answer)\n",
" return parsed_answer\n"
],
"metadata": {
"id": "bB-majwGBHAd"
},
"execution_count": 38,
"outputs": []
},
{
"cell_type": "code",
"source": [
"extracted_data = extract_text_florence(\"/content/table-data.pdf\")\n",
"bbox = extracted_data['']['bboxes']\n",
"bbox"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "Mch5i9PfDpu1",
"outputId": "0be21a77-ea1b-4e8c-a332-47c19694f0eb"
},
"execution_count": 39,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"{'': {'bboxes': [[141.4739990234375, 219.3100128173828, 1173.7821044921875, 599.6900024414062], [0.6460000276565552, 0.9100000262260437, 1290.06201171875, 1817.27001953125]], 'labels': ['bounding boxes of all the tables present', 'this page']}}\n"
]
},
{
"output_type": "execute_result",
"data": {
"text/plain": [
"[[141.4739990234375, 219.3100128173828, 1173.7821044921875, 599.6900024414062],\n",
" [0.6460000276565552, 0.9100000262260437, 1290.06201171875, 1817.27001953125]]"
]
},
"metadata": {},
"execution_count": 39
}
]
},
{
"cell_type": "code",
"source": [
"draw_boxes(\"/content/table-2.png\", bbox)"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 1000
},
"id": "VLcTEUukUqZN",
"outputId": "2b61feaa-e134-4b77-967d-10104ed57ab2"
},
"execution_count": 40,
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
""
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA6IAAAUeCAIAAADrQhvkAAAMQWlDQ1BJQ0MgUHJvZmlsZQAAeJyVVwdYU8kWnluSkEBoAQSkhN4EESkBpITQQu9NVEISIJQYA0HFji4quHaxgA1dFVGw0iwoYmdR7H2xoKCsiwW78iYFdN1XvjffN3f++8+Z/5w5d+6dOwConeCIRLmoOgB5wgJxTJAfPSk5hU7qAQRgBHSAJjDlcPNFzKioMADLUPv38u4GQKTtVXup1j/7/2vR4PHzuQAgURCn8/K5eRAfAgCv5IrEBQAQpbzZ1AKRFMMKtMQwQIgXSXGmHFdKcboc75PZxMWwIG4DQEmFwxFnAqB6GfL0Qm4m1FDth9hRyBMIAVCjQ+ydlzeZB3EaxNbQRgSxVJ+R/oNO5t8004c1OZzMYSyfi6wo+QvyRbmc6f9nOv53ycuVDPmwhFUlSxwcI50zzNutnMmhUqwCcZ8wPSISYk2IPwh4MnuIUUqWJDhebo8acPNZMGfwOQPUkcfxD4XYAOJAYW5EmIJPzxAEsiGGKwSdJihgx0GsC/Eifn5ArMJmi3hyjMIXWp8hZjEV/DmOWOZX6uuBJCeeqdB/ncVnK/Qx1aKsuESIKRCbFwoSIiBWhdghPyc2VGEzriiLFTFkI5bESOM3hziGLwzyk+tjhRniwBiFfWle/tB8sS1ZAnaEAh8oyIoLlucHa+NyZPHDuWCX+UJm/JAOPz8pbGguPL5/gHzuWA9fGB+r0PkgKvCLkY/FKaLcKIU9bsrPDZLyphA75xfGKsbiCQVwQcr18QxRQVScPE68KJsTEiWPB18OwgAL+AM6kMCaDiaDbCDo6Gvog3fynkDAAWKQCfjAXsEMjUiU9QjhNRYUgT8h4oP84XF+sl4+KIT812FWfrUHGbLeQtmIHPAU4jwQCnLhvUQ2SjjsLQE8gYzgH945sHJhvLmwSvv/PT/EfmeYkAlTMJIhj3S1IUtiANGfGEwMJNrg+rg37omHwasvrE44A3cfmsd3e8JTQifhEeE6oYtwe5KgWPxTlOGgC+oHKnKR/mMucEuo6YL74V5QHSrjOrg+sMedoR8m7gM9u0CWpYhbmhX6T9p/m8EPT0NhR3Yko+QRZF+y9c8jVW1VXYZVpLn+MT/yWNOH880a7vnZP+uH7PNgG/qzJbYIO4idxU5i57GjWAOgYy1YI9aOHZPi4dX1RLa6hrzFyOLJgTqCf/gberLSTOY71jj2On6R9xXwp0m/0YA1WTRdLMjMKqAz4Y7Ap7OFXIdRdCdHJ2cApPuL/PP1Jlq2byA67d+5+X8A4NUyODh45DsX0gLAfjf4+jd956wZcOtQBuBcE1ciLpRzuPRCgF8JNfim6cH9ywxYw/k4AVfgCXxBAAgBkSAOJIOJMPosuM7FYCqYCeaBElAGloM1YAPYDLaBXWAvOAAawFFwEpwBF8FlcB3chaunG7wA/eAd+IwgCAmhIjREDzFGLBA7xAlhIN5IABKGxCDJSBqSiQgRCTITmY+UISuRDchWpBrZjzQhJ5HzSCdyG3mI9CKvkU8ohqqgWqghaomORhkoEw1F49AJaCY6BS1CF6BL0XVoFboHrUdPohfR62gX+gIdwACmjOlgJpg9xsBYWCSWgmVgYmw2VoqVY1VYLdYMn/NVrAvrwz7iRJyG03F7uIKD8Xici0/BZ+NL8A34Lrweb8Ov4g/xfvwbgUowINgRPAhsQhIhkzCVUEIoJ+wgHCachu9SN+EdkUjUIVoR3eC7mEzMJs4gLiFuJNYRTxA7iY+JAyQSSY9kR/IiRZI4pAJSCWk9aQ+phXSF1E36oKSsZKzkpBSolKIkVCpWKlfarXRc6YrSM6XPZHWyBdmDHEnmkaeTl5G3k5vJl8jd5M8UDYoVxYsSR8mmzKOso9RSTlPuUd4oKyubKrsrRysLlOcqr1Pep3xO+aHyRxVNFVsVlkqqikRlqcpOlRMqt1XeUKlUS6ovNYVaQF1Kraaeoj6gflClqTqoslV5qnNUK1TrVa+ovlQjq1moMdUmqhWplasdVLuk1qdOVrdUZ6lz1GerV6g3qd9UH9CgaYzRiNTI01iisVvjvEaPJknTUjNAk6e5QHOb5inNxzSMZkZj0bi0+bTttNO0bi2ilpUWWytbq0xrr1aHVr+2prazdoL2NO0K7WPaXTqYjqUOWydXZ5nOAZ0bOp9GGI5gjuCPWDyidsSVEe91R+r66vJ1S3XrdK/rftKj6wXo5eit0GvQu6+P69vqR+tP1d+kf1q/b6TWSM+R3JGlIw+MvGOAGtgaxBjMMNhm0G4wYGhkGGQoMlxveMqwz0jHyNco22i10XGjXmOasbexwHi1cYvxc7o2nUnPpa+jt9H7TQxMgk0kJltNOkw+m1qZxpsWm9aZ3jejmDHMMsxWm7Wa9Zsbm4ebzzSvMb9jQbZgWGRZrLU4a/He0soy0XKhZYNlj5WuFduqyKrG6p411drHeop1lfU1G6INwybHZqPNZVvU1sU2y7bC9pIdaudqJ7DbaNc5ijDKfZRwVNWom/Yq9kz7Qvsa+4cOOg5hDsUODQ4vR5uPThm9YvTZ0d8cXRxzHbc73h2jOSZkTPGY5jGvnWyduE4VTtfGUscGjp0ztnHsK2c7Z77zJudbLjSXcJeFLq0uX13dXMWuta69buZuaW6VbjcZWowoxhLGOXeCu5/7HPej7h89XD0KPA54/OVp75njuduzZ5zVOP647eMee5l6cby2enV5073TvLd4d/mY+HB8qnwe+Zr58nx3+D5j2jCzmXuYL/0c/cR+h/3eszxYs1gn/DH/IP9S/44AzYD4gA0BDwJNAzMDawL7g1yCZgSdCCYEhwavCL7JNmRz2dXs/hC3kFkhbaEqobGhG0IfhdmGicOaw9HwkPBV4fciLCKEEQ2RIJIduSryfpRV1JSoI9HE6KjoiuinMWNiZsacjaXFTordHfsuzi9uWdzdeOt4SXxrglpCakJ1wvtE/8SViV1Jo5NmJV1M1k8WJDemkFISUnakDIwPGL9mfHeqS2pJ6o0JVhOmTTg/UX9i7sRjk9QmcSYdTCOkJabtTvvCieRUcQbS2emV6f1cFnct9wXPl7ea18v34q/kP8vwyliZ0ZPplbkqszfLJ6s8q0/AEmwQvMoOzt6c/T4nMmdnzmBuYm5dnlJeWl6TUFOYI2ybbDR52uROkZ2oRNQ1xWPKmin94lDxjnwkf0J+Y4EW/JFvl1hLfpE8LPQurCj8MDVh6sFpGtOE09qn205fPP1ZUWDRbzPwGdwZrTNNZs6b+XAWc9bW2cjs9Nmtc8zmLJjTPTdo7q55lHk5834vdixeWfx2fuL85gWGC+YuePxL0C81Jaol4pKbCz0Xbl6ELxIs6lg8dvH6xd9KeaUXyhzLysu+LOEuufDrmF/X/Tq4NGNpxzLXZZuWE5cLl99Y4bNi10qNlUUrH68KX1W/mr66dPXbNZPWnC93Lt+8lrJWsrZrXdi6xvXm65ev/7Iha8P1Cr+KukqDysWV7zfyNl7Z5LupdrPh5rLNn7YIttzaGrS1vsqyqnwbcVvhtqfbE7af/Y3xW/UO/R1lO77uFO7s2hWzq63arbp6t8HuZTVojaSmd0/qnst7/fc21trXbq3TqSvbB/ZJ9j3fn7b/xoHQA60HGQdrD1kcqjxMO1xaj9RPr+9vyGroakxu7GwKaWpt9mw+fMThyM6jJkcrjmkfW3accnzB8cGWopaBE6ITfSczTz5undR691TSqWtt0W0dp0NPnzsTeObUWebZlnNe546e9zjfdIFxoeGi68X6dpf2w7+7/H64w7Wj/pLbpcbL7pebO8d1Hr/ic+XkVf+rZ66xr128HnG980b8jVs3U2923eLd6rmde/vVncI7n+/OvUe4V3pf/X75A4MHVX/Y/FHX5dp17KH/w/ZHsY/uPuY+fvEk/8mX7gVPqU/Lnxk/q+5x6jnaG9h7+fn4590vRC8+95X8qfFn5Uvrl4f+8v2rvT+pv/uV+NXg6yVv9N7sfOv8tnUgauDBu7x3n9+XftD7sOsj4+PZT4mfnn2e+oX0Zd1Xm6/N30K/3RvMGxwUccQc2a8ABiuakQHA650AUJMBoMHzGWW8/PwnK4j8zCpD4D9h+RlRVlwBqIX/79F98O/mJgD7tsPjF9RXSwUgigpAnDtAx44drkNnNdm5UlqI8BywJeZrel46+DdFfub8Ie6fWyBVdQY/t/8CNOB8e9yRcGwAAQAASURBVHic7N1lfBRHAwbw2T2/uLt7CCHBAsHdrVgpTkuhFAqlRuGlpcWhuLsX2uLF3TUQIASixN31fPf9EE8uQhpCCM//xwdytzs7d7ncPjs7QrEEAAAAAKCxod93BQAAAAAA6h5iLgAAAAA0QtyS/7LovwAAAACgXtsFN993FeDtoDUXAAAAABohxFwAAAAAaIQQcwEAAACgEULMBQAAAIBGCDEXAAAAABohxFwAAAAAaIQQcwEAAACgEULMBQAAAIBGCDEXAAAAABohxFwAAAAAaIQQcwEAAACgEULMBQAAAIBGCDEXAAAAABohxFwAAAAAaIQQcwEAAACgEULMBQAAAIBGCDEXAAAAABohxFwAAAAAaIQQcwEAAACgEULMBQAAAIBGCDEXAAAAABohxFwAAAAAaIQQcwEAAACgEULMBQAAAIBGCDEXAAAAABohxFwAAAAAaIQQcwEAAACgEULMBQAAAIBGCDEXAAAAABohxFwAAAAAaIQQcwEAAACgEULMBQAAAIBGCDEXAAAAABohxFwAAAAAaIQQcwEAAACgEULMBQAAAIBGCDEXAAAAABohxFwAAAAAaIQQcwEAAACgEULMBQAAAIBGCDEXAAAAABohxFwAAAAAaIQQcwEAAACgEULMBQAAAIBGCDEXAAAAABohxFwAAAAAaIS477sCAAAAANBA8UV8IZ+SSxVSGfO+6/LWEHMBAAAAPkgCLU1vd8O2NlruxmIrbZ4Gj6YYJk+qjM/Ifx2XdS809X54vopl37ZYLWP9bl6G7e10PY2FmhyKIoSwbF6eNCA643JgwqVXecq3L/O9oEqq+YHUGAAAAKD+tV1w831XoYRIV7dfZ5sJHjoGXKrSjVg2OyPr4K2IP5/lqEiNYh5XqNmnl+NXTbX1KiuWZVMTU5b9G3Y3XlGritcrxFwAAACA6jWYmEtZNbH7tZ+Fu5iuPOGWwjIRodE/nIyOy68m6Ql1Db4Z5TLYhFdtsSpZ3vZjL/eHSGtW4fcGMRcAAACgeg0j5lIOLVxW9TEy4ZbMIsAqZU9CUm9E58VmKRg+30Jf7Otu1NaQX6pBls1MSJx+MDQ8r9KwxxVqfzG2yTgLfuFOrOrNm+RDz1OfJ0ryFJSuvqaPu/FQDz0rQeFxVdKc3/c+v5Soejcvs24g5gIAAABUryHEXGMX+/XDLWyKMy6rCn4dPe9cbFxuufFhtKWb9Zx+ls01OUVZl02JjB53ICpTpTbv0c17eK7z1SlIxqxKeuL861V+2eUK1TYz+WGYY7fCfhJsdmzM8F2R2Q04QGJCMQAAAIAPA6tiy8ZUiktTPE6FXgYUzeVSPKrM4wzDVBFIGaZ0712Kw6EIKV8sRdOcUsmRZRtwwiWEIOYCAAAAfBB4Yv3J/SzseMVNuYobN19OOBIdmVWh5wCrjAyI+HbX69PJyqIkSpnYWc9vp622361Qz+TzVlqFfXJZld/d4BUPs5gKo9ay4hJWHI8Jlhc08lI6FmajXRr0nF2IuQAAAAANH920vU1f3aKWW5YJ8g/75UamsvIpFPLTUzceffMotygEU5w2vnZt9CpmP8rRy8SrqNOtIjP1jzuZlc2RmxkTt/ulpPBZmtfXy5hbodG34UDMBQAAAGjoBDpGY7yKe9qy0tSkOedTFNVNE5abnLDiYnJGUWjlCLWn+OpV6IsgbusiLhqvxrx+lRgtr6JY1cuAtKTCnhOUvo2eI/+tX0u9QcwFAAAAaOhsmpq0FBV3V1CevROTpKhRz9iEwNh/4os3pRzcTJ2FZYIuRbMvA+J2PEw49Sr1fnTmuZDcqgvMis1+WbQiGkeg4WnCeZvXUa8adI8KAAAAACCUuIO7Jq+4KTcleXdATeesZZn8c3dThg43N6AJIYSrodvfmR/8QlaygSr//t2o+zWuC6OURmcxRMwhhBCKZ6VLk5ga71y/0JoLAAAA0KCJDfTaGBc3mrKBQSnpVc2aUF5qeNrDvJIeur5Oavrnvg1lbnHGpihtYcNtzUXMBQAAAGjQ9Cy1HYun8lJJrwTlvNXuKnnW7Tfyog66lIGFtlHNFlCrBC3gFf2XJQpVZcPV3j/EXAAAAICGjLKyEBetTkZkWVn3E992vlpVUGhm8Vq/fB0NV/UTi9WsNjRPv7iXMFFlSRvuQmiIuQAAAAANGd/KgF88+iw3KTfl7dtPsxLyIosWlqAogbNR7ROgQEvDqTglM/KwWtSmviDmAgAAADRcFEdgpVvSMTcyJa/iwg3VkmbmRxVNd0tonrUer8rNq6JnpeVYtNqwMj/vdUbDXQoNMRcAAACg4aJovpFGUespy8Zn1HSOhdJYRhabVdLsaqQjqG11eN5ueppFcz6kRmdEK2tb0ruHmAsAAADQcPHEPK3iEWOsKjWvVn1hWXlaXnGzK6UrruWiDiIDw772Rf2EWeX1V+m1aFquN4i5AAAAAA0XV8DRKBkwpsrIr12sVOVImeLmXK1azgJGe7Qy8xIWpkdZRto/QYpalVNPEHMBAAAAGi6aS5V0pGUZSc0WP6tIpihpBubVakIxsZHp594ahQGZVd17HJegarhNuQQxFwAAAKAho2iaWxJKWUVt5+9SlkRSiuK8fQKkBF27WjYVFOzIyjJSNvrl1bIq9QUxFwAAAKABY9lSU3ZRtV7YocyOb7OIWgHrZvbTXIrmy2Xk/1yNiq9tu3K9QcwFAAAAaLgYFVsqT1Lc2q6tyynJuazqLWOu2NB0VneDojWC2eigqB2BslrWox4h5gIAAAA0XCoFIy/+gaI1+LULb5RIwCnOuVLFW6zpQPM0Rw22a6NZkK9ZWUbqL+cS5Q14goViiLkAAAAADZciT5FdHEopWkdUu2JoTUFJc26WRF7VtmXwO/V1mWBROIkYo5BsOx0WnPsBZFyCmAsAAADQkKkUykx5cc7lGmtya1MKxTcomZaMzcir4aIOHI+OLj97aRaOgWMVV68GHYmoeUR+zxBzAQAAABoulpHGFTfnUsRUtzYLmFG0wEy7KPXVdCk1yqGl85JOelqFGVf15EHIbw8+kIZcQghiLgAAAECDxsriMoqHjFE2hho0eevZFoQ6ImthccxVRGZU3zfX0sNpWW9Do4IOvSwT8iLsu0tpqg+hS24xxFwAAACAhkwVlSQpmi2X0jTRNHz7+KZlomFbNPsuo8h/nVLN7LvGznZLB5pYcmlCCGHZuNDIGaeTZOyHlHEJYi4AAABAA5eSkJtZ1Pwq0NHxMX7b1lza0UFHs2gnWWpeRJWzgRk7260YaulYOKUDmx4bO/1YbHbDXvBMLcRcAAAAgAYtMzrzWXF7Li3s6qz5VrtTHM029iVdFsKiMvIqb5c1drZbOdTSpWi1s7zkpJlHIhJlH17GJYi5AAAAAA2cSpZ1N7JojQiKauZmqE29RYOunq1hO52iyMfIboTkVBZaTVzsVg61dC5e0Tcz/ccjoWF5H2TGJYi5AAAAAA2e8mlAWnphvwVKZGIy3p1f010pYde2xmaFS0Ow0tS0C1HqO+aaudn/USrjKnKzfj0c9DT9LRaSaGgQcwEAAAAaupTQxLMpRQ26NG9wBytDbo0adI2dLT6zK1zcgbCqW34J6ep6LJi7O6waYlHUH5eopHmr/n51M6mG0+s2UIi5AAAAAA0dq8o9eTu1uEFXbGK2sp8Rr7qZxcSGJt/1Mytpyk1P2eqfX3EziyaOq4eY2xVlXFYlPXA68FS0og7r/14g5gIAAAB8ABICozYHSYqCLu3q5bSyt7GYU2nS1TY1nj3CoYM2p+BHViU7cDEyQVG+KdfU1X7lYDMbXvEQNeWtG6+3v6rJ+hENXa3WiwMAAACAesbKLp8NdTd0+8SYRxFCKK6Pj8vf1vobb8dcDc5TMCX5VaSj5eNtOaWtoa2gJLw+uBOyN6TCOr2UxoDOpna8knZPlUyapWU0uY9RDSsV9yb+bLDkP7yqdwgxFwAAAODDoMjL2HQkhPup88DCpEsZmBv/OtLopzxpcIokMU/J8HjGWkJnE6EWXaqVl1U+vB/80/VMdaPJKKpszweOUHNg65pPWMY8V6Qh5gIAAADAfyVJT121VxbSx2mah6ZG4bRilFBD1ExD1EzN5qw8L/fApZDdz3M/4BkTagsxFwAAAOBDosjPOX7M/5afyVAfswFOmgY8dUOtWDY3O/fCs/j9D5NS8j/UiW//I6rkdX9o6xQDAAAA1Ju2C26+7yqowRUIrKy17fQEhho8Aw0en2LypYr49Pzg2KzwJPlHnu3QmgsAAADwoVLKZBGhKRHvuxoNEyYUAwAAAIBGCDEXAAAAABohxFwAAAAAaIQQcwEAAACgESoZgvbbwiXvsR4AAAAADdOv8+e+7ypAbaA1FwAAAAAaIcRcAAAAAGiEsDwEAAAAQPUa5vIQUAW05gIAAABAI4TWXAAAAABohNCaCwAAAACNEGIuAAAAADRCiLkAAAAA0Agh5gIAAABAI4SYCwAAAACNEGIuAAAAADRCiLkAAAAA0Agh5gIAAABAI4SYCwAAAACNEGIuAAAAADRCiLkAAAAA0Agh5gIAAABAI4SYCwAAAACNEGIuAAAAADRCiLkAAAAA0Agh5gIAAABAI4SYCwAAAACNEGIuAAAAADRCiLkAAAAA0Agh5gIAAABAI4SYCwAAAACNEGIuAAAAADRCiLkAAAAA0Ahx33cFPmhscEjinVQlW/ZRiqKFQq6+pqCppbalSN2FBCO96JcaU7AfLejSwsiBR1UsjaepNdhDV0ddAZKU9L/C85RM0c8037eZsbtITSFq0QKNSS30CSGytIwjobkKhhCKdrA36WKi5vOgzMs5FZCZwRBCCFek2a+ZnlGZKrHJCenHX6Y9S5BkSFVcAc9QR+zlaNDXWceETxVvVHIgQgS6uiPdtfgVDqSSSu4Gp914kxWdLc+SsSIR30hPo5WDQXcnLUMuVW7jeqs5AAAAfKAQc/8L5tnzyJ2B8sqepmiumZ3RkLYWwx01BKUeZ1V5h6+8CZazhBCKo2viaejAoyqWRvN0NKyaDtPjVChYdelu2LZnklIH0hI6GbiLuNVWqQBfy6Qg5koSk7dfSCxIy2KDHM4Ep45a5Q+nys3aeSkik2EJISJ9My8PXSO6MAWy0rw954N3v8hVsSW5+g1Jf/Qsdp+Wdt9u9tO8dDQJKXcgAyeHweViLiO/+TBy1e2klHym9MOhJO2eX/QOfd0BXe2meGiLSj1VbzUHAACADxQ6LbxDLKOMD0/YdOjZl2cSohVVN7CqwShyrgWWzX0Fj0syT4dI66SGpeWnJf1xKi6imobg0vWQ7jj+csfznNJJsZgsJ/vEyYBZl1MzKr6AslhZ3tZ/nv98MSFFzWslhJD89My/jgV8fSE5uZKi3lfNAQAAoCFDzH33WGWIX+hP55LT3jo2MeGvU6JU5aIYmxCSEpxfV5UrIyUs6reraTk12pZNeB19IERW/DNPKDA10zTQ5ZW6388qy1e+YjHy4+df73+dX3o7iqYFIi5NlSnp9YOQX+9kyioU8N5qDgAAAA0bOi3UFaplT6/5ngJCCGGYzFzp8zepfz1MjMspyLZs5LM3Gx11fm0ifKtCcxLSLiVaT7Eo9WtiFWdfpqtITUIY1bp384Veao5I05Vd3jDBD0KXGgsXeWtWdwGkuv4qTVlUDSNH25XDrF2EFCFMUnzaxkvhVyPl1s2clvUw1KuqIDYhKGr985KMq2lkMKyz9XAXLX0upZJJ7wTErb8RH59b8B6qXtwK/9O52URTtR/aeq45AAAANHQ4k9cZPp9nrCkw1hQYa4uczfWGt3c6PNmjrVFRh1FWfv9+QsRbthGyTP7tgGxFqUcUmWkXIpQ13J3L5WgLuRX/afIr/72z8lsXQnbFVNO7lzCK6AxV0Q+UvbORi7CgMZQ2MTf6fYzXz/1cVwwwMeVUOZaLkey9nSQv6jmgZWa+dIL7lCba+lyKEMIRCDu1dDg4wdlRo7AQRpl79l5qbkOoOQAAADR4iLnvEE9b79e+5qKim+/Z8Rl3M1VV71KMKhosFR+c8lxeHI7Z4MCUxKJOqBT1TqKYSpZz+ET49ewqq0pxxCXTEbAvHrzZE5yTXtT/mOIKB7Qytq4wPUI5stT024lFPTkoYZ+eNi01yn8gRYbGv3bWp0lhUcnh6U+klXb+qLeaAwAAQMOHTgvvlraVYQvduDsZLCGEZfJexqiIQU3ec8rGVjv6TTZDWElm+sU38pauBd0hJCdfZhckMg1jHf287Ji8KgphI4JjFqeVC46U2NjwG2+ditM3iA21NXNzkqUsIUSSnrzqpNh6lLUDr5LAR/F87TSORGYVVEaSnrb9cNoOmqOpK7Iw0WhmZ9Dfw8BRXPVFFBsfmVkwDQIhRNPYoK81T+2R7N1N7K6kh8sIIUSRn/MkXtnJvsw8DfVecwAAAPgA4HT+blEcoYN+8ZvMZudVd0u9iLG9oWPBBFqs/GlgRkGazU9IvZlU0JZJ2bkZmlTMqmUlhCacuR9X9l/s9aBchbqNRXqGyweai4takdPeRC+4nJpVacsp5dXSprVBmRqwjConPTfoddJf515N2vBk3oOMyncnhLAxGbLiZmoNQw3bSvoJ0CKxs27Re8jKkyoUWu81BwAAgA8AYu47RtHCUq23MnlN0xNXqNfPsXCy3eSw1Dt5DCHMgxfJuSxLCKG5Wp3dRXV9Z52ycLNb3Em3qIcAE/Y4bLF/bmUdgbkaeks/c+1gUXGdB0IIUUjyr10I/PFWRmVzIxBC5KqSd4PHq6IzLEdY0s7LKtT0b67vmgMAAEDDh5j7jjGqjJJlHIimuOa9ROhuHgY8QhFClJLMK0FSlTz75OvCicR0rQ26qVk2okIRXC5fUP4fl1f5L53itOng8lXxdBCs/N7F4B2xaht/CSFEZGC44vOW20Y49miiZ6rP59Dlkqoq8H7U6fTKespS2qKSjgXSfLmkkuF5LCNPySt+jtYQqHvh9VpzAAAA+ACgb+67xchynicXpSWKa6Sjtvupevp2hl7a8Y+zCSGqV4GpISLZs+yCZziu7gbGdKUZrgjVpnfzVS1F1W1WFi34rL9rUFrA1UQlIUQlzz16UcoylU8QQfM83S083S0IIaxSEZmUc/VZ9D6/bCXLEkJUspwHb2TD9cVqq2dvIqZJdsHkaFlxWU8k5l3VdYqVp2UFZBUNEaNF9iaVxPT6qzkAAAB8ANCa+04xz/3iQ6SFSYsr0G5t/RbXFRRfe5BrYczKiEpedC9FQVhCCFeo07VoEqx3gRZpzxvmaCcuPIJKrlTX04JNjYweuzvkbk5JkyfF5dlZ6H/R132ETXGDK5uZU2kc17XWtS7qOKDIyzj6NEdN8ykrP3MvMasorYoNddoYVNqMXW81BwAAgIYPMfedYZVP/EJ/uJFZ3Jxo5mrs+3ZD+Om2TY00KIoQwqry3hTdgjewN+igWX2Phf9CZGj8xxBLzfK38ouxadGxXx6JDItOWPTXm1sZZdMpq8otmQGNaIgqTfZcTb3h7sWNzaoXt0JWBJYdHscq7t0NXfeiuNsH7exp7FLljLb1U3MAAABo+HAirytsVGjcH1k0IYSwbE6eLDg6MzpNURyaeGK9UR0MNN+yULGFYXujmIvJpdMYz6uJgTZVo2XQosPj1+eq+RVzBOKv2xpVuStl7mSzrFv+zMtqVlxj5VkLj0cmSFlCSGZs/LytGZ6ext0cdOy0OMp8yQ3/mDPxhRWmaHFTG0HlR+H1a2/15+uQWBlLCFHJ808ffebnb9TJUdtSTHKy8++/SnkRXzIbg0jfeHwLreouFOqn5gAAANDQIebWmbjguGPB6p+ieeIBA50GVX63vVK0eFATrUvJJU3CfC29Hg7qpwiogI19HXv4tZon+Fom1cVcQginha/zN0nP177IL5cWKb7O112MX5xKkjAsIUQpkzx9HPX0sZoiTF3Nh5hU9RnjG5qsHJAz6XhCQVGEVcWHJR4OS1RTG4HWZ0PsfGo0vUR91BwAAAAaOHRaeOe0jA2nj/P8zlVUq/eaatLE0KDULXgzZ6OW77BfbrmD84f3c+1tXjHtUU7NnLZ8YmFQZU30bSz/19/UsJqXTdl6OOwcbmlUZVEiPf2vxjT5wqqG+b5+ag4AAAANGtqr3gmugCfWEFiba/u4mgx319b5D4GJr2/Y3SrySJSSEEIooY+HTn3eSqcEWnOGOYXvDgrJLdcwSrt4OBy1Mtx3O/pEYGaWpMxYL6G2VpuWVjN8Dc1rtGoube9mf9TS8M+7McdeZqTmlu6hQWnoa7fxtviitaGt4O3Cfb3UHAAAABouqiQCsDXp7QlQgUoZkZQblCbLkjM8AdfcQMvLVFjLtStYVVRCTkiGLF3GiEV8c0NNTyPBW8zB9rbqsOYAAADQwCDmAgAAAEAjhO6HAAAAANAIIeYCAAAAQCOEmAsAAAAAjRBiLgAAAAA0Qoi5AAAAANAIIeYCAAAAQCOEmAsAAAAAjRBiLgAAAAA0Qoi5AAAAANAIIeYCAAAAQCOEmAsAAAAAjRBiLgAAAAA0Qoi5AAAAANAIcd93BT5gMiUjZ9j3XQuAxkaqUAl5nPddC2i4JAqVCJ8QgCpxKUrEQ1MmYu5/kJQr//1a5PuuBUBjo1SxXA71vmsBDZSpNr+znd6R50nvuyIADdrMdlZNTTTedy3eP8Tc2jPR5IfH5LzvWgAAfERUFloW2gJ89wJUzUgDAY8Q9M0FAAAAgEYJMRcAAAAAGiHEXAAAAABohBBzAQAAAKARQswFAAAAgEYIMRcAAADqFse5ud2S/lbO2rWcHFCoozu+v9M3XpqIKfBf4PMDAAAAdcmqifUiXwNLVh6dQ5p3cr8w3fvX5uK3KkGWI8nliQd1cJjRRIRptKHWEHMBPmzm7ra7xjfdOdRSt+hUoG+m6+2kZ66Nv24AeA9E+kaz2utrZ6fNu5IkZYmmiMvncPSFb7foC8vIzt2IeyLnDuhg21YfQRdqCSdCgA8bh8+11hVaaXB5hScCqpm3zeq+9uNsMDc4ANQ/buvWpl581Yl7sTEyQgj74FbI58eD5j3JYd+yIElG2t6APJav8bWPIb7OoHbwyQEAAGi0RHp6n7bW087L2v9S0am5kY8BV5YruRKQeDdWLtLT6dfSqKU2nZyec8wvKTKHIYQQit++nXkbTdX5h8k8e5N+tmJtlfx5ROqxgGwFLWjR3LSflZBIpLcDE69FySomV4G2bn87vjw95XC4ghBCCGXjaNzLhI4VKk+GSgkl6NDO1EvE3PRLyDA0HOKqYy1gE9Nzzz5Lep2uqlAYG/os6b6HRjtbA2+t1MdvnZMBEHMBGhGKI+7T2aSLMYcQqomr1QwT6cWH8SE5LCGEKxC1bGbUzVKsT6nCEzL/fpqSKi3cy8LFYqS9IPpNwm2p1iceuvYiEp+c9c/T5NhcYmZvMsJDx4xWBsWkHvHPkjLv89UBQC1wBcJOTvoWUnETV4GjkEgJJTLX7uiof9EvWcPNtJ2YklOU0FK7t5POgmMhd9MYiuK62er102OdDPQcDPhyJRHyqNbW+n1tEs+xepPs+HIVJeRqd3TQb3snZLF/XrnsqW+l7cGjXoalF4dScwu9T5x5L/PTT4VKCcX1dDD4RIf1MNCxNOTnSVQaYl4LC+1eDlpz/g55klU+yCrys6/FyNs7iTtY8R6/ktfH+wWNC2IuQONBUbSOBlebSxFChEKeiaaqYOyGQFtnxiD7Plqqe+FZr5S89p7W/Z20vz/+5lUOSwila6jd11kj1UD0qa5Im2EpLt3SQruPk872QNWIlnraDMvl0j7Wer2t4yafSshB0gX4AHHFQlFk/KjL8elEY1gfhy+sBL1bmUdHxA27mJAv0B7X126Uqea0Vvp3L6QW7kBz7YTZi46+vpnAurWyW9ZG18LOdHxO9vzDrx+kUc197Rc21+7c0uzPl2FvFKWPQ5kZiXis/GmcpKqmV4pjLcxdcCToYapS08ho7iCrthpa45poPr1XscFWFRYnUToLnI1EFJGjORfeFvrmAjQejDL38OmwI/FKQtgnz97872Tk82yWEG7njtZ9dJQ7zryefzFq19WwWafiYzV1f+1szC/ZlTLW4z6+H9J3y5Ph/8Q8lbA8TZ1prTQf3gnqt/npqFPxrxWsiZXJp3a4MAb4ICnzM3+/GJ8kIQpJ3rmHaYkqViXLXnElIUNOZDnZRx+kp6qIvr6oZAdWeexmxI14BcsqXz+Jv5ClIqzq/P2o+ylKllH4P4i/lKPiCITOOuUGh9EGmlyaVURmVXlBzCiO3HjzMFVJCMlNST0SLGUIMdcVqN02N0uWxRBjLb7aZwGqhpgL0MiJ9PT62/AlianHowtbXbISUo7HKI1sDDuUjF9m40Pj/niSrWRJZkLS/iAJQ9i0yIR1z3JVhE2JStgTLGMorouR8H29CgD4L5RSeXLRPX9ZrjyVISqpIkVW+Ig0W5bMEkKXyqyMKjZbWfBflpEn5bKEVcUXPcKoZPG5LCEUp3yIoIRciiJMbjUNr6y8pCMum52nYAjhUOqnU1DJlHks4XNp5BWoBbTNADRyYgMNWw6l4mt80taiuIHFXMCytLC5Oe9qemH2TcuWFT3LZuQoGELSs2VFZyImNUvOECGPxrQ+AI1BhRDKvm1/gMp2ULGEEFrAodQcpKaVKYPi0DzCssxb1xCAIOYCNHoUTbiEKDm0loBTfJ7ITck8nMK+qTDgo3I4xQBAtZgcGcNSXHNtmuRXnDmhNnginjZN5chU+A6CWkDMBWjkZDnyFIbVycnafSNJ3WkHDbQAUFeYpAyZitJsZso7nVjLmMsTCcQcRVZu4e0lQ0OBiCKvMqSIuVAL6OsC0NjIlQxLiIjHKfgxLyXrUQ6rYarXvGSwCNfNw7RHUwNzLWRcAKhLSfF56QzVwl63dkPGKFpj8ogmx8c6N9egCCGEEnhbiWlG7hcnrW5XADUQcwEam4xcBUMoLxfTzm462lzCKPOOPUxP52r+0NPay0yoo6fRztduSRfLqW4iOdpHAKBOZcdn3MhmtM2NeplyalWAKi1XkZkny1SyhBAtE/1eJrQ8M+tqQt10gYCPDTotADQybGRIWkBTjWbGhr90FfwQlf1EySYERX/HKr/xNVo13JimWJVcfu9l1Jq7KRmK6osDgA9aTmLChI0JpR+RZqXM2pxS+hFJRsqMTYWPsEz+joP+O0o/zSqOHfM/VuYR+T9H/f9RdzhWlXfmWVbfznqT2plcPR6fz7I3zz/ver7oaSZv076nm8ruEvU0tMfT4g2kfx0L+Kvg/xS/axtja5o575+Ujhm7oVaoksYcjGJ8SzIl03vTk/ddCwA1uAK+gS4nP1uaU2aOdlpTly+gVFlZCiXOGfBhsrXQ+rGT9bQ/A993RaBSFC0YNNBlhjXn5t2QhU/KL5NWc1Ye9hu76kujYyeeSsxHQnlLhz/3NNVUPxXxRwWdFgAaIaVMnpQkySm/DhGTmylNy0DGBYB3iGVk5y5HnkwjHVtZt9Wr5QAAoY7B1756VFrqjxeRcaH20GkBAAAA6pI8L3vbyddHOPKU7FpGVGlW2uJjUm5+XoakbqsGHxfEXAAAAKhj8jxpSvVbVSUnLa9uqgIfMXRaAAAAAIBGCDEXAAAAABohxFwAAAAAaIQwoVjtRWRI7kVnv+9aAAB8RMR8WoPHScnDnM8AVWluruVmJH7ftXj/EHNrLydfLlFgZiYAgPqTl5Pjd/9O3wED3ndFABo0Hpfmc3HHHjMt/Ae5UlUmWhQAAOrRC/+A3du3de7Z931XBKBB0+fXbrHlxgZJHwAAAAAaIcRcAAAAAGiEEHMBAAAAoBFCzAUAAACARggxFwAAAP4LJv726pkzd0TK3tOUTUzGldVf/rb7qRRTRkFZmGkBAADgQ8NkB5w/cPzS49h0haaxc7vB4wd1sOVVtrEqze/0wX+v+UUn53O0TF1b9h4+qq+NTslIfFnqs9P7/5G3mj26gwEhRBZ7YdPGC2nKUiVwrAbNntnaRH1mkEadXLLglPn0vdYCqmJpRBX377q1D+JLT0xEO/X+bnx3C6roxaS/vnTsxOXXkalKvr5d0y4DR/Zz0K1kogAm0//0vpNXnyRkE33bFn0+m9DJRYfQet4d3HfMnLPL9sC0riaU+j3hY4SYCwAA8GFR+O+Z+f3u1D5fTZ/iIoy8vW/n7ElJy/+e1tVQTcJjUs7+PvGPWxpDvpgw0N1ImvDs7J4lU64E/LFrjocOzeRFXN6/YfeRq3E5TGeTaSwhFCHKzDcPrj5zHjPOw6Awa1K0gb6wkvTIJJ5atzGxybSFA+1IXsTFCqURNiv0/rVwk1GD2xgV7UObmhSvXKAM+Xf+D7+f1247amD/bqLsoKv//D755KV5m//oZiescLCc22unLDhNDZ02ebADN/TSziVf3E/bsucTD5FBqy9nfHLrl1UbO7b8vak2gi4UQsx9t1hGxVAcznv7i2OUcgVD8fg8mhCiUipUKsLl8+jy9SmzWT1TKuQM4fB5mOEPAKBmlBFPnqR4jpg/c4wPj5CWLZyzXw/699/bk7oMEVU43eSHnTx0LqPvgp0z+plShBDvli2biqeNXHn439GLxtjkhly69NpkyvrlN36aW2a5I0q3We/Rw10E1dYl9+XRo/c1h20fqMch2ZWVRihj997Dx3hU/KKXxZ1cs/Kcft/lq+f31uMSQvr27Nly8Zez1i054rFlvAm3zOtRpFz/59Sb9tOOfTXCmiLE28s2K3TE4f2XP1kxkBBx69FjXU8vPnJqYpOx9uiRCQXwSXgnpElPjq2Z+c2Ijp90bTW0a9uJ4yZt2HMpIa++Ow2xyuCdX3b+bvVtQgghqhe7J4z6dGFwhb5TZTd7t5Q5bx5fvx2TpSp6IPP0vO5f/O/0++rQBQDw4eE6f7H5zJqZPoW9FGg9YyMNeX6eUt228oS4NGLj0aykoZdv6ulqSifFxasI0faesmr9T13cdCu2xtRsaVSF//nLMs9hvdxFpMrSCFFbnDLk3KlAVevxX3fXK2p24xu3/3JSl7ynJ26EysttzTMauP76g1+GWxeWzzF3dzfLCAsq3NGs9+DuRk8uXkhS4owChRBz615u2N8Lp037N8hwwLfbdp59ePjo4ZljfZIu/PrjNysD01XV79+oKZKu71m86nGM2m9jAAB4a6ws+FVQtqWzS8WmXEKIwNzSgIoJCcos2V6SmJxFjM1Nq7yJxrIsYeVZqWm5VS1qrwx/8jTRo32nynrSliqPEKLISkmVlj4NMtkBz8M03Np5GZS+t0wbt+vgzIt8+SxNTTk0h1OSXFS5OfkckUbRj6KWHVqzYX6vMz72Uy0UQ8ytY6wi6Mjy9RG6o+av/l+Ptm4GGjyRga1Xjynz18yzSz+6eeOlHPz1AQBA3VBmRNzZPe9/1+Rdxn/mrbYbosjhk7H99f9d8dOfN0Jz5fKsmEf7f1/zUmfwqIE2VfWnY9Ovrhvdr1OHQd3a9B301VG/ZLUNpEz+mzdxuk5uRtV1zWNj7q2Z0L1Nv94denTq/duuBwW39FhVQkKi3NjGTqNsSuZqWVkYcZLiY6oulMl+eOtBimMb3+JHtJp4WFNRb96UbwaGjxb65taxjIdHr4UJe/w+yUGjzF+9wLzPqE9OzN17+MG47r7Kc/v+iWk7cYq3acm42LzQk/uOxrf7YkozIw7LZL++cujcFb+EHMrEufPA0SNdjXmEEFYZfm7zQab1aJOIw2duh9Fm3cbPHmunQUkSHp75+9iz4Nh8lVDfyrvHpxPaOGr9l1dRWQUIkTw+/McTqs+47vT5A4f9QpJobQs33+GD+jfXKvqSYnLDr/1z6J5/WB7H2L5Ju+6DXAMP/iVv8eWwjiav/l199u7TNFXq7f0LIvWcB8yc4FQ4CIHNibz6999nAiPSuPo2Hh1GDOzZVIzOugAAVWGi/pk5ZtENLcceU3/7sa1ZJSd0Wr/3D39kyefunD1gvYoQwjXxGDp3zU9Ndapq56J1LJr3/WnZ6qZiafj5zfM3zvpevH9nX3t+uc3kqUkZjJGZefnHy6O0rD37fT1xo4Ou7PWlTYuXfrOSf/D3sc4UK8mXsCJNjXIpmaLFmiJakiepslD5s8O7HshazRviUfwQV8fcRDMnLRU3DKEQWnPrliLk6TOpRosWzSumTI6tbzszNuTl83ShiVbag0MXb8apSq6OFYEX/7z5Wq6vy2GZ1Otrpqw5muI5ZNaM2V8107i/YsZP92LkhBDCpL26de7I8mm77/HaDhnt624q4FOK1GtrZ868nuAy/Ls/5v063VlyceUPS55n1r5nUlUVILIY/8vXzmxd/MOKCIFHx97drTkhJ1Z9tXKPv4IlhBBGErj3h8l/PiItB381akQ3vcxTi39YcuHymYDwbEIoQ8c2Lb3txERs49XRp10zfV7hN1texJ//+3rB4ySRtZMNG3Pz0NIpq/98hb5VAABVoq0HLT3yz96v+wqOzB46b9dTtW2YysxHq76Y9E+81w9bTp26dufY0V1jPSOXTfr8+IucysqleDbjlmyeOtBbX8wV6rsM/u7nboYvT58KqBgeVfn5UlYoEledJXguI5Yu+XGos7GYw9fz6P/99CEWD46diJSzhOLx+JRKoSi3A8sqFUqWz690hjRCSKrftlX733T++qfOlqU2o8UiISOVyKqsD3xE0Jpbt6RJCcl8s+4mAjU3cAQWdsZCVWJcHEerja+PwZ7b1zOHTizoj8Qqgh4+jHXp0sucS1LvbNl3x3z6trmtjLmEEFsnd638cXs2nnJbMlyXEEKIyH7sr4vHmBXN7ZIa+ipLr8eE7yZ4GXEIMR84cciNL/c99M9t1qWWDbqpdyutgB6HEELkGQqfJVv6e+rRFGEH9Db/ZfyeM8dCx3i5C9moC9svp/nO2zHfQ4cihHi17WC5duKyY6wRIYTQxm4dtHgh/3BeWXt2bedRMoBXniJt9b9DE7pacyjCSMMO/Tj5xMm/w4f/6lLZ/DUAAEAIxde2cG5l4dzcWfT1l5u2Pxi0uaNhucSpiji780xM08XHf2pnyCWEEAPDYd9b5b4Zun/HuW5rR+qou28mdunTt1QrGCVq0ryZ/r2QYBnbouzMB4TicGiiUCiYqlrNuE59hzmV2k/YpFUz+u+Q6DzWXltXT5vOTM8o3/2XycjIUmnp6ldWZHbIXwvmHtAdtHzmJw5lDszKFQqWSyPbQCG05tYllsmTSBiuSEN9PKOEYhElyc0lRNyyWwdOyM3niYWXsHlBN58n2rfv6sihch5evKXrO9jbqPivVOQ9uJ/g2enHMQUbU3Yt2huXitGGbacv27awtVHBd5VSSrgiKj8zPY+pZWtotRUg2h6De3nqFcxKRtHGPu08mOzULBkhJPvZgwDTNv1cS+Ys1PTs2bXcjDAV6XqPHtnVumDaNVro2KtvK5KRlIGrcQCAGuGYuTrryGNiE8o3ixLCxEXF8cycrUvnWY6Rg71xTnREqqqy80T5bMDhcllGpawwGI2jra1B0tNSqhl0Ur5PAofHISqVkiEcM3sHg4zQV/GKMjWRRodEZovsnCzVlpYdfGTejD9k7X9bNLuLdrmYrszOkQg0tatqBoaPCq546hJFawgEtCpTIlf71cHKpDJWIBITQrS8enob/vvwTmynkXYcShl0+47ctU8LSx6rCI6KymXtgq6cSSnZUZlEMWGhwZIe5uqPyzI54XdPXbxw5UVwEldPlKFijVW1HOnGKqKqqEBPWzW7cLk8mrCEJawiPilJZuRlVvobTWxtY8yrJuZSPGHp7ySeSMSjsmo2lw0AwEdHkXR33/bLZoN/6tdUVPBIXlJSDqOppWZZBEpbV1uWHBmfx1oVT/PF5MTHp3O1dTTVt3Qpg8+sOvjSdfYPgwru4BFVfHhouqGTdcUhE3x9C1NxUlhINnE3qlBOIUnE2Q2b/H2/m9O+sPewKi40VKZnaarFIYTbvLMv//SVmy++sm1RPGGC/MX5S3GabX1balQsLT1g//9mr8v3+WXlz731KkQYSUxkvMy4jRViLhRCa27dEhoa6sqTY1PVdSyVJ8em5hMDE1NCCC1o2r695avb1zNUhFUEPXqQ2KxLdz0OIUSpVLGEZVQqJVP8j7Lr8/X3vk7q/24VGU/3/jDyt+2P9dtOW7z/3IYNU+3/0yoPb12B0nWRyYlApFlmOQyukIvBZAAAdYerzU94dGr7ur1hWSpCiDzl/p791wVNOje3KPyWloTtmzpqecG2rt162MiubVryZ1jBNFuqTP+jyw7dlbbs2d1I/a02rr62wv/4hr0XIhSEEJIXcGz96WCj7v1aVjwHUAJ3V2duwMPHksobJgQGOrmBx3dsPJskYwkhWSHHth154dJ7oLOQIoQYtJvwWRvZ/vk/XQjKJoQQkh94/Jdlh6LaT/qyuQ5NCMn13/7VhGUv81lCSPrznT9MX5nk8NX877qKpLm5OTm5OTl5+cX3/piEp0+TtNxcrasbEgcfDbTm1i2eUzMPztmnAUFSNy9R2aeYBL9HcYxN92YFl7zcJt27aZy6+TxxrE/2rWdpHpM6mtIUYWkTI0NerHHzXoNaVfz+YSuML2CZ7Bsbf7mW0+e3zdPttShCCFPFl01NVFkBQqrsSUBpamlREWnJKtawOOkqs9Jz5axmhYr/p0oCAHzEKFGLaYu/W/bbpi/6/WVurpWbEMe1G/jzwokWRd/auWGv042aF/xf7DJu0ZK8las3TOy7zdLaQJkWmywz6vz5qlmjnCprETHqOOvXGekrlg2/utVUQ5mSKrUc+PMfI5uraVsltEG7Tl57N//7OLlnRxP1iYLWbj9r+exFvywd3XuTsS6TkpDv1Ovnn6e0KgzNHOtPl6xnVyxeO77jRiMzfl5iBrHtOX3DjM9cC1pIGEl6cnKmnCGEKGMeXA/KVKju/zG68x/F5YssP7t+9hdCCFHFXL/yzNx3kbPaCYTho4SYW8eM2w9qbXr14oETXTw+Myr17iqzH5049kjLa3o7h8KhV0L7bj62Bx7ejtTLvkt5f9rUgEMIoTjGXi2d/718K07e0qaoA64yO+Tps3TLZq3MRBWOpwx/+SrNqW9vG82iv+r/drO/6gqY61S5L9fKwUH/yr3rSePczQu/wJgUf78YJetWvBGHpimmtl0qAACAEEIbeI5ZeWxkRuybhHS52MjG2ky7VGZVRIVGmbmMLvqRa9N5xsbOU9Oiw+PT8jgaRtZ21pplG2YpfpvfLjwt9YBmq7Gr/x6ZEReVKKG0zW0tNCoNC7Rdn2Gtd8/+89DTtrNb89SXRvQ9x6w+OTItNiI1l9IzszXWKXN4rnbTsYuOjPopITomVcHXtyx7OG3fOcfOFW7YbMqhu1MqfVOS7x04/dJo9Le+1a9QDB8NdFqoY7S41fhvR/Ferl+0cP/rhIJxYMrU4Atbfpp7T+Lz+bcjipd6obi27Tu7Bd3ce+Fuastu7YumDeQ4DZjUgjmzd9/DbCUhhDCyqPOrf9yw734ere6XxTEwNOBGv/DLUBJCCMtkB567GqVgWKaqZWuq9JYVKIPfcuAg/ZjDGzddTlcQQpiM18d2HHjAltqPq6UnIumJcdm1rR4AABTg6Vm6uHs2tS2TcQkhkqiYfCc323IbG1i7NvVu4e5cPuNWhuLrWTq5OTlWkXEJIYTW6TTxi3bhx9eeC656mluegaWzi6tTuYxbjKtlZu/e1KW6w1WGzX+2b8Npg74z+zep2CAEHy+05tY52sjnm8WrrQ/uPPDrqHWUrpFQnp6l0HFtN/KX+RM8y8yhTVt36m68d6mfuO/vrXSLH+XptZu2ZO7OVUtmjtM2N+FnRMdpeoz438oJTlpUxU4LFMe635TJwYs3zxp/wclKnJuSru3RxsmMmxwXrSS17IRfRQWq3VfDdfwP83I3bvjlyyvrTPSYfKVplwlf0hvXUrzCF87Va+HjJTq49tOgK6PmLp9sgXECAAB1THvoilP1eDiOy9B5U/0mbZ2/0X3v907i99JhIPfutiU3yJAVs7qUX2oCPm5UyR1ujGx/Swnpksy8irO3lFDkJicmpis5WobmFlpvfROFyUuJTspQaJnYGlVy7VuMZSRpsTHZKh1zKxNhnV25vEUFKtQnPyUqOp9vamWuSzJPzxux2GTGuW8HGhQ+K8+IjUrhGlib6Qvrqq4A8JF44e+3e8OKg0frM8ZB9dj8qOBYDWfn8tP21hcmK/JFirCJoynaTgrpa/E5NCI/WnPfJZ6msZWjcW33pjWMbO0rnaGlDIoWGVo7G9b2SP+9AsWU+XFBwXn2ns7Gdq4Fj2SFvI5Tmfk4lAxCo/h6Vk56dVhRAAB4vyixjavzezw+rWPrVeXgEfhIoW8u1CEm6c6mRd//dPx+QsGk44w0/NxflxjHXj7OGBIAAAAA9QqtuVCHaPPu389OWLxtyfCb5q7mOkxKRGi+Xtfp8yea4z4SAAAA1C/EXKhLFK3fevyqlp+mx0VGZ+azYkNbG0u96tb6BQAAAKh7iLlQ92iBvpWLvtX7rgYAAAB8zDDTQu3duOsXEhZRP8f6csKI+jkQAAAAQOOA1tzaC3jmf/36tfo51pf1cxgAAACAxgKtubVX7by5dcjNGjOlAAAAALwFtOZ+YF5HZ73vKgAAvDdYHgKgJrA8RAHMmwsAAAAAjRBiLgAAAAA0Qoi5AAAAANAIIeYCAAAAQCOEmAsAAAAAjRBiLgAAAAA0Qoi57xbLqFTvcz5iRimXyRVMwQ8qpUIuUzD/uT5VlsDI8/MkUlVlTysVcrmi0mcBAOADxqRd+WPKb/tevMMp5ZmMK6u//G33Uynm+ocawLy574Q06cnZP/ffvO8fk5zLUgI9K7fmXT4dNqKHmUa9TmLHKoN3fjkp0G3Zhp86EaJ6sXvCovMOiw7/5iasdTVUrw5MWXjecdHenxz4agphFa92TPkizGvVmu/aEUJYJif88YNc/Vaejro0RQjJPD1v4Enq2x3LhggwnR8AQB1TJj47deR4XOfvpnvplG/Gyni0e/XfL5jSD3GsBn03s7UxlxAiS312ev8/8lazR3cwKCku6/XFv4/dex6eKecZ2TTrPHhUpyb6lX95q4KP/776Iv3Dbjde8WNM5s1dK64kuE38box90Rmw6pqUwqQHnT9y+NzLiDRGbOzWZsioUZ2NBXreHdx3zJyzy/bAtK4mOJNA1dCaW/dyw/5eOG3av0GGA77dtvPsw8NHD88c65N04dcfv1kZmP7BN2QqZFKFVCJnqt+SEEKYpBs7Fhy5EoGrbgCAdyrrzdVN3w8bO3nBP2cfJ0vVfEfzdCwcnV0cCv8560le3bz5Ko8iTF7ExS2zxw0dv+7g6dfRJY2k0qgzP4/+bM3pWCufgUMGtNdJOf/r+KHLjoUoK6mAPPHcls2P2331v85WxSmXibn8x8rtDw18utqVauWprCbl5L7eN3vygmdMi1Fffzuql3XAgVk/LLmcpyIGrb6c8YnmsVUbX2bj3ALVQGtuHWMVQUeWr4/QHbVw9UyHgr9qDVuvHlPcmlgs/vr3zRubLpvXR4vzvmtZe5wmI5ev7C6wQmMsAEADIn998WSC+bg/Fgf+/L8QtVtouvQa71L8U+bR2Ue0m7Rrqs/NfXHp0muTKeuX3/hpbkk6VsX/s2L5E6rX8p0LW5nwCCHd+/ZxX/Ll4jWLvFvs7G3Lr1C8wv/v/a8Nhs7sb158epAlnF214pzVyA1TelqUPmdUVpOyBSrDHvnJbEfM/d9EZwFFSCtLSejEjSdezO7eVkfcevRY19OLj5ya2GSsPZrroAqIuXUs4+HRa2HCHr9PcijbP0Fg3mfUJyfm7j38YFx3X+W5ff/EtJ04xdu05MZOXujJfUfj230xpZkRh2WyX185dO6KX0IOZeLceeDokW5Fm51d/xvTerRJxOEzt8Nos27jZ4+106AkCQ/P/H3sWXBsvkqob+Xd49MJbRy1alhhVh54Yv0pvf7fdXEVFDwiiTy779ADsdeY0X1dOBQhhLDK0H83HOJ1+q5Pc404v1P/vjAeNm2YOY8QQhhZvN+5E49ehGYRE2evTh27ahaXLAk9ufuvG4EJsuwHO9emGbr1/b5v88Jj5kRe/fvvM4ERaVx9G48OIwb2bCr+gKM/AMB7x2/z1YY2hGTfC6rJ1kzOk4f+2e6j2+tzCO09ZZU3YeUPbpbaQBJx/sIjSZefvmlpUnSe4hh1nfb52Svzzp0N7v1103IFsvIXly9H+3y2xra4PxuTcm7txiDD0Rum+YoqbxgpXZOyuF7jNx0eX/wjrW9ixFPEShSEEMI36z24+/bVFy8kjfrKjItmF6gUroLqliLk6TOpRosWzSumTI6tbzszNuTl83ShiVbag0MXb8aVGp2mCLz4583Xcn1dDsukXl8zZc3RFM8hs2bM/qqZxv0VM34q3u7VrXNHlk/bfY/XdshoX3dTAZ9SpF5bO3Pm9QSX4d/9Me/X6c6Siyt/WPI8s8a3cjj68tiLl268LqoME33n5I271y+eup5W1MNC+ubGubNBREdICJseevfmjRdZKpYQwsrDjs6btHzfI6FTl46+jrlP18//cX+8rLA5gKvn0sK3lbk2R9uyRet2HR1NhQWP50X8+b+vFzxOElk72bAxNw8tnbL6z1dK3HoCAKgv2c/uv8yx8+lgU0kIYNKeP49h3X06GJeOkDw93zYe4vDn/hV3kIQ/fpnq2LajafH2yXe27r7BHzNnqpO4qhhaXU2KyYMDgoi5i7V2QWmilh1as2F+rzM++K6A8E6hNbduSZMSkvlm3U3U3dMXWNgZC1WJcXEcrTa+PgZ7bl/PHDrRgEsIIawi6OHDWJcuvcy5JPXOln13zKdvm9vKmEsIsXVy18ofR+6XlCOyH/vr4jFmRcPIUkNfZen1mPDdBC8jDiHmAycOufHlvof+uc261KhBl+KYeLVwOnP3cbrKy4hLWCb9xbNIz8HDU04+DUlXGhtzCWHinvhlWbT1sOYRUvoLhYm9tPXYM91x6zYPaqJBCGnfrZfT2i9WvlTYE0II4Rm6+XTkvfyTm2vp7dvZm1P0lshTpK3+d2hCV2sORRhp2KEfJ584+Xf48F9daj8wDgAAak7x4t4juXX7FvYV+x4UUCXEJ9IGzhY6ZZtYaS0ra2PJndiKO+SEh2UYuTkYFW2vfHN81xmpiYvfqsF7guJltJale/uhU2cPbWNeNs5WWxNCCFFkR9w9vnH9saz+P48pHv2s1cTDmrrz5o28qxGSDFQKrbl1iWXyJBKGK9JQH9gooVhESXJzCRG37NaBE3LzeWLhpCt5QTefJ9q37+rIoXIeXryl6zvYu+TvVuQ9uF/pUuxatDcuFaMN205ftm1h68IvF6WUcEVUfmZ6Xo0nDqNtfHy0ovxCMpSEECbvWWCoSfNu3dzM3gQ8zyGEsEzmC/9Qy5a+ZuW/SXKf3n2i2XJ4V1eNwprR2i2HDrDmVZNWdb1Hj+xqXZB6aaFjr76tSEZShqyGtQUAgP+EVQQ9fBhn16ZDFV/XkjwJR6QlLJ8RKLGWiJHmVdhclZqUwjUyNyhqz8h9ffZKYLZcwnp+umTP2VtH9i7qoPVi/TdTDvplv21NFMnHpvfsN39XSKsvFk3qZVW8HVfH3EQzJy21shFxAISgNbduUbSGQECrMiVytRGTlUllrEAkJoRoefX0Nvz34Z3YTiPtOJQy6PYduWufFpY8VhEcFZXL2gVdOZNSsqMyqXmVx2WZnPC7py5euPIiOImrJ8pQscaqt7iPI7Rr42545MWznHY99HID/WK0m423ctZpqnvEP0DZvSOV5x8QJGg2zKNc9ydWGZ+UKLfs5CEu9T0oMHOy0uMmVHk4iifklfqRJxLxqCwWnRYAAOqFJOKBf6xWp/bNqkgAPD6fVVWc5JxVKlQUr2LLKyPJl3CEYlHh6UAV/dgvgbGatGjjJB8dQggx6T5tuUH26M9PHLj0SYthmkVnkxrVxHjg8uNNQ17cPLFr9qTbY1asn+pQ0AuCFouEjFSCNhKoClpz65bQ0FBXnhybqq6rqTw5NjWfGJiYEkJoQdP27S1f3b6eoSKsIujRg8RmXbrrcQghSqWKJSyjUimZ4n+UXRWHVGQ83fvDyN+2P9ZvO23x/nMbNky1573dr5XiuTT30nntH6BglaFPn4vdW1jy+C7NPbNe+sUpSE7gozec5l5NhOV3Y5UKJSsSle11RQkFAnyoAAAaLFX0/fsJWq1be4oq34bW1dNSZqZll1/mgc1Iz+Bq61XYnqI5HEZRvBgRk5yYyjP2adNMu2QLsUfHdjZZYa9iFcXnx5rUhBDC0zV3bt178oK1M/Re7f7rUnJRXeQKBcuh0VoHVcHno27xnJp5cM4+DQiSunmV+7tlEvwexTE23ZsZEUII4Tbp3k3j1M3niWN9sm89S/OY1NGUpghLmxgZ8mKNm/ca1KpM6+k3k9Uej2Wyb2z85VpOn982T7fXogghjKQW7aJ8d5/mOdsexUktA14kOw9qxqOIVtMW5umHg+Lz9J88E3mOd6g4hoDW19HhRCYlMMSqONiyiozMbDUNyWirBQBoEJiUh/deG7aY51rVckUccydHDcnDsEh5yyaCkoeV0aGhmQYOzhW2p7S1NeXpKZkMq8OhCCF8AZ9UuEnH4dIsoyp5uEY1KcE3dnUwUsVExamICYcQoszOkQistHnV7ggfMzS81THj9oNam6ZcPHAipWx/IWX2oxPHHml5DW7nUPiVIbTv5mMb8fB2ZMjtu5R3r6YGHEIIxTH2aukc++hWXKl+D8ps9ZMgEkKIMvzlqzSnDr1tim8C1er2v3aztrY5zwJeP3oVY+PhpUMI4Wp7e9jHBzwJePE8pYlP64rTwVAcY2dX06gH16NkJUdMe3InJLf0K6c5HKJSYiQsAECDoMh49DhQ1by9TxWTfBFCtLw7tTCIvX7ev3R7bs6rC7dD+T6dfCpszjGwtKATQqNzC04HPFtnByr15csIeckmquTAl3Gatk7F839VUxMm5fqu39Yd9i8+o7CSpORMRkNLp2BzSUxkvMzYwgoxF6qCmFvHaHGr8d+O4r1cv2jh/tcJBePAlKnBF7b8NPeexOfzb0cYFDWgU1zb9p3dgm7uvXA3tWW39kVXsxynAZNaMGf27nuYrSSEEEYWdX71j5Uej2NgaMCNfuGXoSSEEJbJDjx3NUrBsEwNlykrqrZGcy+3lNsHLiaaeLsYcgkhFMekaTOrV9f3PItz8m6pq24nrmf/oVaZJzatPB6XxxJCMkOOb911jxaVGplL62hqcdLjY6RvVRsAAKgTyvBtX4448CS/+IH0x/eCVU3btK3Y8aAMWsN37BftI/6et/KvlwULo2WHnfh93h5Zs89HdNGtuL2mm4cNCfB7nFXwo2mnTzpbRB9YvNY/QUoIIaqMR/sX//1M1HNYr+LJGyrWJNd/+1cTlr3MZwkhhNaiU54c27Lm9IsMlhCiSr25fZ+/zKV9h4L7h0zC06dJWm6u1lVN0QCATgt1jjby+WbxauuDOw/8OmodpWsklKdnKXRc2438Zf4ET/PSf5C0dafuxnuX+on7/t5Kt/hRnl67aUvm7ly1ZOY4bXMTfkZ0nKbHiB/JdbUHozjW/aZMDl68edb4C05W4tyUdG2PNk5m3OS4aCV5i4tcitbx8nHdu+qW7ZAvixYV59g2b8Yc2J/hMcvNQP3nRGg74rv5GevXrJr+yRYjfUrC2A74+ifD3XNCSorV827f4ti65V9/dmHUbxt6V7zTBQAA7wwjCw+J0B9kXzy4Iv/pvaf8Jp95ll9yrCKOy9DFS5TL124b22erobFGXmIS69J12vI5EyzUzYrAM2rn23TN6XNXJnYbrsshtLbv7DULNy5dP3vwCQMLYyo7Pp2y7//zhsldjYp2VlMTRpKenJxZtJi8sN20xRPT5m/+oucBC3OhJCFZaT/yl6X9nPiEEKKKuX7lmbnvIueqG6Xho0eV3G/GWPe3lJAuycwr3z+/NEVucmJiupKjZWhuoSWoYkO1mLyU6KQMhZaJrZEOz81ap+DR19FZFTdlGUlabEy2SsfcykRY71cuLCNJjY7KYnTMrMw01CRrRVr0m2zWwNLasLqpxgAAqvHC32/3hhUHj5563xX5MOS93DR1sXzx/lnVTvVYKVVufGRUpoxvaGFrrFNV40ny1V/Gz/H7bNs/Y5trFD8oy4yNTcwmQgMLa5MK05PViCwzNjo2TSU0tLazKF4vM/n2oi++fzR6118jPaoevvbx0tfic2icdNGa+y7xNI2tHI1ruzetYWRrb1SjTSlaZGjtbFjbI/1HFC0ysnWtvKY8A2sXg3qsDwAAFMiJjOE5dzX9L20MHE1zhybmNdjQuPMXo1rd/HvDgc5bp1gVTe4u0LV00K39wQtKcNK1LP0Im/9s34bTBn2X9m+CjAvVQN9cAACAxsm0/7Ldv/Wsp+6rHOuR835ySdi9YqufvPqtay337rYlN8iQ72d1qdkMDfBRQ2suAAAA1AGBRd9ft9mkabq8y2Atbjpk7rpRTRx10E4H1UPMBQAAgLqhZdNE690egdax9dJ5t4eAxgMXQwAAAADQCKE1t/Zyc3JS07Lr+aCpKcnVbwQA0Ejl5+VoaWmlJCW974oANGj6mpaEoPMyJhT7D+b8/MupY3/Xz7FehwYX/MfNyaV+jggA0DA5ObuGhga971oANGj3Hz/W1X7H/Uc+BIi5tVftvLl1qOp5cwEAPhKYNxegJjBvbgH0zQUAAACARggxFwAAAAAaIcRcAAAAAGiEEHMBAAAAoBFCzAUAAACARggxFwAAAAAaIcRcAAAAAGiEEHPfLZZRqd7nfMSMUi6TK5iCH1RKhVymYNTUh5HLZApl7Y9S8y3/24EAAD4iitS7K6Z+fTpQUh/HSru9csrXJwJquLSnKv7lo8hU2but09tgZdkZ2dXWh4m/vXrmzB2Rsvo7MZetGJNwc83Mb7eG52GlgnqCxX7fCWnSk7N/7r953z8mOZelBHpWbs27fDpsRA8zjXqdq5lVBu/8clKg27INP3UiRPVi94RF5x0WHf7NTVimGqqMM7+MWGj+7dVv+mq//SHC982YFOi2YuU3PtVuXO2BlDlv/P3iTJv7Wulw3rYmAAB1QJnmd3LPleTmM77qquYLWxX377q1D+JLLwxEO/X+bnx3i8JtVWl+pw/+e80vOjmfo2Xq2rL38FF9bQq/0FTh59ftvRpdumFAaNV7+vTeemq/8FTR//z+yxPhlIkuouLHFOkPdq06Im068atPmwlKb8xk+p/ed/Lqk4Rsom/bos9nEzq56FT3UpmEW9s3nUruNn1OFzs+z8CrjcuGhXOXWu9Z2MKwmmzAyl/un/9N7vAjiz6zLf9c1W9gqQrf3LXiSoLbxO/G2JfZTpn47NSR43Gdv5vupVPUElfVu1oo6+GG3x91W/l9myqqLo06uWTBKfPpe60FxUdkEu/t2nIs2mfSj32blFkzTJkdfP7gwetPw3KUIjNn38FjxzS3ElYoMv/O7t/Pv5KWfkho3XvG1711i2pXtmK0iXcH803TF620Xzu/J0509QCtuXUvN+zvhdOm/RtkOODbbTvPPjx89PDMsT5JF3798ZuVgemq9127OqeQS+Uyad1c0yuSru9ZvOpxDNp7AaD+5QVf2fL9yIGzl+65+TRaofY2FZsVev9auNSyqZd38T9bE3Hhs0zK2d/H/7D+nkGbz6bP+XniJ97pV5dM+Xz5y6yCstiM8Ie3A/JsPL2K923iZMpXXxkm4sz6/S+cvvrpE6Pi4MaknPvjt7/9OW26NCmTcUnO7bVTvl9736TD+K+++by50G/JF1OOv6ymDZjJebJr9bar1+/GZBZ85Wq1nzqnM/fixq13JdU1NaY/OH0no2Xf3tZlH67BG1h08JjLf6zc/tDAp6tdqYyb9ebqpu+HjZ284J+zj5OlRftX866qQi/uOHTqUYqcpSlZ5OOTe/ZeSlN7pmUST63bmNhk2lcD7YqjjyLp6pqFm98I27R1LZNxWXnQjm8mbb4mb/fpjCmT+mm/Ofj9lN+eZlY8N3F1zZ0cnF0K/zmZZwZeexSUTlVeMVq75Zc/Ds86u/LIg4wq3iCoK2jNrWOsIujI8vURuqMWrp7pUPDXq2Hr1WOKWxOLxV//vnlj02Xz+mg1ogs4ius8cvH+/kKb910RAID/hJWFXT4d4DphY2f/nzdHV7EhZezee/gYj4pf5PlhJw+dy+i7YOeMfqYUIcS7Zcum4mkjVx7+d/SiMTYFaY6v495n1HgrXjV39lh54LEDt5yGbm1vVnyaVkWcWb7lGnfcuvltTMqcuxUp1/859ab9tGNfjbCmCPH2ss0KHXF4/+VPVgys/AiKpwfXPxM7GtElvRQosdenY9p/+cfOG+Pa9rGuJH4TQpiMG6ev6XX6X3O9Mi1lNX4DiSzh7KoV56xGbpjS06LUGyF/ffFkgvm4PxYH/vy/kOJHq3tXKQMHR875kysvXA7OurMlu0+X7n1FFQ9JSO7Lo0fvaw7bPrCk7VyVcGL5Mn/xsLU/9S3XoC558+hlhuWYX34d2kJMCPF0lL8esurSnR+a99cvWyrfo/fnHsXlpZ97fojTtK2vNoeQyium1/yzYW1OHd5zYojPJGOksHcMb3Ady3h49FqYsMfvkxzK3q0RmPcZ9cmJuXsPPxjX3Vd5bt8/MW0nTvE25RVvkBd6ct/R+HZfTGlmxGGZ7NdXDp274peQQ5k4dx44eqRb0WZn1//GtB5tEnH4zO0w2qzb+Nlj7TQoScLDM38fexYcm68S6lt59/h0QhvHMhemNcGy+WE3/vn34oO4TNbA2rPDkLG+LnrFC2Irc4Ku/nX43rM3Eo6hW/tPhwz20eURQgirSvQ782es+cjx/V0LtmRyw6/9c+ief1gex9i+Sbvug1wDD/4lb/HlsI7mVR5I9erf1WfvPk1Tpd7evyBSz3nAzAlOYqzHDQD1hBI0m75+MyGKa8+r/eZR39opT4hLIzYezQyL9+eberqa0sFx8Spi81an25wXF28nuE8f5lm8lyL58uaNN51Hb/nMR7fcxjyjgeuv91MRTuFxOebu7mZ/3QsipNKYK406tv0EPerHDv/MO1fqYdquz0jfHTOuXoro9YVLZXd7ZQmXLzwQ9ljftmz3txq/gUzKubUbgwxHb5jmKyqzIb/NVxvaEJJ9L6j0o9W9q7S+Y5c+XaNv303rbJfBdevZq4MTj1Sk8D9/WeY5rJd7cQZmYi6t33dfe+KWme7a5Sssdh236dS44h95eqYGQpUkT0GqlP7k7iuJ4/R25hQhpIqK0WZ9RvQ8+N35+9FjBtlXfjkBdQGdFuqWIuTpM6lGixbNK6ZMjq1vOzM25OXzdKGJVtqDQxdvxpUanaYIvPjnzddyfV0Oy6ReXzNlzdEUzyGzZsz+qpnG/RUzfire7tWtc0eWT9t9j9d2yGhfd1MBn1KkXls7c+b1BJfh3/0x79fpzpKLK39Y8jzzbbu3s4H/fP2/FadyxNa2lvyI23tXzvrmUmhhVwRF6q11M2bdynQdPO2XyRN6KO8vnP/7sZSCv3c2K/TeBb/ApIItGUng3h8m//mItBz81agR3fQyTy3+YcmFy2cCwrOrOxBl6NimpbedmIhtvDr6tGumX11rBwDA+8ESQhRZKanSsjfHBeaWBlRMSFBmyYaSxOQsYmxuWqqtkGUJkWWlZOZX0TtLGfboidKlQ/OStr7sa1s2PNMaPmNyC/WxiOZwSs7nqtycfI5Io9LimZSzG/fw+kzvZiFg2TInC0rcvG0r/eAnfjmV9rBTBp/9N9aqT9emattMq5d8Z+vuG/wxc6bWsCGj2neVlTzbueZur19WzV86V/fKilOv1XWiU4Y/eZro0b5TcZdZJuvu9g2XbEbOHealWW0dcoJfvMk3cXSpuv1I6n//CbH3bW7FK6pnpRXTbdGhmVaEv18aRqK9a2jNrVvSpIRkvll3E4Gav16BhZ2xUJUYF8fRauPrY7Dn9vXMoRMNuIQQwiqCHj6MdenSy5xLUu9s2XfHfPq2ua2MuYQQWyd3rfxx5H5JOSL7sb8uHmNWdB2dGvoqS6/HhO8meBlxCDEfOHHIjS/3PfTPbdblrRp0VZky1x93/trSnE8IyQ07+Ms3a8+dfNj7x46E5Nza/keY1dfLvh2gwyGEODm4mKyb/OOfF9rM6G9R9nUyURe2X07znbdjvocORQjxatvBcu3EZcdYoxocyNitgxYv5B/OK2vPru08ynY8AwBoKNiYe2smnHgekZFPiWy6T1wwa0KbgrFEIodPxvb/d9WKn4y4cwb62qiSnp1Yt+alzuAVA22KvyrlGfdXjDv1MiRNToROHT7/8X+Tm6gZ7yV5Expr7upePERJEn780PkEE4+wRZ+0eZOYy9GyaNruk8kzP/c0UdNwyWQ/vPUgxbG/b2UvIPnutj8DPOb87M1PelLhSYG7h1P+vtB4JavDUXMiY+WBZ8+Hthi+0KJ2LRHKN8d3nZGauPitGrwnKF5Ga1m6tx86dfbQNuaVtbpV+65SIq9vNm/k8fmEeE3fsk3FU3MhwOS/eROn6+1mVHyH8tWxXbfSjTzDVg7rEJSaR+lYuHccPG3K+A565X4byuzQB8e3rjys0fPnvk3FFQouwcpfPnqU7NSjo3nRO1NFxSihu6sj92Z4uJKYqWt7hjqD1ty6xDJ5EgnDFWkI1f75U0KxiJLk5hIibtmtAyfk5vPEwjsgeUE3nyfat+/qyKFyHl68pes72Ltk0IHIe3C/0qXYtWhvXCpGG7advmzbwtZGBV+HSinhiqj8zPQ8dROHVYHrM2JmQfQkhGg6DurspZWRnEQIUWXfu3lX1m5A9+IvXFrs1buXjd+5c6nlL/eznz0IMG3Tz7XkBpCmZ8+uJtzSb0elBwIA+ABQWtae/eb/efvm/Xtb5rQP2v3Nyj9DCkdL0fq9f/jji9bZu2cP6N7Ks1f/SScSWs5d81PT4hkDCKVn5jnk578uPnp66s8FDgn75s7Zn6Cs8GWtSk1OVRiZWRR96SoCzpwNl8ilxHH8okMnLl/eMP8T4r/1u2l/BKmZl0r+7PCuB7JWQ4d4VHiKEEJYyfP9Gy+6j/26hb7adi5ax9ycn5GcVUlbc/qD03czWvTpaVm72225r89eCcyWS1jPT5fsOXvryN5FHbRerP9mykG/yicyq/5dJTx+4TmF4vHVvip5alIGY2RWdOphFUHnzzyXK/KEjqOW7Lt0+szhmf0M7m6ZPnfdA2npd5RJOTCj57hvNme6fD7n234GVY6ryQu69yzRsFU7t9JbVVoxWsfMXCcjJRWtue8aWnPrEkVrCAS0KlMiV/vJZWVSGSsQiQkhWl49vQ3/fXgnttNIOw6lDLp9R+7ap4Ulj1UER0XlsnZBV86klOyoTGpe5XFZJif87qmLF668CE7i6okyVKyx6q2ndOAJSk+VwhMKeZSMIYRIosPipDzDkLMXkkq+U6RpTH74y1gZa1Sq1ZVVxCclyYy8zEp//YmtbYzLXvRXdiAAgAaP5zJi6ZShbTUoQojYo//304Oe/HrsROTIH+35lDLz0dqvv7sv6P3DlkVejgbK9PD7xzcvm/R5yprNn3hqEUKEtkMXjx3qrkMTQoxc+s/8MXjC1H+uBo4a06xMBwCWkUgkjEhcNMJDFffkSQTfevjCdT+4aVCEEMPuUxfqSz7/8tDxy5/PHWxcet9Uv22r9r/pPGtfZ0u1rYTKwL82XFMN2DDUjiYFHSjK42qIBaxMKmdJxfnACgefzWthULvwoIp+7JfAWE1atHGSjw4hhJh0n7bcIHv05ycOXPqkxTBNddm52ne1RgfOz5eyQpG48Cwmi/V7EaNoMnzZwpnthBQhxLTX1JWaeWPmHN/rN7F1e/2ikx1tNGL58dbBz28d2zlr5O0pazZ/4llZDwdl+P2HaQatW3vUsC8HpSEWKhLzFSzho4Peu4TW3LolNDTUlSfHpla8OidEnhybmk8MTEwJIbSgafv2lq9uX89QEVYR9OhBYrMu3fU4hBClUsUSllGplEzxP8quikMqMp7u/WHkb9sf67edtnj/uQ0bptrz6vLXyiqVLMsyKhVTqkp8u75fTB9iVv7SViGTE4FIs8ydLq6Q24hmlgCAjxrXqe+wtqXin7BJq2Z0fEh0HkuIKuLszjMxTWev+KmXj4uJgaGFk8+w75cOdwzbv+NclooQwvXoO9y9VBuktkcrV62k8NDccgehKJpDU3J5YYMJq0pOSlHa+HR2LHVgnaZdWlow4UFhpVtds0P+WjD3gO6ghTM/cVB7GpDFn92+P9h3RD+NzMSkxISUjDwVy+RlpKSm5xVvw8jkCpbmqMuxsoRLFx4IewzyVX/HsnpMcmIqz9inTbOSqdMpsUfHdjZZYa9iFWrbh6p9V2uE4nBoolAUTXImT07MYI1ad/Iu9UJEzbq0M5CFhYSXmQRXoG3u0qrP5MUbPnUIO7DrfE5lra+q+If3Q81ad3Ss8Vsjkyuo0h2q4d1Aa27d4jk18+CcfRoQJHXzKndJxyT4PYpjbLo3K+inym3SvZvGqZvPE8f6ZN96luYxqaMpTRGWNjEy5MUaN+81qFWZW/3fTFZ7PJbJvrHxl2s5fX7bPN1eiyKEMNVOePiW+MYmuhzavNmgvl4VZ8YmbOmvWEpTS4uKSEtWsYbFSVeZlZ4rZ6vv4V+21NpWFgDg3SqXYigOj0NUKiVDCBsXFccz62FdetJ/jpGDvXHOvYhUFavDoSq0LHG5XKJSqthyxVLamlpUWFoKQ8w4hBBKIOBTFRpeORyaYpiS7mnZwUfmfbNK1v73FbO7aFfSuCAJC0oWCmL3zpy2lxBCWEV2iiL/xNJJD5pP3bd8eME28uxsuVBbzK0Y15TBZ8/8l8FnhBC+gF+xCZnDpVlGpa5lmRDCVP+u1gBHW1uDpKelqIgRlxBC8wVcwpY/IodDE5ZRe3ORY+TsbJJzLyJVyWqp65QsT3n4OJjTclSrGg8rUWRn5Yu1tdW8zVCncCFRx4zbD2ptmnLxwImUsh2blNmPThx7pOU1uJ1D4V+B0L6bj23Ew9uRIbfvUt69mhpwCCEUx9irpXPso1txpfo9KLNDSGWU4S9fpTl16G1TfLOnkq+KWuMbt25qn+V//1WpFmomPeTOw8dheWWvpCmulYODfvi960klr51J8feLUde2rR6Hpinm7TtcAADUB0nE2RXfL7qTUPwdp4oLDZXpWZpqcQihtHW1ZcmR8aX7yzI58fHpXG0dTZoQZeTJFd9uOxdX/LQsPiQyS9vCusJ0Vhx9CwvN2JDggn6iFM/G0V4zLuBJQqn2TnlSQHACa+1gV9BYlR6wf870lTmt/rfk597lB1GVotvxpyPnrhwv+ndo3UQLvsWYFf8WZ1xClLGR0ZSJZcX5XAsHnw0YWMvBZ4QQwrN1dqBSX76MkJc8pkoOfBmnaetkpj7xVfeu1gxf38JUnBQWUtgDWGTjbC1KD/QPL3W2UcUHBKZxbexs+YQwcXd2LVu0/03JiViSnJTB0dSuZHIIJvnBvTccL5/W1a48V0QZFx2Tb2JphRD2ruEdrmO0uNX4b0fxXq5ftHD/64SCcWDK1OALW36ae0/i8/m3I4p7NFFc2/ad3YJu7r1wN7Vlt/ZFN6M4TgMmtWDO7N33MFtJCCGMLOr86h8rPR7HwNCAG/3CL0NJCCEskx147mqUgqnkgrQ2KK5t3/F9U86uPv00uWAGtLyo85t+mXvmSTpd/uPDbzlwkH7M4Y2bLqcrCCFMxutjOw48YGv8KeNq6YlIemJcDRdVBwB495Th274cceBJPiFEYKCTG3h8x8azSTKWEJIVcmzbkRcuvQc6CylCuK7detjIrm1a8mdYhooQQlSZ/keXHborbdmzuxGXIlwDsSz4702r78ZICSFMXug/6w4lWvTp0rxi4yjfvalLdsD9V9kF3+S6XYb31XxzePXG62lylhCiSH++b/GOcN3uA3qaUISkP9/5w/SVSQ5fzf+uq0iam5uTk5uTk5dfOH1Vrv/2ryYse5lfs+YGJuXZ0zfG7s1MK2TZ9Aenajf4TBK2b+qo5QX/N+30SWeL6AOL1/onSAkhRJXxaP/iv5+Jeg7rVcnKt9W9qzVDCdxdnbkBDx8X3O/k6Hcc1Mfu2eGFB27HKgkhRJX8fP+aPQ+te4zwMeQSQmsK0u+d3LTzgH+eihCiir+38587OZ6dOhUcscJbmut3z1/Ds4OHdk3PdvKUpwGRQlcPO/Tpe9fQaaHO0UY+3yxebX1w54FfR62jdI2E8vQshY5ru5G/zJ/gaV56ohPaulN3471L/cR9f2+lW/woT6/dtCVzd65aMnOctrkJPyM6TtNjxI/kutqDURzrflMmBy/ePGv8BScrcW5KurZHGyczbnJctJJY1dE0JbSJ73c/z1q3deXYyzpW+rzs+ATK+5OVEz9tLaLKdy/QcB3/w7zcjRt++fLKOhM9Jl9p2mXCl/TGtZS6GV4q4uq18PESHVz7adCVUXOXT7bAPCsA8L4xsvCQCP1B9kJCCK3dftby2Yt+WTq69yZjXSYlId+p188/T2lV8F0ldhm3aEneytUbJvbdZmltoEyLTZYZdf581axRTjQhhGh1n7U8dsH/Fozoom+uL0tOJJa95iz72llNb07arF1nxzWrLl9PbDnYnCLE0HfW0gXUms0/DjupY2bIz0xIFNr3nrvm55Z6XEKUMQ+uB2UqVPf/GN35j+IiRJafXT/7CyGEkaQnJ2fKa9b0IY25eiuA3/azluW/fZn066ev127wWW7Y63SjwnHUtLbv7DULNy5dP3vwCQMLYyo7Pp2y7//zhsldjSpLrNW9qzVDG7Tr5LV387+Pk3t2NOESotV11pocevHuH/v/rWehy81JTGbde81Z+GMvTQ4hhOi0mDJ/VvLKbZM++dvcWFOaEKdoMvDX78e6Fhyx3FvK5vs/eprrObF9ZX1FKlCFX77yRtP36+ZVzVAGdYIqiSl1fbO70UtIl2RWuSaKIjc5MTFdydEyNLfQeut5YJm8lOikDIWWia2RDs/NuvBWyOvorIqbsowkLTYmW6VjbmUifGdXLqwqPyUmNpcRG1taalaZWlkmPyUqOp9vamWuSzJPzxux2GTGuW8HGtToKPKM2KgUroG1mb6arsAA8JF74e+3e8OKg0dP1dsR815umrpYvnj/LOuSBk5FWmxEai6lZ2ZrrFPxclyRFh0en5bH0TCytrPWrPC8ND02NimHq2tuZVZJCyYhhGSf+d/wtYFdNh/+qVQOVmTERqXkKMWGlhZGaqcleEvK/KwsGV9HT1R44si+tHD0Hy86bzs02678+H9FSuiTVGFzN6u3XbVL4bdh3AF67rqvm5Z+VJYZG5uYTYQGFtYmwhrF1Wre1WoxWdfmDp+d2Xv7htmti/dm5Znx0Ym5jMDIwlpfo/xvg1VkxkbEZCuERlZ2xtp1dnJlsu4sGD0zo/fONdO9311bo74Wn0Oj5y9ac98lnqaxlaNx9dupR2sY2dobVb8dIYSiRYbWzoa1PVINURyxsa1z1a9HmR8XFJxn7+lsbFe49m9WyOs4lZmPQ00HoVF8PSsnvf9WUwCAOpMTGcNz7lr2Jj7PwNK58gt3noG1q4F1pU8L9S0d9as9rHb3yV+cGbdy158DFk1qUhTLeHqWjnX5/cgV6xiUNChm+e/ddVYyZPmEChmXEMIzcmpTszNSOZKomHyn3rblHhXoWjrovlU51byr1aJ1Ok38ot309WvP9ds1yKWwowjF17VwrLQeFE/XyvntalkDkgd7N9xje60c2wwJrB6gby7UISbpzqZF3/90/H5CQS9eRhp+7q9LjGMvH2esagYAHyTT/st2/9bzbdsw/zuhzSc//tDl1c65f/uXn3HsXWBynmxd+pfh8AXjO9bozluNaQ9dcWp617dalfMd4bgMnTfVN33r/I2hNeyp/A6k+21fd0w6Zv4P3joIYPUBnRZqr9pOC3Wo6k4LDQfLpD8+sHjbXw9pc1dzHSYlIjRfr+uU+T+3tUUPBACoA/XfaeG9kkQGRum7uNbdDfPKMblvXkTqeXhUMVFDI8DmRwXHajg7G76vjKnMiXwdI2zibvquK4BOCwUa9ccZ6h1F67cev6rlp+lxkdGZ+azY0NbGUg/zAgIA1IrItolrPR2K1rT3Ur8+cGNCiW1cnd9nBbhatk3d32cFPjaIuVD3aIG+lYu+1fuuBgAAAHzM0DUEAAAAABoh9M2tvd8XLT//bz31D7v/6H7Bf9q2bls/RwR4XyysbeOiI993LaCBYlnWytoqPi7ufVcEoEE7d+mijlZN5zhqxBBza+/564iY+JT6OVb/7j4F/zlz5WH9HBHgfdm3bV2nHv1s7R3fd0WgIYqJCr9z+exXM7973xUBaNDatGrG5eCOPfrm/gfGJqZ8zbqdeKV6Ds71NRwB4D3JTE8zMDTCRx3UysvLTU1NdXHDKB6AqlAURn8Tgr65AAAAANAoIeYCAAAAQCOEmAsAAAAAjRBiLgAAAAA0Qoi5AAAAANAIIeYCAAAAQCOEmAsA8D7Jkl4FhqYqMXE5NAZM/O3VM2fuiJTVxwdakXZ75ZSvTwRk18Ox4AOFeXMBAKrHKtOfn9t/J8V70qRO4rLzUSoyHh7e9I/Mbdy4TzwFRU9J4y7t23k5Q1XqZM+x7D1thpcRp2zBihdHf9sUOmD1qqGhfy6+Hiot/ZzQstfEz3vocAghRJkddOPkSb+XEdkKnr5l03b9Rvi46NFqZsZkYs8v+H2Pn4oQQiiawxVo6JvYuHl3HNS1vYu45OCq5BenT55JaDf9qyba5UtRpN87uOE43WrqmD6OHEy+2fAp0/xO7rmS3HzGV101qvl9MQm3tm86ldxt+pwudvyiB1WJz079c+xyYHiSlNY0d2rd+9MxHVx0KUIIyb+z+/fzr8p+LK17z/i6ty6nfNGEEGnUySULTplP32stYMLPr9t7NZopvaNV7+nTe+txqj1oOapKizLwauOyYeHcpdZ7FrYwRJ4BNfCxAACoWn74zYOHdh32j8nSaGowliGk1AmeZVKubVz8b4D7z1OaCEqdopnsiCc3nzuMHOOiV3jTjKINdAXli2byH1+9ntJqcm99DkfH3NGWkReVm/PizJHX+a0/J4QQIo0+t/LH315SrfsP7u+rkx1069jKace7zt40tZ8jt0IuUOalJydrjV7xW0t9mlXJctNjQ59ePLlk3CXfub/OG2TAJdkR14/t3nLxXriEaeb6hYpolzsR5D7ev+bklXBng0/RxNzg5QVf2b9jy8FHkZka3oZTy344K2Jynuxave1qtLHzGCUhBTGXibny+4y5l60HTRn1jYe2KvHJ2d2/T7g4ZvW+CW31CeHqmjs5KEs+lk9OHozOb60+SzOJp9ZtTGwybeFAO5ooM8If3g7Q/mx0O+2iqzG+vmlRsq76oOWwlRel1X7qnM63v9i4tffmeZ1EuCSDChBzAQCqwsjCbp4LdPxsTZuAX/bHlH8y+sKqfTd5w5fPaV6+mZYQWrdJ10/7O/HLP15q96Q7ZwJY37ntDAihXLtNKF75TZVxIfBvjlurNho0YVXxZ9avCqB6zF2/wMuISwjp0KOX8+pp6zct8/Dc0tmap6ZgSmhg6WhnXvAN39SzbS8fh3nfL19/qmvXSR0EIdf/TTYbPX9e4LIlYRV3zQs6cvgu18YMZ4cPACsLu3w6wHXCxs7+P2+OrnZzxdOD65+JHY3oUnf5lW9O7D4r6DR/4ZxBBfcNvNs0o6cO/2fXqQGtJxpw+B69P/co2laVfu75IU7Ttr7a6sJ07sujR+9rDts+sKi9lvB13PuMGm/Fq3gpVvVB1RReWVGU2OvTMe2//GPnjXFt+1hX8bcGHyn0zQUAqAot8Jy0fN1nvZuIKiyeqUi9snfnLYcR8wY311W7L8tW1R7KqpJunb9v0WWwS4U7zRnP74VKHbx9zGiKSKMuXveX+o6a7ll0W5biGLb7fII7/fzKpZAavggzn7a23Kw3wdEqlt9y0uqfpg2y0lCTJlhV9L9bT1gOneShpS49QwNDCZpNX7/5iwEeYnX9V8qRRh3bfoIeNamDuFRPFFYVn5iktG/arCS5ckw8PCwlibGpqvKf3vQnd19JHH3amas7mML//GWZ57Be7qJqa/JWB60ObddnpK9O4NVLEUz1G8NHBzEXAKB2cu7s2hSkNWzSOG+++ozBEkJYeXZ6er7ac7c08vztVyad+3hW6HggffnwKbFr09SCRwiTERgQz7o2b2NYOslwddt4u4uiXj6vYV2Vkny5ivD4VYdXJu7K1kuZXYcPsKIIOiw0LkzK2Y17eH2md7MQlL76ojjmZibcqODX+SWPSRIT04Um5gbl+2VL/e8/Ifa+za3UfYqU4U+eJnq071S2zy7LEiLLSsnMV5Z+9G0OWk1RhBBK3LxtK/3gJ345qspfPnysEHMBAGpDEnny+JUkA503a8d1HNy5+bD+/f+3cOerlFLnYCbj1taJY/t3nTi4w7gxM8/6pzBloqMi4PzFXLf+bWzL32ll5a/8/VPsWnUw4RJCmKSERI6etWnZ+8QUrWVhYSRLiq1ZZXNenDobQdk3b21TxZAyVc6Dw3v9fSdMsBFQCLmNTPLdbX8GeEwY780vdwHDtR/6xWDJtWVLtl2JzZTJc2LvHfxtzx3h0ElDDMs297Pyl48eJTv5djSv2AmBECb/zZs4XSc3o9LPyTPurxjXuVfXLn07tBk/a0tgatFfR40PWn1RhBAicPdwyo8Kjcd8JVABel8BANSC8vWFc1FShQmxHz/vW3drcdLzMwc3bl/4fcbCzd87alCEEK6OmWeP7+ct9hBJ31zdtWDvvDmizVu72ha2hDH5j67dSGn1RU/dCq0NeaH3A5MNe7Zx5VCEEFaaL6VFmoLyd6VpsZaYkeWrrx2b/urGSbkWTVilJCM+4vn1B685Pb9Z1MulwiC4EtJnf24JMvlsWXsDmqSiMbcxYSXP92+86D52Xwt9rjSp3JO0edfvF34vXbR21rAtSkIIX9/j0583TGhXfihYXtC9Z4mG/dq5qQ2i8tSkDMbIzLz0NRulZ+Y55PvJq5roZ4dd2vLLorlzBFu3TjTjUjU/aA2KIoTQOubm/IyELCUhVXzA4aOEmAsA8NZYVVzA8yi+5dAfln7rrEERQvQ7T/5RTzJ71l/nb06c0deQ4tkMnT+iW3M9QggROfWe/kPos68unX/Zcao3lyKEMEl3zgawvnPbG1XoVKmKfPQ4U6+1l2vBGZvi8nhEpVARlpDSm7IKhZLiVTLmhs2JfPYgV0jy4589CyWdJs9bOdfXxrCqCCCJOHbotKT/sqFGXMKiVaxRUQb+teGaasCGoXY0Kbj5XwqTeXP910vPUkNmb+/VxlmLSQ95fHzHqvExCesWfN681CdGGX7/YZpB69Ye6rveqvLzpaxQJC65aBPaDl08dqi7Dk0IMXLpP/PH4AlT/7kaOGpMM1GND1qDogghhHA1xAJWJpWzpLoJ1eBjg5gLAPD2VMmpaSrL1h3tS02iq+3eqZn5n5EhYco+hiLHnt1K9Qqjhe5N3XWfhIXKiDeXEFaVdPP8fYsuKysOPmNV8f5+YSYtxtoIilqqdLWVWem5xRNAFWKy0rM4mrrqq0fb9J21rKs5V55yeemUeUEBqZqfVpVxWVXCxe378zwntjDKTk7KJkymRMGqpFlpKem6BvqCKueoggZOFn92+/5g36nfamQmJhEizchTsUxeRkpquqGhvoYs4dz+I+Gd553+coAxRQghhm0tfjCWRH2+cduDgZs6GRWFBFX8w/uhZq3HOwrV50iKw6GJQqFgijpDcj36Di/dL1Lbo5Wr1qHw0FzSTFTTgxaqqqiCRxiZXMHSHCQaqAAfCgCAt0cJ+DyqwkQKHA5NmMIeuOX7InC4XJZRMgwhHCKNPH/nlUnf6RUHnxFF6qPnoRzPT5oXzcJLm9jbi6R+EdFyT9eSqMoqYyIiM3VtnaquJt+o28Qvr81ZvmHv6ZazhthV1jGXVb6JiOcpJft/+2Z/QS1yUiSK1KXznjb/Yt3SNhXnSoMPhyQsKFkoiN07c9peQghhFdkpivwTSyc9aD513/LhstjoJJVZH2edUh8NjpGTg7bsSnScnBQlTnnKw8fBnJajWlV2tcTR1tYg6WkpquJdKvwFcLlcolKqWEJqeNASlRdVUII8O1su1BZX/HOCjx5iLgDAW6N41jY2Gnde+ycpO1gUjTuXJb8MT6Qs7Wxpogq9uPbka5fJM/oXDDxnVQmRERn69lYimhQNPhtQcfAZIUzqkwdRHK+RLXSLH9Jq1rGp3om7l1/0dWlVPPgnN/jiwzBBq1Etq6spbdXjmxE3n+zdudjbe3NXO/WdHGhBu2/3nSn+kVUG7Zg8KbTFsqVft0Ry+NDpdvzpSMefin/Mf7Vl4oST/VacGOctJoRwtXU1SFJ0ZB4p6bfNZMfG5bDaOrrFCYFJfnDvDcdrQmudyo7C17cwFSeFhWQTdyNCCFFGnly9Lsnj+y/7WhR8gmTxIZFZ2u2ttamaHrRIlUUVbBEbGU2ZtDRGooEKMNMCAEAt6PoO6q0R+ff2nTfT5YQQIs8IOLp6T5RO1x6djWmKo6clDziz5e+rkUqWEJIfdHrTlVCjjj1bcKmiwWe91Qw+IyTv2cPnGk3auWqVpEta3HbY2HbRJ3/ZcvKVjCWEkOzwU2sXHVB4TBjQXq/ailIcs95ff+VG++9fdSBBXu3m0BhIwvZNHbW8JluKnbp1cmPObvjt/Ms0lhBCVKmBR9fuvKHl3bu1ZfHEYbl+9/w1PDt4aFeaGSiBu6szN+DhY0nBzQyugVgW/Pem1XdjpIQQJi/0n3WHEi36dGkuqslBWcXzDZPH7LufU21RhBDCpDx7+sbYvZmpuikg4COHax8AgNow9Jn+809k+66fvzyra2zAy05IEtj1+GbJT556HEKIoe+M2ZMzN6397M4eU7EyNV1m3vPbpQM8xYQwibcrG3xGmPxnz17kun/mq1EmTtAOA3+bo1y1a8/E0bsNDTXyk1NYxw5T580aY1qzNRyElgMnTrj6v407d/3Vds4YdzTQNnq5Ya/TjZrXaFOu06Rly+VLVqwc33OrpZUWmxEfL7FqN2Hh3LGmRR8UNt//0dNcz4nt1S5+Vog2aNfJa+/mfx8n9+xowiVEq/us5bEL/rdgRBd9c31ZciKx7DVn2dfOBV17qz0om5+RnERJChZ8qLIoQqQxV28F8Nt+1hIrmkBFpSZHrHK1HqgoIV2Smaeon2O5WRfeKnodnVU/R6wdpVyiUNIiMeZ0gdr7ZuKISV9/59XS531XpIYUmfHRablKkZ6lqaFGueTKyjMSYpKktI6JpZlGcd+GjLCgWIGHh1UVU9iqxapyk6Ojs+R8fTNbQ+132kihys/KVHF1tDQaXFPIC3+/3RtWHDx66n1XpCFT+G0Yd4Ceu+7rpmqeVOZnZcn4Onqisr9baXp0VGyqjIhNbOxMdGrzHc5kXZs7fHZm7+0bZrcuTpzS9NjYpByurrmVmU7FkPxWB62kqOxLC0f/8aLztkOz7SpZpuXjpK/F59RgbbxGr8F9hX3o5En/Lpu9NUpR5pqB4rpNXLW8Xd2vEc9kvnkUmKTr1dpV3bKdhGVywh8/yNVv5emoWy+fduWznROWXfc4+s/8ejgYQMPA0zV30K3kOYqvZ+5Qvl+BQM+xWfV9DdSVxtE0sXM3qc2ub4sj1jGoj+PAOyGJisl36m2r/kmuWMdAXPFhob61i771fzkqrdNp4hftpq9fe67frkEuoqJiLR0rmwz3LQ+qtqgs/727zkqGLJ+AjAtqIebWMVaVl5GQZPnp+vFdDUv+5iiRkeG7eKvZ2Jtb1l9ttqKl+phLmKQbOxaEtdjY1NH7HRwdAAAaIO2hK95LazfHZei8qX6Tts7f6L73eyfxO8+dTM6TrUv/Mhy+fHxHXJWBeoi574RI18bWwQK3CwAA4CPCMf9kwbYmsRoO7z7jEkJoDZfhc7fpeXjUy9Hgg4SYW38kb/7d+3diu0+bvTpy4Gm03Lbz1GkjvAmRRz86fu78nTfx6SqenqWLb69hw9zNCrooSR4f/uMJ1Wdc95LRKAdPPR3Uv7kWh7DK0H837HvyMkqWnntgWaqBw6BJo3wEpf7UJaEnd/91IzBBlv1g59o0Q7e+3/dtLg46t+56WqveblHH/7qarDTt9vm8nh6aLJP9+sqhc1f8EnIoE+fOA0ePdDUu7liliHn0z79nbr9JyGKF+raevYd81s+yZEJ7eYzf6as3n8akMmbOLdr26FUf7yMAADRUlNjG1bm+DkZr2nt51NfB4IOEmFt/FCmv7l488+Cxpn3Hsf2Ha+axIkKkAUe+W7Ij2H3IlBGDnPm5oTcPb58/9da0Veu6OQoJkcX4X74WHxVzMfd4USEnVn0VkrJ1/ufeXFrfqXVHaVbgy0wrT9/OpoYW5deN0XNp4ZuXEXifWLZo3c7GxFRICJPy6ual6+ceaVh3HjmitShLKOSzTOr1NTMOB7sNnzhrmKE8+PruFTOefvHHMl8rPiFM/I2l/1t013Pi3G+muVMJV3cs+X1pEn/FvJ4aFCFE8froDwu3vHTqO6ZzT9PcN7c2zfrXyjavnt9VaHxMLSxjIsMVctn7rgg0RIkJ8aZmZndv3XjfFQFo0Pr36U5oLOyCmFvf6Kaj1s4c6lIwu58s/p/9e5+6j9/981g3LkUIaebR0o03bfKhbadbLBtRMKu8PEPhs2QLuWpbsP+Ejvp7zhwLHePlLjRwa9dNFXKIG2bdrGNPmwozqfAM3Xw68l7+yc219Pbt7M2hCCEKQghFO4xdurarQ+H4gJTbW/bdMZ++bW4rYy4hxNbJXSt/3J6Np9yWDNfj5IUHJZh3/Wryp520OYSYDh/R9/z8o1fCJT08xZQ85cKBPY8cR22d93kzPkVIl15tm67+6aeDrOGHMkAeGiilUnnt4lkOB1/QoAbDqFiVYu+Ore+7IgANWveuHTW5ouq3a+wQc98F5b1NA4ZsLvyBbzx48f75BTP8URxrrzb2RTNYMymP7oYrPb/r61w8jSUtdOvWo+nFPbeCc4b76BJCiLbH4F6eJaOyfdp57LqXmiUjRFjLyoksW3vaFH/0cx5evKXr+4t3yeKKIu/B/f6ccvpxzOCetlodpm7pUPQEq8ijuSI2Pz07nyFiTrrfrVCm5XdDPIqGt9IGLYZ3dDt+OqWWFQMokJqU+EFNKAb1qmBCsR0HjrzvigA0aCKR+iUPPzaIue8Ct+3Uf74dYloQ/yiKy1U/0QmTGJ/AMWhmWmZdGdrY2lqoeJqUKCe66orm8mjCkjqa45hVREVF5bJ2QVfOlAqnyiSKCQsNlvS05RFClDlv7p07duPmvcgUVluYwxJrlYolRJUUl8Az97UtNX0hxTG3tTWgEHMBAACgAUDMfScoDp8vEFU30wKrlCspLp9DymxHcTkcolAo6me1DqVSxRKWUamUpaY/s+vz9fdmTjxCmBT/PX8sPiBzHjLki/U/eVvlXZ4zaWlSQeUVciUtEgvK1l0owsIQAAAA0CAg5r5HtLaejio7NVfFklJJV5qRLiG6Onpv0zGxukhc6fO0iZEhL9a4ea9BrSqu/6nIurF94R5h33ULPm8hogghJLfUnrp6Ooq0xAwVq1eylJM8Iy0bi+kBAABAQ0BXvwm8KxwrD3fN3OcvAkvPTpDz7HEgbe7pZFyj1blpmsOqlKpKcyzN4RCVUlXZ7hTH2Kulc+yjW3HykhKU2SGPbj2Iz1JJ3zwNzbbx7e4pKsqxbMmK0LRpkyYayff8XkmKd1TlPPEPyKhJtQEAAADeNcTc90mz2dBenrIzG1c/jSuYO0kaen7lkZt57UcOt6xRyqW0dbRUmbGpOZXEXFpHU4uTHh8jrbQEjtOASS2YM3v3PcxWEkIII4s6v/rHDfvu59E0z8BEl4oJ9I9TsYQQosx5fe1mIEtYhiGEEI0mg3p45B5fufBOeC4hhMkNOb1qUwgjxCzdAAAA0BCg08L7RHHthv/6B7t25arJ/fSsLbk5MUl5Rh2/Wjt+gA2nRmmRNmze2Zm7+I/PB7YctuK70e7l9qJoPe/2LY6tW/71ZxdG/baht7OaQnl67aYtmbtz1ZKZ47TNTfgZ0XGaHiP+t3KCkxZFtAaOm/Bk4/axM654mgjz0jL4TVo30X8QEB8rJWaaFMdm6P8W5i1btuaLHjtNDZlclXO/2RNMd2+4WifvDQAAAMB/QpU0A7LoVPl2EtIlmXmKOilKkZuckJjO8PRNLYyF6i493Kx1Cv7zOjqr3FOyjKjYNNbI0lZb/RRjirToN9msgaW1Ia+q6MzkpUQnZSi0TGyNdMq0JCslaQlxqZS2hZmRprrwzeSlRiemKXXMbA21cdUEdeCbiSM+ngnFZEmvwrKNXRwNK3aOB7UKJhQ7ePTU+64IVIaJv712+VGtb1d8YSt4Nx9rJuPK2p/u6k79aWJz3ECsjL4Wn1PdQPiPAXJJg8DTNLZ2NK7dvgI9Gwe9Kp7nGVi7GFRfDK1hZGtvpOYJrsjAyrGKAmgNQ1sHw+oPAPChY5Xpz8/tv5PiPWlSJzFFmPwnf/5xJFZZuoGA49Dt26EdTeXxl/btvJyhKvUUx7L3tBleRuWGlipeHP1tU+iA1avG6Bc9wzKZ9w+svp3k+un0UTbi4rMUE3Flw9+3YkofTGjRc+IXPXXKFskyqWcWTT35Mp8QQiiKwxVo6plbO7do3++T5vY6xWe9cq+FVcVf2rrBP6n0dTvHodusoR3NcKL8cCgTn506cjyu83fTvXSq6ZGoSLuzfeVRqu3XUwc50YSw+Y93LvwzsswMP7Rzn+/HdTOnVHH/rlv7IL70Z4N26v3d+O4Waj8a0qiTSxacMp++11pAyWIvbNp4IU1Z6mmO1aDZM1ubFGYPeeqzfw//dedpeLqEaJs5+fT8bEjPJhrqB2CXfnV63h3cd8ycs8v2wLSuJviEQhUQcwEAqpUffvPgoV2H/WOyNJoajGUI4RDC0TZzcOYWxVxVTsDFY48FLWYTQpjsiCc3nzuMHOOiV5g2KNpAt8Jse0z+46vXU1pN7q1fcl5n4q+v2br/ccd5X1mJSp++2cw3jx4H6gwZ7qtRFGB4embq+vCr8tIT87Q+mTunnxZFKWQ5GfHBT68eXfblP91/2DK5lw2HUvda2KyIxzeijEf2all8zUqbGNV2ERqod1lvrh7cvOHkzfB8xsv9a4ZUE3Nz7+1Y9ef5kCZGnzEFY3Q4OhZOzpyiPKrKfnH68ANBmx8JIYTNCr1/Ldxk1OA2xQ0htKmJWH3BTOKpdRsTm0xbONCOJkSZ+ebB1WfOY8Z5GBR+xCnaQL+oAVaRdGXB5z++0hs4buwsR0Mmxv/s/iXj771a88fsDuKy0bXiqzNo9eWMT279smpjx5a/N9VG0IVKIeYCAFSDkYXdPBfo+NmaNgG/7I8pfJAWOHUb7VS8TcLFOadoN+9WBoXNn7Ruk66f9neqYiEiJunOmQDWd267krslssTzWzdcMh+8ZnQXNc2oPB23LkPHmNdgfCpHqGdp71KYnpu0aN2th+UvY/Zs3d6+/SJ3nprXQgghhDJ06TlgePku/vAhkL++eDLBfNwfiwN//l9ItVvnBh7aeZPjaFHySaIEzn0nORf/GH/mhyOcJq3bGBZ9Fihj997Dx3hUO89l7sujR+9rDts+sGRKTEq3We/Rw10qTqmufHVyz9389kv3/M/XiEsI8Wze1kmQ/uWG7bc/bdvLonQ4UfvqxK1Hj3U9vfjIqYlNxtpjND1UBp8NAIBq0ALPScvXfda7iYiqLAPmvnjgz3Fs625ccnpmqxzwwKqSbp2/b9FlsItGYZksk3pt65Y3Bp9O+cJHVKdZk6KNWvo0YTKDI+LlVb4WjND4QPHbfLVh0exP7DRrMOG6Kuro+qPWoyZ7aVd2wZT75O5TrrOvl2np0mry2VD4n78s8xzWy11U+tFK/g6YhPgkkY2ns37xnwzHvJmHoSopPkFedkv1r45v1ntwd6MnFy8kKfG5hUoh5gIA/FeMNODZiwyn1u0NSk7ELCGElWenp+er1J2FpZHnb78y6dzHs3jwWer97YfvCIbOnGxXSchlWZYlRJadmpVX6WTYlVVQIpGyhMfjVfWdz7KEEEVWaqpUWcVW8EFjos9vOpXeffwn1nQl8ZOVPH/0JN3Vt6NR6XGRBZ+NlFRpFR89ZfiTp4ke7TvplomjLMsSVp6VmpbLlNmaNrcwlcUGRWSXPJyXkJjDMTY1qdGEmoSIWnZozYb5vc542z8H+Iig0wIAwH+V9+r+6wyLQW0cSu74Mxm3tk7862VIjpTVtGr/2ff/6+NlVKofgiLg/MVctwFtbAt7NbDKiHOHzsuNnZ9tGn4kNEFGaZq7tus3YWaflqbFZSoyH27+qkdQeLqCFdq1nfD1D5Oc9Wu0XKIq58WFC8/E9qM8qpqRm014tG7W2YCYDAklsu4wet7kUT5ab7MaIzR8TPa9ndufdJpxxFGYVlkTaM7Le8/TzUe2dyz1y2dj7q2ZcOJ5REY+JbLpPnHBrAltdCp8Npj8N2/idL3djMpcpbHpV9eN3vc8JEvCaNl0+GL+b0NbGlOEEMJ1G/pFh7M/rpy78bvvx3hb8+P9T27YcNXuk+WdajZvPCFEq4mHNXXnzRt5VyOEGVAPrbkAAP+RMuTh4zxjn2aleuJydcw8e/y08dTDv08dGe2dum/enBtRJWPVmfxH126ktOrdU7foOzgv5Pzt1zkKCev2ycI1f13eunlBa42AXXO+Pv4sp2gnWtfUo8+3hw5ffrBnx/+skw4s+e1gciXNrrL01zfPHL/w7/ELJw7+ueW3eV9Ov6fsOPXnSVXlB1rLokm/WduvHr10fcks39CD328+Fqa2HRo+WNJHezcGmI4d1cWQJpV1Q1C8vvco17RtK9dSvWkpLWvPfvP/vH3z/r0tc9oH7f5m5Z8hTIU95alJGYyRmXmZ/ui0jkXzvvMOXn169dqxKa3Stsz6/vybwj4JPIPOP6yc45R25NtPfDu2bDnqq80yn7m/ze4ornGPHa6OuYlmTloq7j5ApRBzAQD+E1YZ5f80yrxFO+uiuakpns3Q+evH9mmmK+II9Jx6T/+hnf6rS+dfFvUhZJLunA1gfTu3L27fZWKfPE1hLYf9b92oXs0tjAzMXLqO/21RV/O4C39fyWMJIURoM/in5XPaNzHmc3kGTn0mfzOU8/L4nSD1SxyqcqMCn9x79vj6mT1rjl5O9f16x6Ydyzo5aVT+IniOgxfN+WaQg5GYy9dz6zVrQj+zJ6dPxdbNzODQIEjC/t5+LH/YtBEmXIoQllWbc5VRDx9GWPl0sOMXh02ey4ilS34c6mws5vD1PPp/P32IxYNjJyLl5XdX5edLWaFIXJIrKJ7NuCWbpw701hdzhfoug7/7uZvhy9OnAgrW3Ex+sP6ryWulrWZtPnr13LWr+zb/YBG2etpXW8Pzanx1RYtFQkYqkb3lOwEfEcRcAID/RBb/ICBS1KyNV3FXRpFjz27NS6azpoXuTd1148NCC87GrCrpZtnBZ4So0pJTuYatWjTRLNlL5OHT2ir7zetEBUsIx7XHUOdSEydpurVw0EyKDM9TWyWxde9pv/4x5/d1c77pI8oIiEgXa1Yx5QMhFNex64DWpVrRhK7NPemE0Ph8NOc2Fqr4Uxv35HqP9DXOSkpMSEpKlyiJQpKZmpQuK9UwK4279zRc1LKdd0m7P9ep77C2GqU+G01aNaPjQ6IrhFGKw6GJQqEoKU7s0qdva/2SDURNmjfTjw0JlrGEqBL/3fmntMWsX2eP8HKy0DewcPYZMnvJV/qBuw9fTKrpx46VKxQsh0aPBagUPhwAAP8Fk+T3IE7gPbGZZqkHy7cgcLhcllEyDCEcIo08f+eVSd/pnqVG+FA8Aa9i4xrNoQnLMAwhhFBqiiSMSsmwpPIVHGiLrjM+vfFk9/al3l4bOlpX1eWxfCE0h0upGFXBtLrwwWOV4aExPKVkz3df7CGEECLPSsqXJy+c9qjlrJ0rOxbOEMLE378fJWw+rUXpDzMp99GgODwOUamUTLnPOUdbW4Okp6WoSElPWbV/CColQ1hVbEyczKKFS+nFIPiGjjaGqpjIWBUxrVE6UWbnSARWlU4ZAYDWXACA/4BlMv0fBeo0be+kVdI0G3px1cq1ZzKLxn+zqoTIiAx9cysRTYoGn/UvHnxGCCGEa+VoT6UFBkeXTKXEqpJDghLEVg7GPIpVRp1f98OBS/FMURSWJ4TFZGubWmpXvUoZRZv0nPaVO+23Z/XhpMp7IEgjL2yav+xxUnEfRyYhPFymY2mkgXNEI0EJOsw/dun4uSuF/05v6+8gdhuy6u/TazoWz4LHZD6+/1LPu2MT7ZLfuyTi7IrvF91JKP5sqOJCQ2V6lqYVxify9S1MxUlhIdlFDyiDzyyfv+xUyUQIqvjw0HRDS2sxh1C0tq42nRgZISt1dafMiUvMUGnr6NbwYyeJiYyXGVtYIeZCpfAVBgBQe0ze02eBMo82bUrNFMrR05IHnNny99VIJUsIyQ86velKqFHHni24lJrBZwWM2w1paxb1z6qNAYlyQgiryvQ/suxMgKjTwJ5aNKG4+iJZyL+71/vFSwkhTH7Yme1HUkx7+XpWv1CZwLz/pEkd8p9t2300uLIJRnkGWnnBJw9uv5AiI4SQ7LATh068dOze306AtSI+aMqA3VNmrHlYw62ZXL9Hz6Re7X1LDwITGOjkBh7fsfFskowlhGSFHNt25IVL74HOwvKfDUrg7urMDXj4WFL4MePqayv8j2/YeyFCQQgheQHH1p8ONureryWPEMJ17NLDI+nquvV/P8tVEUKIIjPw72XbXhDPLl2saUIIUdzfOnn26ltV1Dfh6dMkLTdX6yp75MDHDZ0WAABqL+vZ/RCp65TWhqVbVQ19Z8yenLlp7Wd39piKlanpMvOe3y4d4CkmhEm8fTaA9Z3b3qhcKyxHq82XS37bs2bjb2NO6ZkZkZyELMq+x7erR3csWFZNq+O0xQnLFqya2FvXVE+elsia9Zi+YKp9haihDm3ff9aQGxOP7F10pcWO3s5qkjFHq93kX79Zt3Tl18O2GukyqUkS+64/zpjQnIeU+2GThQdFmLa1r+HWGU/vBcrcZvuWmRGM1m4/a/nsRb8sHd17k7Euk5KQ79Tr55+ntFLTgkobtOvktXfzv4+Te3Y04RJCjDrO+nVG+oplw69uNdVQpqRKLQf+/MfI5gVDIbnNJiydJ1m0ZcO4ITstzPSotNhYxqTdVyvm97YvjK35GSlpUkml1VXFXL/yzNx3kXPdLqYCjQtVcm1f5YI9UFFCuiQzr57GIbtZ6xT853V0Vv0cEeB9+WbiiElff+fV0ud9V+S/YuUZCTFJUlrHxNJMoygUyDLCgmIFHh5Wla2pK8uKT0jOJnwDU0sjYYVusbKMuPiUXK62mbmJ9jtYlVeRER+Vnkd0TGwNtRtoI8gLf7/dG1YcPHrqfVfkA8AqXq0e+6vlrwdHuqlZazcvM0vF19EW1/AXrUiLjUjNpfTMbI11Ku0kwGRdmzt8dmbv7Rtmty7eiJVnxEUlSihtc1sLjQpHY+UZMW+iMyVE08jG2lK35h+75NuLvvj+0ehdf430EFW/9cdHX4vPqbpL08ehgX6RAQB86Ci+nrmDXrkHBXqOzco/VnYDHXNbHfNKn9WzsKty9/+Gp2fu+A6Lh/rFSqISpY5d1d/T52roGrxNYTwDS+dqd6B1Ok38ot309WvP9ds1yKUwfVJ8PUunSj9WFF/P2lXP+m2qQghh85/t23DaoO/S/k2QcaEq6JsLAADQCNHafVaeXOqtUZ9NehyXofOm+qZvnb8x9B3ORpd7d9uSG2TI97O61OuLgw8QWnMBAACgjnDMP1mwrUmshkPNVzN7a+KmQ+auG9XEUQdNdVANxFwAAACoM5TYxtX5nR6B1rH10nmnR4DGAldCAAAAANAIYaaF2tu8ddfNGzfq51h//XWw4D8jR46pnyMCvC8UTStkMi4PU76DGkqlUkssVDFM9ZsCfMS2bt+mIa5+Xu1GD50Was+1SVOWW19jPItibsfuferpiADvyf1bV92behkYmbzvikBDlJaaEhnyslu3Hu+7IgANGp+PlgJCEHP/C7cmTc1sXev5oF179a/nIwLUs5NH9vcb8mkjmDcX3oUX/n53r57v3X/Q+64IQING0+iVSgj65gIAAABAo4SYCwAAAACNEGIuAAAAADRCiLkAAAAA0Agh5gIAAABAI4SYCwAAAACNEGIuAAAAADRCiLkAAO+TLOlVYGiqEstQQiPBxN9ePXPmjkjZu/9MMxlXVn/52+6nUvz5QCWwPAQAQPVYZfrzc/vvpHhPmtRJTJV5SpHx8PCmf2Ru48Z94ikoekoad2nfzssZqlKnX45l72kzvIw4ZQtWvDj626bQAatXDQ39c/H1UGnp54SWvSZ+3kOHQwghyuygGydP+r2MyFbw9C2btus3wsdFjy5bE0IIIUzs+QW/7/FTEUIIRXO4Ag19Exs3746DurZ3EZccXJX84vTJMwntpn/VRLt8KYr0ewc3HKdbTR3Tx5Gj5hDQoCgTn506cjyu83fTvXTUNF3JYi9s2nghTVnqIY7VoNkzW5sUBgBl1uuLfx+79zw8U84zsmnWefCoTk301f3amYRb2zedSu42fU4XO35ltZFGnVyy4JT59L3WAqq6Qyvin54+dvJaUHSakqtt7tiq1/CRbRy01ZfLZPqf3nfy6pOEbKJv26LPZxM6uegQWs+7g/uOmXN22R6Y1tUEH1WoCDEXAKBq+eE3Dx7addg/JkujqcFYhpBSSZVlUq5tXPxvgPvPU5oISp1mmeyIJzefO4wc46JXmDwo2kBXUL5oJv/x1esprSb31udw/s/eXcZHcfRxAJ/dPY9c5C7u7iEQLLi7SwuU4u7SUrSluLuWouWBUtzd3RKSAHF3T85ld58X8eQSkhASCP/vhxfkbndndrO5++3szCzfzMGGUhZuVxR4+eRHabNxCCGE5HFXN/y6PBhr1rt/bz9+XsjDMxumnu04d9fkXg6Mct/taklWWprOiPXLfQ1wmlSIsxLC3944v/rnm36Lfl/cz5CB8qLvnTm458bTSBnl7TKeRLplvgjEr45uOX870snwR2gj+8rlRt35Z/eO8w8ipVQjt2kU0hRz1TlRz+8EOP30s4dhwYmL4YYGnILzRh57eem0pf5Y88FD+3bQEwXdOfX7qNPdF+77ZZBTmdOCEr35e/O+O3FGTj+pEaog5lIpF7btTHGfuqKvLf6JotVh5xfOWfXYpuf4AePceLKYx2cOLhh1fdLWg8N9+eW2K3q0ddIfF7FBUyf0t2eE3zywevyzzD2HBnpwDZtOnDHw4bJNO9v6/ulZ7oINAIi5AABQGUoR8eDqe4fhW1oELTsaX/bNuOubjjxgDln3W+OyzbQI4XruHX/s7VhhuxdCVOrjy0G036JWhghhLp1GFz09nMy+/v4U4dq0hRaOaDLp8vZNQViXRdv/aCRkIITadOnmtHnq9l1rPbz2tLfS9OR6jGNo4WBrlv8J7+nVsltz+8Xz122/0LHj2DbssHuX0kxHLF38fu3qiPKrSkJOnnjCsDaFb4evn/LjjfPJZj9vXPV+4ZKwyhbE9Ly7jxjiXO4yi0z6b/26N1i3dQdWNDVmIoQ69+zhtnriqi0rfZoc6G5T8tRVvf1newDPQYjnVVKOOPj06Wfag/f31S/6a6igaCr3/oGdt4z6bFm/tKMWhhDya9nOlzfhp2M7/u349wST0ldvqvR7/12Iaj31zJShVhhCPo1scsOHnjh6a+D6vgjxmo0Y6XJx1ckLY9xH2kFHTFAGnBIAAFAZnO01dt224d3duVi5m/sZtw8feGg/dHH/xnoa16XpytpDaTL14bVn5h36O2uV3XL2u6fhcnuf5qY4huSxN+75y/2GTfcSFERPjBC0GjfaDX93+2al4abETpg2b2nDyI0KjSNplu/YzQum9rPUKpfLEaLJuEt7z1kMGuuhoyk9g68Lq8WUHSvnDrTV1vCrLEPjmSiLvnb9pazDqJm+xoW/bkLYceq4RsS7q1dCSy4pjz2z/xw+bGwbXmW9WFT+124pvAZ3c+N+smjx+5fBOSYdercoOvcxtkPPno3FIS9CcsquwBT23X7v+bIhVgXLEmZubqbZESH5P7FMu/fvLHxz43oq9HAH5UDMBQCAmhE9/ntXiM7gsT/7sDR/9dMIIVqZl5UlJTV9/8pjrj36YNy+h1e5jgfy4BdvkW0LT3MmQlT2+6Ak2qVxC0HJnrgMvRY+btzY4HdVrKtaJlWSiMmqPLxSibf33szpOKSPJYYgMTQkNE0jWpmbkSmmil+kMt+9i6fdmrcxKnkCMvX9WnjwIt/5l1gw/crOQ8we0zuZsyu7clNHvnmb4tG6nV6p1K2xaKQW5cloA0NhyRMS1xcIWOqsjEyVho3jBFEcWEixSEpwtQp/5Pq2aUZHvP6YTVZYN/C9gpgLAAA1IYs5f/Z2qiE/auvPbfu3bzy4d+8lKw58SC8x3IbKfrh3zMjeHcf0b/PzT7Ou+KdTpRKCKujaDbFr7xY2ZXs10MoP/v7ptk3bGDMQQlRqcgqhb2WiWyo7YLiOublQkZpQtcqKAi9cicbsGjezrqQxjhQ9P3HY32/0aGs2BiG3QaGz7mwb0atdm36dWvTsN+X06zQaIYTI5KQU3NDKnF+6MRjXsbQykiUXn1ppT/b9L8hj9CgfVqUXP5Q0KipRz9FVWOoU01w0YgoEOlhCVLi0xKJkUly8ArHYnE90saXyXjx8nu7Qwq/oFR13DyssNipKWcla4PsEMRcAAGpA/fH61Vi5SoHshiw+fPDclRXz+9Hv9q+YvyVCUhAFGHxTry4Ldl54cerCyRE+GUcW/3Y/triZipK+vHs/vWn3rnrlPoYl4c/epwl8WrgQGEKIlkvlOFebXXZWBZynw6MU0rIr56OzPtw/f/3S2esXT507snXz3J82XJR0nflHt/K9M4vJA/63J8R4eL/WhjhC0JjbkOB888Y9F/9z5+2du2cmNc3cM3v+tSglQkgmkRFcHU7ZMxDj6XApuST/B1r27ujOG24jpzUx+ER3bWVGajYlNDUrddlWUdHaru2amoqv7t/7vrAJNi/i/IF//XEDOxujyu85KANO/P1c0XTQAI+ilxh8M2NtUWaGupLVwPcJBhkAAEC10WRi0LtYlsWgX9bMcdLCEEIG7Sf8qi+bO/vfaw/GzOgpwJjWg5YO7dRYHyGEuI7dp/8SHjDl5rXgtpN9GBhCiEp9fCWI9lvUWlhuUjAy5uWrHP1mjVzyIynGYDIRqSIRjVDJRWmVSo0xKxjfRotiAp6LOUiaFBAQjtpNWLxhkZ+1oJKMi2TRZ45flPVeO0jIQDT0cWxAMKb1z6t392xmgBBCPOf+8xZ+fD3u4oWgrnO8mCwWTarK3emn1Sqy8NRSv/93x12yz45BtjiqoJttIVIqldMcLq84NVdcdBMGr8nkJeMiftk7dcB9T28XHXXSh8CQLLHaum9nJ25lrbkZr/dtOhrVfvaR9hYl0jDO43IouUxRjeMCvg/QmgsAANVHpmVkkhZN2tqVmERX162dtxkZExahphHXoWtBxkUIIYRz3Dzd9JIiwvO/h2ky9UEFg89oMsn/dYRxk9bWBfOT4Xw9XXVulrhsQxWVm5VLaOtprh5u3XP22t/+3LhkzYImhnkhQRna5SczK1Vo8o39RyVeg5sI89JSU9LTc2QqmpTnZqZnKaC74zeO59yjIGgihBDCuO6NvQ0SwkIVNK6nr6POycwr2xWWzs7KZujqI4QUSVf2Hw31G9pLKyclNSU5PVtC0pQkOz0jS1K+IIwgcKRSqYq74FZcNEIIFzafvv/sv4sn93OzsbD3HThxdDstllOfoX6VnKl5Yf/+seiYXr8Vswbal4ovtFKlogkcWu5AWXBOAABA9WFsFhMrNxyHIHBEFfTALduIQDAYNKWmKIQIJI+59viDcc/p5QefIVXGy3fhhNfAxoWz8OLGdnZc+evoOKWXS3EAoNXx0TE5ejaOlVeTJew0ZuLd39btOHzRd/YA24o65tLqqOgkplp2dPnMo/m1EKXLVBlrFr9tPH7bmhbl50oD3xKNpyKppggzRwct2YuIGKWve4lsqY4LD88xtHdCCMkiQtI47ITDs6YeRgghWpWXrpKeWzP2eePJR9YNKbtZXV0tlJWZTiJhUbSoqOiCyafZAveuP7p3RYjKe7Vm1HqTHut7l56loaS80JOLZ25StP5z/dwOumVOSXWeSMa21IXpQUBZEHMBAKDaMKaVtbXW44/+qeo25oXfrYq04MgUzMLWBkdk+I2t5z86T5jRO3/UOU0mx0RnG9hZcnFUOPisT/nBZwhRGW+exxKNfmiiV/SSjndbT/1zT24F9nRuyizMqeLQGy8i2E2H+X6qprhll5lDH7w5fGCVj8/ujhU8vApnt5pz5HLRj7Q65K8JY8ObrF0zzbd8EAffFHXo5U3/BLvM/aVfwVy2ZFJkeJbA0YpHIMKnXRPDM/eu+Q9yb1GUEEUfrj8KZ7Uc3RwhpNd2wcm2C4q2Jf2wZ8zo873Wn/vZh1e+JJaBuQkvNSIsD7kJP1l0aXn3d6++LWm/dnq7crc3CmQFHV0yd5u0+bINC7vrl0susviYJIVRC0uIuaAs6LQAAAA1oOfXr7tWzKn9Bx5kKRFCSJkddHrzoVh+xy7tjXCM0NdRBl3ec+pOjJpGCElDLu66HS5s27UJA6ts8BlCkoAX77TcW7noFH/b47yWg0e2iju/bM/5DwoaIYTyIi9sXXlM5TG6T2v98psoAyNMu0+b4or7H910LBlGon8X1EEHJ83Y8gIhhBDDQFflf3bH4evRKoQQkgSd2X4xVNi5ly8TIVzLb+T41tGnFm/4N1ief2pFnPtz8SGF97ihHfSqWyrGdnNxYgS9eCUrHIRZSdElULE31m05k9d//vxmguIAK/bfP2X02mApjRDKenfgl+kbUu2nLJ3XkSsXi0UisUgkkRb1xKWS375N1XF1sarkUSzgOwWtuQAAUBOC5tMXLkD7/1448YqekSEzLzmVbdtl5uoFXvoEQkjgN2PuhJxdW4c/PmTCU2dkKcy6zlnTx4uHEJXyqKLBZ4iSBgQEit2G+2mVSsC4fd/lv6k3/X1ozIiDAoGWNC2ddmgzefHsn0yq1nrFseg7ZvSdJTsP/P1vy99+coMG2oZOERkSbdLSLv8HYdvZv8/IWr92yJ29Jlrq9Ay5Rd+FG39onD/pLOE8aNVq9bqt+0b22Csw0pKkpNLOHaeu+220ObP6Zwlu2Kpdo8O7L71K69rWmPGpoguIQ4+vWn3VfPD2CV1MSxZJybLS0nKUFEJIHf/8XkiOiny2cUT7jUULcC2G37uyDCGEyPh7twPM/FZWPnYNfJ9KTI5Y6QhKUF5ylixHomkW6y/A1argGd8f43LrpkQA6svMMUPHTpvXyLd5fVekilQ5SXGZYjVX38JEoFUmudLK7OT4VDnON7Yw1Srq25AdEZLA9vCwrOx5UprQpDgtLi5XyTIwtRHoftFGClKam0My+DpaX11TSKD/64M71v9z+kJ9V+TrRas+bB75u8Xv//zgWqIztzI7MTZFhuma2Zhr+K2S4qSY2BwFS2BuY8Sv+OJJLc3NVbD4+twKzgsq9+6iIXNzuu/fMbdZ0VY+UTRFkjTCier+NRRLe7Ry/PyXI/7+9wePCvv1focMdFhE+Svp789X9xEGviE0qZIrVASLx4LzCHy/mHpm9noVvIex9M3sy/YrYOs7eH+6r4GmrRHaxrZuxjVZtboIHt+wLsoBXwAti02RO3QsfQcfY+lbOFZ82hHaZvbuZp/cNIPHN9TQK7cIzm83Znyr6du3Xu31dz9nbpWKxonPGeFISwOO7Lho2HNNb3fIuEADiCe1TJVxdd3sXdFKGiGEYQSDraVvYuvk07FLr44WZYeG1joqJ+rl+1S9Rs1cND2svvZJPu6fNfNSx3XnRjSFzxcAAPgq4Lo9NpzvUU+FE86DFk9+PXbv0p1uh+c78r50a6L4yb7V99GA9bM7VDR2DXznIObWMpqUZCenmg7eMraLMYbUCnFWYtjL+xf+mHfh9txNK5ubf9FxoHTCgz3b73iv962jmAsAAACUQpgN/GOfe4KW/RfPuAghnueARduGuTvwYTw90Axi7hfB07O2sbfK7xXj0qh1mw4uK8f9fvTIw0YLO7HhihMAAEDDhfGsXZzqpiicb9OIXzdFgW8TxNy6wBL6eTtzToW9z1B3MmcihKjs0Bvnz1z7GJvDFrq2GTi6k49pUfd7WfKLy6fOBIQmSEmOgaVPlx9Ht3DQKdpUYMzLDyePvY1T2rSfPHWoT9HrtDr80o4jb4JjFVniY2szDO37jR3WnIq+dPhUSqsfvUuvUlnptDL5+bl/7j4PzhCpuQY2jTqP7NfFpSiaS5Ne3rpyOzQqjWHk4t26R2MODFsEAAAAwFcKYm5doEmZQkFhLFb+s+yTHm1YsTXQd8SkCT8YiyPunFwzPnz0rsk9bQgMqTLubp21KN5uwsR5sy24KXd2LdvwS9KyQ6tdCze1ad7vdm1H9h6iLaFLd4fFDRybtZXnvg/OsfTya28iMGcgJEn/8OTG5eevtEusUlnpNJV5e+OU/W8tR81b3NyRF3dv+7Y100WsU+PaGyCEJJGnVszbmG7Wp2+fHrqK6Ce7p9yxsCUh6ILaZmVr9/r5o9APQfVdEfA1EotyTUxNDx/YV98VAeCrNnvmVHj6MYKYWzeyg888+qByHNZKQCBS9PjItjteE4+O6WqCYwjZO9sI5L8s3/ii8VY/U0Zu+Idc/S6j541uJCQQMus7ZsD9iUde+It/LNyU57CtswY5l5/QEMMNXVt1IsOOMyKsvNt2tS7uA4yXXIUUPaykdEoSGpmq0238kp4tjHEMCQZMbHtj5MsHr0a268ak02/u3x9nOHLNpunWXAwh1KZj4+1TZwZRcL8I1DKKonOzsxRyeX1XBHyNFHKZSqVMTUmu74oA8FWjYJZYhBDE3C+DTgu9ffOyHkK0WpqVEu3/9H6gQdv5k4Z7EBhKfXYtkG61vJ1x0Xx2et4DWpmOunMnxu8nB0HL6WtbFm1HLUcMLibNyZIUvdSohV21Ju3GCKuSq2RUWjqh4zd5m1/RukopYnJxSXamgkKE+OXrQEWLaT9YcgrWZOj69uru+eCvuOoeHQAqlxAb/U3NmwvqVP68udv2HqzvigDwVWMwIOAhBDH3y6Bz4t8GUBxKkRT04qNei6nTty/3chQyMISQOj4iSs20CL5xLqp4YKg6D6OiP35EyAEhRFOiyCcXbly/HRiaytDnZpO0EUnWUsU+XTpCVE70o5sXL7149T4X02OI5LSlmkRIkZKYoTJv5apfYrZp3NTBXhuPr6W6AQAAAADUJoi5XwLu1PnXX3+0wuj063+O+evNOylvdNHTNUmSRAhRpJoqcT/BsftMd4ELQkiV/faflUvupjn2/GHqqsVNDfBby/osrsWaVV46TeW8Orp09+kEj74jx69b7mpOXF7S7UQuQghRKhWJONzSE8RgHC48QRwAAAAAXyeIuV8Qhgs7TZn2bNKyQ1v+c143XMhACOFCYyMcM2rce4gdq2znA5rKu79z2V1Rj+W7p9vpYAghSlajvjUVrlRZ6QhRaQ+3bj+ROWTD4X5e+T1uZUXvMfT1tbHM9FQ1Mi0+Z5TZmRLo/QMAAACArxLMqPxlsYy7jR3fXvJ296Gz4SSNEMJNmzYTZj4PCC0eXkNTeaFP7wZH5SB1ZPCHTMc23a21i+b3ql6IxHGCJtVkhTm30tIRGR0QRFm3a+lWPKqsqHy2kYe9UcbrR4Gq4m2LAp75yyHlAgAAAOCrBDH3S8Ote8we7Mt5emjV3SgFQohj3X9wF+Lirn2hmWqEEELKyBvr167cF5aLEGEoMGTEBb7OViOEEE3lvb96J1ZF0RRVtbIwXb4OmZOQIaowe1ZWOiIMjQXKxHchKUqEEEJU9sdLL0MliKZohDCmR9d+jWMurDx4NURBI4TEHy6sPfNWzoGnXQAAAADgqwSdFr44jDDvPX3i86nrjm487Lp1kgVbr92sTYrdq9dPGGhgaYpyY7MZHkNW7ureSA/D9HpNmhC6avfsUdcdLXni9CxdjxaOpoy0xCrOZoALGrd3YqzaOK6v7+D180a4aagMXmHpCCG73tP7v1uya+Kga+42DEm6mO3p7m4REhKfrqT1ubjToD9m5v55YNtPdw+Y6CIxw7rfqDn9Di69XJsHCwAAAACglmDF7X7QybKakrNkORJVjVdXSdOTkjIxromZmR6jRJsoTckyE+LzSL6ZpTGn8DLE1aqgI8HHuNzKN6vIjk3IpIUWNrqcmpSOECXNjE/JIvXNrPW1iPIrqqXpiQnpuK6FmbEuAU254AuYOWYoTCgGKpI/odg/py/Ud0UA+KoZ6LAIHL6koTW3/jB5QmsHYfnXMZwrsHIS1HSzbH1re/2al44QzjO0tjOscEUGT2jtpHFFAEC1KVI/ROQZOTsIGPB9BBoIKunR1nWndeasH2/D/qKnNZX8YNva89yZKyfZa8HfD9AMYi4AAFQJrc56d/Xo43SfsWPb8TBESd/8b+PJBHXJ+2CEfac5g9qaKJNuHjlwK7vks7AJi+5TZzQSlrlDogo8vXxXeJ/Nm34yKHyHpnKeHdv8KNXlx+nDrIun8KOib+849TC+ZGEc865jxnfll94kTWVcXjn5fLAUIYQwjGCwtfXNrJyatO41sLEdv6hxp8y+0GTSzb07/FNL3p4i7DvNHtTWFNqDvgXqlIALJ88mtp83vRH/E0NuVJmP9284jbWcNrmfY9Gi8rS3l06eeR4Uk6ck9EycmnX7oXcHR27x2Zfjf/HI+TtvkvOQgU2THsNHt3Ou8PmX8tjzq/+4YDb9sBWbiry27fCduJKDSziW3adP765fcNKSKQEX/jtz631kqhzXNnNs1v3Hn9o465U/47JfHtx8KrDUIBXCst+8Wb4+bcx2TV+5wW7r0rJ/CADkg5gLAACfJI188M/xv0/4x+dqeRqOpBAiECJ0Te2dGIUxlxQF3Tjzit1kLkKIyot+8+Cd/Q8/OesXBAkMN9Rjl90oJX1151560wndDYq/oamke1v2Hn3VdvEUS27Jr3s6J+rlq/f8AUP8tAqzCVPflInKIyVZKRKdgYt+66WDYSqFKDsp9O2d02sn/tf5lz0TulkTmKZ9oXOjX92PNfqhm2/RnSTcWFhpzyfwdciNuvPP7h3nH0RKqUZu0yj0iZgrfvrXpv9dC3MXDqcKB6HLY88vnPhHpKDnTyMm2PDlkU9PH14w/PHPO9ZOb8HFEEKiR1sn/XERGzR1Qn97RvjNA6vHP8vcc2igB1fD5qmUC9t2prhPXdHXFkfq7MgXj4J0h49opVt4tcQyMCmcbZ2Kv/3njEW3rPpNGjbTQ5dMeXPl4J+jb/y0+cjolgZltsrkmzs4KQqfk0RnvTt//o2o83yE6/pO/HXIuCkbTnZpOqlVFe5jgu8PxFwAAPgEShHx4Op7h+FbWgQtO1r44D+c7dhphGPRMsk3fruAu/o0NSz4Qsf13Dv+2NuxkieoUKmPLwfRfotaFXcSUqRc27vjpln/LSM6aGhGZfJdOwz6yUxTti2D4Ohb2DkXpGf3Js06dbFY9tOhvftbt17pxtSwLwghhDCBc9c+Q9ygz/03Rfnxxvlks583rnq/cEnYJ5cWvz9+4AHhYF7yHMq7tW9nAKPX1t0rvPk4QqhZq44u/AmzDmy93etoHzuWKv3efxeiWk89M2WoFYaQTyOb3PChJ47eGri+r4btB58+/Ux78P6+he21iMV36zFslGX5h9Sro84dvMJut3TFb/3yG2J9Wnjjk4f89/eFPs3GGJZumtV27jbKueinnNNzT+q6t/I0YCCE9BsPH9ziwolD5wY0H2sEiQaUAxOKAQDAJ+Bsr7Hrtg3v7s7FKsqA4sDn/oRDS7cS37R0peN6aTL14bVn5h36Oxd2K6SpjLt790QZ/jhpfHNurWZNDBf6NnenckKjk5SV7gsMRP7msFpM2bFy7kBb7SrcsydjT28/bTVsQiPd4phLK9+/epvh2LGve3EzMMu9b08nFOr/NhshxBT23X7v+bIhVgWnC2Hm5maaHRGiqQCV/7VbCq/B3dw0NfSWRpNJKalqO09v3aKKE8YeHhaylIQMsrLzkBK9eeGf59aydcFVHG7aY2hXMvDaszjlJwsF3yGIuQAA8LkoeVBAYLZjs9YlWqFohBCtzMvKkmr81pbHXHv0wbh9D6+iwWcZz/afeMweNGuCbQUhl6ZpGiFFXkauhNS4QCUVlMnkNGIymZV95tM0QkiVm5EhV1dz8+AbQMVd23Uhq/OogVZ4yQswUiwW0QaGRiVjMpMvNOBSmekZBecZThB4iRVEUoKrpaEEdeSbtykerdvplYrcNI2QIjc9R1rqrMIIM1NjRmzoR2lxXWQpKVkcYzPDSm8o5AU8CxbZNm9jXVQjvSZtvHWi/V9nwlUaKA+a+AEA4HNJPjz7mG3er4V98Rc0lf1w75h/g8NEclrbsvXw+Ut6NBKW6IegCrp2Q+zap4VNQa8GWh199fg1pZFTwK4hJ8OTFZi2mUurXqNn9fA1KdqmKufF7ildQiKzVDTHtuXoab+MdTKo0rgbUhR4/XoAz26Yh0UlPR7o5JfbZl8Jis+WYVyrNiMWTxjWXAeG9TQUVN7TA/vftJtx0oFTOg4ShgYG+MfIcAVtW/S4H0VybLKUMmFreP4Plffi4fN0h95+GoqQRkUl6vm4Ckuupcx+tv7nC8FhmUrEcWwz7tclE9wFDIQQYtgNGt//7uK1q/cxp/zYxohIf31hy6HHnEFrBwgqO+tUgU9fKq1aN7Er7g6EcdxcHBgPIiPVSGNvdfBdg9ZcAAD4TOqwF68kRs29S/TEZfBNvbos2HnhxakLJ0f4ZBxZ/Nv92OJ5DCjpy7v305t276pX+BksCbv26KNIJaNdB67Y8u+tvbv/aKYV9Pdv084GiApXwvVMPHrMOX7i1vNDfy2xSj22evk/aRU0uyqyPj64fPb6pbPXz/3zvz3LF0+c/lTddvLCsZWlXFzH3L3X7P13Tt+8t3q2X/g/83efiaj07jH4hshfHt4ZZDJyWAcBjkp1TsFYrm1aWcbe2nvqZUb+y7Q08uyuE5FqPVsHk3IRQRlw4u/niqaDBniUL0OZkZpNCU3NSvZHx/RNvQYs/PfGy7cX/veHffKRRb8dTS4YtYmbdZy/Yn6byOOzB7fzbtu6829/x3ZZuGN0q7Ljz0qiVSEvXiTatmhjVbKzL843NeNnp2fA2QrKg9ZcAAD4LLQ61v9trFmTqUVfvRjTetDSoZ0a6yOEENex+/RfwgOm3LwW3HayDwNDCFGpj68E0X6LWhe171IJb96m0xY/Ltk2rIkOQggJO45abiCeOPn6qds9Gw3QwhDHuv+CHwc66WIIIUPHHhNmhs2Zd/ZxyA8DPTTMh0CKY9+/oRhIkRDwNInhN3ruX+2auvLLTfVQAtOh/8qf+zTjYQghnmu32aPD3m66eCGh/zzrSgbRgW+ELOLU/jPSwduGGjMwpKbpUp2wua0mLxn0Ye6+qb1vNmpsY0AmvH8XlZbHEPT1a8wrs52M1/s2HY1qP/tIe00XTKRUKqc5XF5xNubYDFo1cpAbH0cICZ17z/o1dPTk/+68H/aTNxdROQ+2T1tzBRswd3+3Fk46VFbYq7N/bRoVn7ztj3GNKzpVZdHP/RN02rX2Lp1dMC0eR5UiVdGIBQMoQWkQcwEA4LMokp4HxXC9f25U1MuW69C1U4l7ZTjHzdNN701EuAL5MBCiydQH156Zd9jgXDynPZmZlsEQNG3irl28FtejeTPLh48/pqj627MIly6DsBJta9quTey1T8RESpCmmMuz6j719zEGBJVwe9mCVY+js3i9Kk2rGMOhYx9Uok8Fx6WxF34+PElKW0Nw+NaRSRd2HhL7jPczyk1NyUVklkyNVLKcjNQsfaEBG0cMvWZzDl7odP/mqw+JCoLfvIPvrU27Uf9hHtqlfvV5Yf/+seiYXr91swbaa7wRjBEEjlQqVdFMZQyPnkNK3jPW9WjqonM8MlyMvLmK5KtHT0a2X3xxYh8jDCGEBC3NfzGSxY7bue95313thBrDCRn37FmyTrNmXmWHuCmUKqxk/2EACkHMBQCAz0Glvn6eyPYZ461d4sWyX7gEg0FTaopCiEDymGuPPxj3nO5V4slnGJPNLD/PAU7giKYoCiGEMA2bRBSppmhU8RMccPOOM368/+bg/jU+jXa0taqs42LZjeAEAyMpMn9aXfANo9WR4fFMtezQvPGHEEIIKXNTpcq0FVNf+s4+sKFt/twgDEOvzsO8OiOERA/Wj3rP6b7xJ8+S+SAv9OTimZsUrf9cP7eDbgVnBKGrq4WyMtNJVBRSy560DAYDkWqSRkiREJdKmvZw4pc47wiho72u4nZcohJpjLlU+ounHwVNFruUfeaZKi9XytPVhUcJgvLg4gcAAGqOpnL8X77ne7Z21Clumg2/sWnD1ss5RdPZk8kx0dkGZpZcHBUOPutdNPgMIYQQw9LBDst8H1piUiSaTAsLSeZZ2hsxMVode23bL8duJlGFUViZHBGfp2tioVv5U8ow3Ljr1Clu+OtDm0+UesZZafKY67uWrn2VWtTVl0qOjFTwLYRa8B3xzcPYbZaeuXn26u2Cfxf39bbnuQ7YdOrilrblZppNf7pn23+ZfWbOKvk0taygo79N3yBqumT1wu76FTeOsQzMTXipEWF5BT+rY86vn7PvamLR5ZsiKSwmV9fcShdDiKGrp4VS42IkJTZA5SUkimhdvp7mMlTZL1+9Jxu3LjfdnjoxLl5qbGEJJysoD84KAACoOUryNuC9wqNFixK3UQl9HWXQ5T2n7sSoaYSQNOTirtvhwrZdmzAwDYPP8hm1GtDSNPa/TTuDUpQIIZrM8T+59nIQt13frjo4whgGXEXYpYPbXyfJEUKUNOLy/pPpJt38vD79oDK2We+xY9tIA/YdPB2qrmCQDtNQRxJ6/p/919MVCCGUF3Hu+Llgh869bdnQPvZtUkfumzj02BtptVZSpt7auOKEdrcFYzqbFP3is94d+GX6hlT7KUvndeTKxWKRSCwSSaSK8qtjbDcXJ0bQi1ey/NOMYchThJ7atflJvBwhREnC/9t2PMW8R4fGXIQQz7FTO1fqyo7l14LzZ34gM96f3nrgvo5P92YWTIQQrXq3Y8JPR54VDcFEWa+ehpKeLVqWfdqZMv1tUAzHxcMW7juA8qDTAgAA1FxuwLMwucukZoKSraoCvxlzJ+Ts2jr88SETnjojS2HWdc6aPl48hKiUR2UGnxUgdFpMXL380Jady3+6oG8qRKLkXMyuy5zNI9rmP1ZNp+3UVclr/9g0prueib4yM4U27TL9j8l2GmZ8Kg+36z17wP0xJw+vvN3kr+5OGpIxodNqwu8zt63ZMG3wXqEelZEqs+v464zRjcs/uwp8EyhFZFi0QT+7ajyumVaEHV224i134JZfuvOLA6M6/vm9kBwV+WzjiPYbi17lWgy/d2VZ2U3ghq3aNTq8+9KrtK5tjRkI6XSevS7hjyV/DO1gYGagSEtBFt1+WzvNKf+kZTiOXbtOuXr9hlFd91pY6tDZSUkyy1ajVywaaZLf+YCWZqelYjKqcOvSt0/fstyHexmUyS1k5K3bUdp+08oNmAMAIYQVX9tX+sAeUF5ylixHUvFdwFrlasXP/8/HuNy6KRGA+jJzzNCx0+Y18m1e3xX5XLQyOzk+VY7zjS1MtQq7xSqyI0IS2B4elhVNga/ITUpOy0MsQxMLIadc85QiOzEpXczQNTUz1v0CT+VVZSfFZkkQ39hGoPuVNoIE+r8+uGP9P6cv1HdFvmqS4F2TVylXHZ1tpeFKRS3JySVZfF1emV8xRZI0+ryRXFTu3UVD5uZ0379jbrOinuDyrISEVBFDz8zSlF++wVWeFRebkKFAPGNrW+NKZwOpoMTHf4yYld39wJbpPl/pKVtPDHRYROVdmr4PcFYAAMAXgbH0zezL3mBl6zt4l32t9AJ8Mxu+WYXv6pvbVrr652Hqmzl8wc2DuiKKiWc6dTTR3BrP0NIz1PQ6Tnz2XX+c327M+FbTt2+92uvvfs4FHXk4BhYOFU+GyzGwcjawqmmBsueHdzylu20Y6Q1pBmgEfXMBAACABsWk99qDy7vWx5THhPOgxZP9svYu3Rku/eK3iLNe7992Rv7T0l98+BBmgGZw/QMAAACAWkKYDfxjn3uClj3vi98x13Xut2TvD+5ucAcCVAhiLgAAAABqDcazdnGqi4IYOjaebnVREPh2QTs/AAAAAABogKA1t+YS4mKj45LqpizXwv8E+b+umxIBqC8GQqOUpIQgf5gEE2iQlBBnZGzs//plfVcEgK9ax/atEIKZFmBCsc+wdv2WW9ev1U1Zd+7dyv9Ppw5d6qZEAOqLsZl5alJifdcCfKUoikI0yWTWx/AqAL4dZ86f09GGuYQh5n4GmDcXAADqGMybC0BVwLy5+aBvLgAAAAAAaIAg5gIAAAAAgAYIYi4AAAAAAGiAIOYCAAAAAIAGCGIuAAAAAABogCDmAgAAAACABghiLgAAAAAAaIAg5tY/tUqpVJFfYMOUWqlQqqiCUuRSmVz9BUoBAAAASqAyb2+ctPxIYB1NLE9l3948cfnBt3KY/R+UAw/7rU3iDweXr3rU5rc9fT05RS+m31+zbM9jnaazV8zrwi6cqplWBf09e2mq7/LFY6wvLu57Hpvz19oB7FqdyJlWhx6YOPa969odC9ohJL+5qtf/8sbv3jxCFx6hCgAADQCV43/xyPk7b5LzkIFNkx7DR7dz5n9yJVXm4/0bTmMtp03u55jf0KVIuL5r5/XMks0ghGW/ubOaGRckBHXuxxunzjx9F5mjZAqtvdv3H9bO3aDi7ysy9Oyfm2/gvxx0ZSKEkCrp7cUz5++GxGWqGbpmDk27Dfmhhb1u2VplPf9700m555gpP3qzK9huxfXU92nj9tes3/62OTa1ozE8EQGUBK25tYlnY6creh8QEE8WX1Oqwv1fZUtEsW9eJaiKX5UnvPYPyTGyta2PagIAAPjWiR5tnTR/6zPjNqOmzBzXmPN69fhJZ4Nln1pL/PSvTf+7disgIpsqfEmdE/X8TgBm6eXZyCf/n5e3swGnIC7KYy8vHDF8y8UEy+Z9B/RpzU+/9vuoQWvPhFV0c1CZcnXP7letpixpb8lESB12fuGESRtCMJ8B42aOGtqeG/3vglFj/ve69OM8qfSrG5ef8idadHCvKONWXk/DphNnDNQ+s2lncB606IJSoDW3NmEcbw9XrQuBAVLKUYdACCGaTAwLzfTo3T/t3NuIJLW9DRMhhBCVGfguhXD39NRGKK9eqwwAAODbo0q/99+FqNZTz0wZaoUh5NPIJjd86Imjtwau71vJWuL3xw88IBzMmWXfwPS8u48Y4lwuZJJJ/61f9wbrtu7AiqbGTIRQ55493FZPXLVlpU+TA91tWOXr5X/q6EfDQbN6m2EIUbn3D+y8ZdRny/qlHbUwhJBfy3a+vAk/Hdvxb8e/J5gw8pM0GX153Z67jJ+3LW1h/KlMUlE9Ea/ZiJEuF1edvDDGfaQdNOCBIhBzaxOG870auxw//jZGMdiThyGEKPH78HjjZjPaxj25EPYhr5uNIUIIIcXHwBCu0w+OekV/jLQo5s6pU5ffR2cyDKw92gzt29WTV9i7gKaKo/D6Lf/0HfGDi1Hxh5RaFHLn3xNPA6JkhMC19Y8D+jfXK/cJVrxwXvCVU/++CIqldG1cmvTq3bd4YVqZ/PzcP3efB2eI1FwDm0adR/br4pLfj4Ims9/fPnXz/pvkLKW2qbtf35EdfUwIrKBuH28fv3r7dbIIM3ZqX6ZuAAAAvgSmsO/2e71IRBQ0uhJmbm6m/z4NQajimEvGnt5+2mrYfMHVJR/LvUlragaVRV+7/lLWYcFMX+PCD3ZC2HHquCu3F1+9Etp9mmfZjSgDb92Kaz58iw0LQwiJ378MzjH5sXcLrcKeBBjboWfPxv9ueRGSM95EgCGEVGm3du984DRiz/DmelXZcY31RAixTLv377x/843rqcOmmDKg5wIoANc8tQs382kskASHhCvyfxaHBCWynRzt3FyceOHB79U0QgjRqtAPH3NsGjUrSrmS6P8tmfbHq1SulaM1Hf/g+JpJm//3oWBhKuPelklFBXhrPVs/Y8HTeGX+j6qMh9tmzH6Y49J/6rIJo7uon61Y+ueZ9Aq6/Stznm2fuyyYcu/6w08tXRgvD8/4Y/21XDK/lMzbG6ds/i/Oe+jiRWvXDWqqurxm+j8PshBCCIme7Zqy+nCoY8+ZCzds+qENfvH3cccepVN0Qd22nE73GjB7xtwpZeoGAADgC8IJovg7nBSLpARXq+Klqbhruy5kdR410ArXEBVpmka0MjcjU0yVWCXz3bt42q15G6OSsZGp79fCgxf5zr98GbLIV8EZDi3bmuQvrxblyWgDQ2HJtg9cXyBgqbMyMvO/qPLu7tkRoDNkxoQm5VuGNdFYz3xc3zbN6IjXH7O/xJBu8K2C1txaxrHxdRYe/BiYQHo5EBgZ/yEEs+tpyeJouTlkXg1MU7c1YyJ5YkB4ukErH/vCy3CkTJc3XXJ8dEcrAkOUPOL4rxPOnT8VOeR3Zw6W8WTPkcdm0wq3323iRh3pz4d2XnBdPUSfED3cvzHCctraOX34BELI0d7ZeNuEX/93vcWM3ublL2Zl0f68GcfmDbYjMITadG3dxHjxnB2Xu7YZ0VSbkoRGpup0G7+kZwtjHEOCARPb3hj58sGrke26MVWhzx7HuvZd2bO1A4Ehg05z1jWbyNLWwTGU/njPkcdm0/ctamrEQAjZOLqVqFvdHG8AAACIynvx8Hm6Q2+/ihd4emD/m3YzTjpwMjW0h9JZd7aNOPIuLFdG6Vi3Gb90+SBfIwyRyUkpuKGTOb/0BzquY2llJHucUH4zosiIbKGrvbBgeaZAoIM9iQqXIsuisXFkUly8ArHYHAwhJIs8e/xasrFHxMqBLaJSxISOuWergRNmjfMyruCuoOZ6FtBx97DCHkdFKTsKIduAAtCaW8swlouXp15UoL+UQjSVG/ohzsLVnYfjhq5uWonBMbkkQlRW0LtUrpeHS3HvIj2fET90tMpPvTjHoVvPpig7NVuBEBK9uPFQz69/iRK4Pv17sQMuvopXkXlPHzxRtOrTuegjCOc16t7N+vXVqxmarmYJXb9uPWyLsrWu6+COjeSvH75T04jQ8Zu87dj47sY4hhBCSilicnFJdqaCQohh6+qqH3hp59336SSNEMJ5OjoMrLhuPsUfKMV1q7UDCgAA4BOUASf+fq5oOmiARwULyF8e3hlkMnJYBwGOECqXc3G+eeOei/+58/bO3TOTmmbumT3/WpQSISSTyAiuDqdsUsB4OlxKLilXCpmRms4QmhkWfs1ou7Zraiq+un/v+8IW1ryI8wf+9ccN7GyMmAipgi5fiZQp5chh1Mrj527d2rF0IPLfO2/qxhCJ5q4JFdUzH4NvZqwtysyAqTNBMbjiqXVct8aesj1vYxSD3fEPYZEM+/42BIZ4dh423DMhH6V+bRgf3n3UcZtoxytub8WYnJKXrkwul4nl0jSiVbGxsWLaNqToreuXziJ1KkZFhIfK/MwjEuVMQdiV66nFH0LyTEoaGZygoIXl+uhzzOxNOSUKxfm2Dibn3kdLqFZ8AiFE5UQ/unnx0otX73MxPYZITluqSYQw3LDr/A3SrX/um973nFfXHkNGdm3twMaK63b7cnpxGYV162oDPXQBAKAuZLzet+loVPvZR9pbaP7glUWc2n9GOnjbUGMGhtQ0XTrnYkzrn1fv7tnMACGEeM795y38+HrcxQtBXed4MVksmiw/rzutVpEYs3wvA0omlREcHrfwGwnjNZm8ZFzEL3unDrjv6e2io076EBiSJVZb9+3sxMUQmfjmTTTLasiKbb+4amEIIUHnySsMZOMmHj97a9yi/kZltl5xPZsURBmcx+VQcpmiWkcPNGzQmlv7DLybmMvfh4Qr5NHvY6R2Ti4chBDGcnW0U0d8iFSrwj5+FDv5+HKrtDG1mqQRXdwHiSLVFGbbY9p8P0cmrVbTNE2RJEWqi/6xbHuOnz7AVFOfAYLNZZbqyoBzuVxKIVPSiKZyXh6eNXvG1jiu3/h1pw8cO9TbQ7toOYaO++Clx3dt/82LF3RkyfA5Cw7FSOiiupElSi+qW42OHAAAgOrJC/v3j0XH9PqtmDXQXvM3Opl0Yechsc8Pfka5qSnJqalZMjVSyXIyUrMUFEII8Zx7FGRHhBBCGNe9sbdBQliogsb19HXUOZl5Ze/P0dlZ2Qxd/XIlYThBUKqipxIhhHBh8+n7z/67eHI/NxsLe9+BE0e302I59Rnqx0aIJtNS09XWzds7aBV/M/E9O/iaU5EhEeWbZCuuZ1G9lCoVTeDQfgeKwdlQ+1hGvm5WO0KC4prygsWmbja6BEIIw/WdXC0vBQZmJKCwNPPujU3wqowExY2FAmaCUeOiF3r2H1r0f0WSsR6Bm3n369mIU35VutyHhCI9KYuk9Yt6LSAyJyuHqa3HI6i0B1u3n8gcsuFwP6/8HlTlJ19kGHv1m+zVo+vt9avW7Np10H3VFIv8unXr1xRGtQIAQN3LCz25eOYmRes/18/tUNGjf2h1ZHg8Uy07NG/8IYQQQsrcVKkybcXUl76zD2xoa8Qo3+BFMBg0RaopwszRQUv2IiJG6VtyQlt1XHh4jqG9U7miMF1dbWVWeg5F84u/aBBb4N71R/euCFF5r9aMWm/SY31vNy5CCGFsNgsrNxyOIHCMoihNvRYqqidC+fuuzhPJ2Ja60M4CikFrbu3DGNaeXibR7168Cw7Xd/Iq7LlKWLu50lHv3rx+mylo5Gpdpb9DjDBq5OuU8PJhyRfVeWEvHz5PyiVZRs087XL9nxXMyYAQQojKCnv84lWERFPfXEXKw2f+ouJFFSFv3qRYubpzEBkdEERZt2vpVvwEnQombWHZdZ41oCU/PuBlBl1Qt0Rl8aJFdavK3gEAAKixrKCjv03fIGq6ZPXC7voVt1lh7DZLz9w8e/V2wb+L+3rb81wHbDp1cUtbIwZC6tDL65auvVA8PwGZFBmeJbCw4hFIx6ddE8OEe9f8S7bnij5cfxTOat6uebmiCEMLczw5PE6s8fsj7/7u1bcl7adMb5ffeosxrR3stBOD3iSXeHaSMjUoNJm2srctt0OV1TOfLD4mSWFkbgkxFxSDmPslMJwaN1J+PH8rSOzo4VHUT0DL1cuSDL560d/As5kls4rtn4Rjn7FNqMtFP1OK2Gubf91x5JkExzGGTc9RPdOvbL74Ni3/uWuS2Gu7li26/CYL1/SLxTniG9tWPAjLJmlEyaKvb175INunew9HAiMMjQXKxHchKfl9+ansj5dehkoQTdEI0aroq9sWHLwQmv9BRMlTM3PUusYWOjgjv26Hj7zIU5etW00PHQAAgE/Lenfgl+kbUu2nLJ3XkSsXi0UisUgkkRZ2S1VH7ps49NgbaRW2xDDQVfmf3XH4erQKIYQkQWe2XwwVdu7ly0QI1/IbOb519KnFG/4NltMIIZQXce7PxYcU3uOGdtArvy1tVw9rFPT6VW65d6jYG+u2nMnrP39+M0FRgtXrMKSndtSJzTvvZSpphJAq692RVX9F6nXu0zX/mb2qZ3snzN388JP1zC8i+e3bVB1XF6uqTU0Gvg/QaeGL0PX0taXOBqS79PEsbh9l6Ho4WYtOv0fdhjdiVfkuP1O/1dTVi1Cbwfk/Th8+Udtj6JINox11MIQwY795C2dv27th5C2+pQEzLykZ8xm4YcyPzbhY+aG0SNd97PSWUUfm9dzH4qO8DFrY4uflf7QwZSKE7HpP7/9uya6Jg6652zAk6WK2p7u7RUhIfLqS1uda+7R02L1t5qxbLrZCLCUskuk0at70PjoEQvqtpq5edGDT6lk/65oZs7LjEkvUDQAAwBeijn9+LyRHRT7bOKL9xqJXuRbD711ZhhCiFJFh0Qb97DT0ZytP2Hb27zOy1q8dcmeviZY6PUNu0Xfhxh8a50/BSzgPWrVavW7rvpE99gqMtCQpqbRzx6nrfhttrqmxhils5ee55eLV22M6DdEr0YlCHHp81eqr5oO3T+hiWnI1gd/sNX9gW3b/Ovg831TAyklO4dh1X7RloW9h67Q0Oz1TLqtCPREi4+/dDjDzW+nEhS8gUAwrDkMVPVoEVCA5S5YjqaOZs1ytCuLyw6AMIb/sHRmalKbHJ4gpnpGFhfanrmMpRXZyfJKCYWRuKWSX6stFSTPjU7JIfTNrfa3ynbyUOUnxWTKmoak5n1fmXUqSHpeardIxtilfNwAAqEWB/q8P7lj/z+kL9V2Rr5okeNfkVcpVR2dbaQijaklOLsni6/JKtXPRyuzE2BQZpmtmY65VvgWMFCfFxOYoWAJzG6NKP+fT7iwb9dvr4fv+G9m4xLMqKJKkEU4QFSRQVXZCbLpIzRNYmAu1K0+pFdUz7dHK8fNfjvj73x88qjbAu6Ez0GERVRoD1MBBa+43RmOOxAiekY1T2clXKoCz9c0dyo+QRQjhPENrO8OK1mPpmdnrVbBJLaGNnbBqxQMAAPjCRDHxTKeOJpp7xzG09DR80GMsfQtHjV8NCCGECG0ze3ezKhRt1H78sKYPTu041n7vJEt2YQVwotJHBjH1LTR/LVWxnrQ04MiOi4Y91/R2h4wLSoE+lAAAAECDYtJ77cHlXeunjyph9cPiBc7JB9fvfV1XT34XP9m3+j4aMH92By1ovgSlQWsuAAAAAGoN27zn7/usM7Wd6ypn8zwHLNo2zN2BDy13oCyIuQAAAACoTTrW7jp1VxrOt2nE//Ri4HsElz4AAAAAAKABgpgLAAAAAAAaIOi0UHNvX70Iev+xbspyLfzPhf+O102JAADwFcrLybaysv73+NH6rggAXzU2E+/fr6/Q6HufBQlibs3JRZlpcWF1XGjdlwgAAF8VK2uLqLAP9V0LAL52Xbt2ru8q1D94PMQ3AiucJQV+TQAAAAAAVQB9cwEAAAAAQAMEMRcAAAAAADRAEHMBAAAAAEADBDEXAAAAAAA0QBBzAQAAAABAAwQxFwAAAAAANEAQcwEAAAAAQAMEMRcAAAAAADRAEHMBAAAAAEADBDEXAAAAAAA0QBBzAQAAAABAAwQxFwAAAAAANEAQcwEAAAAAQAMEMRcAAAAAADRAEHMBAAAAAEADBDEXAAAAAAA0QBBzAQAAAABAA8So7wo0BEmXft+WMXzNGOcaXDTIIi5t3Hsvl9T0HsNiwPyZfnqvlv+09o/PrGIx5Y11Yw5Eddi4c5w1E6vB+qn3t8zfL5q6a0lL/U/vLq14tvyntbKea1aPcSMqXIpUytUYk82sYAky7/GqaXv1ft4ys4uwBhUujYq7uHzGX5IZf63tbFKzk59KuLh84q6M6X9t7WnFRCjv2ro551RD9i/p/tl1q0vKyAf/HDhxPzJNqW/t3WPEmP6+Jl+0uGtrRh2M6VTjsw4AAACoAWjN/RzKmOCgDAVJy3KzRGqKzIsIjhBR1dsEztEzt7KytLKytLIywmKuX7iXxjTP/9HS0kSHQDQlTgwLrb06U7mJUWFRacqarp4X8/7Vq8AkkcZgXlZ+5ePSpJUsQ+ZdGde40a8nkitcQBwf+Or1x2hRtSuriSIrMTQkJldJ13gLalFKVGSiSE0jhBAliQp6+/ZdTK3Urc5kv9g+bsLGEFbLCb/+OrKjUU6lv6DaQOUkRIVF1/isAwAAAGoCWnM/A5nx9tzmA/fS9XVF8aoVQy9na7mP+HO9vQ5ejfYqtkWbsTPb5P8/517OqUtZzQdNmdacV7QAJavlWn8e3Khpn3HjJB6GdXfmMPQbDx43ltvs85tyvwBcv+WAkSpl0/quR7Wogu8+TOd3Xbt6UgttHKHGreuoXAwacgEAANQliLmfgTAbuPRQn8m35w799aPMcs6xiwMc2V+6zGvnLzKN7DwbuRvzymYGUeK7l/4xMpaJT0tfc52K+wgUkqaHvHkdlosLHD29nM20q7g1trF3rz6kEbPUwuLU4FdvomQcc68mXhZ8MjkiKpdl5mSlV2IRZfLH1wGhGWUqn5sUFpuQKKWovNSI4KBsfUtnc72yNccIQdOevRnGLIQQQlR2fGiyXN/e0QTPjX71IjiL1LN193S10itzY0Kemxj+8WNUkkTL1LVZMyddTceDVmdFhaYwjO2tBcW/OHVuYni8VGjvIOAWHmFSmhT5ITwVd/T2MtMtUw5h0bhHN1pQYl2J0N5RwBKFvX4ZmqIS2Lh5eVprlV6JkqUFvnwTl8ey8WzsbqMvT4uKSSesXK11yt1cEadExOdxbRwE6YGPAuOQXdNWbqbcggOaExPw9n1StopraO3d1MtEq+weVrCALCk8NCQhG+fg2eHBwQxC28TeRsgpvaosKTxGqmVpayDyf/QmDTdv2qqRkJN/NFRp4W/fvk+QIq6pg08TD1NWlQ87ViLl0oqMiPBUXGBjb6JVdp8BAACAWgIx97NQ0o975m0mfjp00vzMvF/WWh1c3MRA8yHNCX/4LNW8R2v7zyxx+uxZCCGOsOnsrbvGtRLm5yJamXB2zfxNlzMdGjvzJNGrlxIDl22d08uuoqhLU7n3tk84/NfdVDmNEMIYgk5TNm2Y0zY/wlW6NSr+8sqBq3JW3TkxyIqJEEJU+rUNc5cdeqfv4m7EyFkRnu3500TBg80PzX6/s39IfhhW5bxZP+qXIw9iVAiVrrzq/fkt6698iFaqGOfWLL7H6TT78MzOumVqq8q4uWDQcuHcq3sm2iGkvLVh7KqP3VZMpPeuPpetpaPMSM1VafuNXrd1UTeD/B2mMu/tWrxs/3OecxMXUyLOf8kCRvN5m9b/2MSgTIxUpd/8bdDvhnOu7Z5kV/RW7tPtP8x4N/vs+bFeHISo5Bd///br9peZ2rY2euKUTCO/yZM8S3TYoDL+Wzr8kGLS6/8mI4Ryn2wbOtN/7KZJiQfW30lh8tRZadkqofdPm/cvaWGcf2JQcfe3zV7wVxzH0cWcnb4qTGX943C3lxtP6O9981d7rbIVfHdk/uQLhgNbpF2+JzI3JxSXx53aN5xPZz3Yu+z33XfVFp5u1lqZ4e9CMgWDf9nw209eBRGYqnABjjrh4pYV/75Mk4seb18azkKMpqO3LhpsXbJgWhmxb8bwZ5YDXBKuvpAZG+N5DyeeWvujKSV5v3/+nD3PUIvOTY3xtD2/z2e0WLh/50+W+d1tq3DY83MuJQs7MGvSvvBGG46s/dy/BwAAAKASdNE/UH3yxPsHjj4T0TRNy/xP778RKq1gQcWNJV082iytfGvZd39v4tBu53NJyRdJ6c3xXg5Fv6ac7IRn//3Zy9veze83fwlF0zRNi++sHtiq38rXKUqapmlanfB4fc9GPfa/yNVUiOzfGS3sbe08Wgzfcf51ck529JtzC/r5Otj6bX6YW4WtkWGHxjk7DDodW/Bu6P+m+nj22/80jczfz7Qni/s0dXeyazXhlLyw8g62Tp1GrL7+Nl5T5Wl17oWfXF1mH0uq6LAoEv83yNl58r7Iovo72Ds17/HrjdAcmqZVOR//mtrJ0bbZ2lvZ+dv78M8UH+fOay5FKvJrLH6/aVhTz3ZL30moMvVXJJ0Y7Ow0aW8kWaK4jKu/etp3+/udjKZpRdLlcc2d2/yw+V26kqZpUhJ+ZE4vP18fR/t+J/M3TybtHNGoyeA9Bete+cXD1sHNq/vqsx8lNE2Tea//md3S3r7n/Ov5Z4Y8/r/hPt5j1j/KzS9SnXFt5WAfF2dH57H3xCVrkU/5eG0/R2v7jj/vCs5S0TStkCtoWh12alZjh2ZzD7zOI2mapilV6vV1w7wcWq27lZ6/0U8toLjyWyfPjis+yimNB5xSBC7r5mZv13Tm3hd5JE3TSrmComnVq20/uLr0PRokzl8s6doiX/smq67nVOGwy/43tZl3t7URSoqUhOwd365x+9l3YuUV/cYBAACAWgFD0D4L26zduJEttBFCiNNo0ISuTtwKFiQc2g8YNrRtTcspvtvL1zNvMXjR+pntUOqLFx9lCCFF/IW9J9OHzJ/RxDi/8ZQwbzV1ek/q8LbT6aTmgVY413vhgf3T+zUx4evZNO7/x7ZZ3tyM5w8/qqq5NVodeebkY9tB80e1LGhXZgn9Zs3pqaUuuSRm6DNt/1+/dfOxKF/5mmEadlpzcFVXJz5CiMF3GfXH9Obaua+ffVQhRCuD/3f4oVm/BbN62+XfT8e13Gbuvfbg+u9e5bp5fIr6w9njT0Tec9ZO8xIwEUI4z+GnFUtba8srG2eIGQz+88CCAS48hBCu02TYkgkdDONfP49W0Aipg8/8F6zTd86MVgV9HwjDrrNmtjVAlQyIYxh2/X3rZHd9BkKIxWbR6tBTh+9wWkz5bXTj/E4OGMOo6+zFgx1zzx++lE7Sn1ygavuO2fRctGpSMx0cIcRkszCEaKPWo1duWNrHtaCbgZFfC1e2KCQomqzyYaekoftnTtoX4bPhyNqOVl+8hw8AAIDvHMTcukHYdZqyaHrnmq5etj+oZSN3IS4XSyiEqNQnT0Iwr6Y+JTvXarXs1Fz59vaLdLXGzXHNfJs6FY9yY5t6upoxpRIJXc2tqXODgsIZjZp6leygadi0pUepnsG4bTM/66J+rqUqX0NMXQsLw+IiGLqW5gaEXCajEVIkvH0Xz2rerlnJCw6GrqE+59Odlcui8t6+DdNr3KO9ZfH+4Vo+XdpaVfZng+laWhsWL4DrWFsYUgqpkkaIygt4Fyls1MyJU5z8cO3GLXwMKtkewdbRLT56SJUeGBCp8mzVxpAofhFjObZqYZkd9CZcTn9ygartPMbV0S3d75Zp1bj7wN6+egRS5Sa8vnf+yN+3EklKIpFQVTvsypx326dM2B/psxEyLgAAgDoBfXO/TThROJ0DlZyUolSkbp827u8SjZWkOE6hkkdGKpAJU/MWSm8OL4hEn9war+RqqrT0LFrXUFDqLMJYAiN9ZmVToBVXvpZgxWP4lRkZObSBSdmRUTVBU1npmSpjT9vSg7sICytTDGVXvXJFdaOpjLQMlZ5NmS7CLGOjsuPnKqHKzMymGC6mgtKrEMYmAkqamSWmPrkAqvmgLyrj/ZX9Ow9efJJo1ri1r6eWNhNHiEZVO+yq7I/PAsUGLX2da+O3AwAAAHwSxNxvHoNgMHQbj1s634VVJjzi2oJqJ5pPba10WyBN04hglD2JMKwebxLgGIYokqx5U3ERDMNxDJXsMVLwMlbzlE7TiMksd7zw6hwvDOGIpsu1ydI0nb/zn16ghtQfziyasuy+47D5h271dTXm0PIHM06cL5juuAqHnWc1eOti9srpq+evNt2zpGO5GTUAAACAWgYx91vHsLC3ZOSlqXXMLI0+/7f5ya2VSk9MoYCPpcfHyVDj4lZeWp6WkqVG1R1CX/PHNZTCNjExwDKSk5QI8T69dH7J5SNhPkJgYsxJjYmSkG1ZxZlMnRCXRKGa3HPHcANDfSI5LkGJmpVoY5enpGTRyLiKG2EZmxgy1CkJSRTil0jHZHxcCkPPU6iNs/BPLIBQTa4BVBnXN666bDPm6K75voU7X3zkqnbYMeNWs7b9mTJ6wfylZoc3TfCCRl0AAABfFPTN/eYZtOzYRCv43p3UkuEl/c25fQevRoqqHR6rtTWGvrePI/3w0vWM4oFNVNLDe+9yVVUvEWMwGRitUqlqoQEWIZZJ4yb26MXdx5ISL6a/OLZm4zH/1LJ9ixk6etpslBAZIS98hZZHnD3zrPBHLd+m7nlvrtyKKn56FyV+c/1+TA2riuv5NnFMe3r5UVLx8VFlPbv7MqPqvyemfuOmbtx39+4mlxjnR0ne3n2SZNTEz4WLf3KBmtVdHhcWJeZ7NnUpEfCLrw+qfNgZzgOXb5rl/nDDjA1XEmrlNw4AAABUBGJu3VA93fJDq74bv8SmmYZdZk5tfH/bwv+9SsvPDTmhZ5fMXX4thDao9twC1dsaxnAYOqaL7MHGBRvvZKhohKjUt8eWbHqAa1fjvMIIPX09PCY0VFHdumrcGsNl+MSu2dfWrTjqL6YQQkiSeHfdsg3/3Ung8MveJsd5vl1aG4efW7F07+2o9NyMqMfbZ0458E5aWHvCYdDPXYTvN85cfD00j0JIlR2495c/AzCDmt5vZ3gO/dmP+3TljA0vkpUIIVXOu30LNgaS3Gr8ngjrHyb35wQdWLHzSQ5JI4RoedyZlauuZjiMntxDF6vCAjXCtrC14GY/u/Uq/3HWtDLt/t//e52rItUUXb3DruU3ddMfg7T/t3D64Vc5NawNAAAAUAXQaaGOkGo1SdXSjfmymN6jN23FV62e0euAvrmAyIlL5bT5adOqaR31axLHqrU13L7/HztFzOVbp7c5bmDGV2YrLYfMX2j59+LHrKrekcbYHp072Vw9NqPNfZ/5Rw//6PyZY/Bxu37L9yrWr9gypv1eI3NDlBqTKmgybNuKua4crGzfCFww5M/NWYwVBzZOPL+Wxhh6TQct2r/0zah5AfnvM/XaL9+78s9FG+b0aKol5KulzKY/LlrT6tJPf6TUrHIs015r9+UtX7J1VJsTRpb6skyFa+858wedXHqSVeU/Rdy886J9W3grN8xod0Tb0oybFZ+EWbT9bf+yEY20qrZAjWpu1GvB0jcLVk/v+tzFwZiRk5xr0qZnW9cXT6Mjc8k2QqLyw15mD4z6/741JWn0phm/mJ7Y2cMWZl0AAADwRWDFX/sV9VAEX4Pi4foV/ppotSgxOiGP0rawtdAtO4Cs2qq1NVqdlxAZm0vrWdtZaNPP5nYYH9Vx938r21c16lLShIgYCcvI1kZQa/01KXlaXGyGjCE0txDqfiJIqcSpsfE5HBNrC32OpvfVOYnRCdm0kZWtkW5VZq74JHV2QlRCFmlobWfGx64t6vnLg2bH76zyLp8IK611VkJcao6SZ2RpaaSx/fyTC1Rb/lkhIQytbIw0d3+ozmEHAAAAviiIud+IKsTcekHL0yIScXv74umr5JGHhvTc4LDk5qaRFtAnphxlUlg8z96+eJ4BMmbzD/3+4865cnh0jTtDAAAAAKA8yCHgM1DZJ+cNHDhq5ZOUwjFVVO7DY2cjOM27dTKGc6scKuHiot69Ru26XjT6ikp9fuJiINamZyeYYAsAAACoXdCa+434WltzJdFXFk9ZdjvDuF2nFla6qvj3Tx8FkAOXH1gyxAFiW3m0MvbksplrzyU6tOnYxEFPkvzhyd0A3U5L9mz4wZxZu8/MAAAAAL53EHO/EV9rzEUI0eqcj08fvvoQmyND2ka2Tdt18LKo+VCn74A6Pfz5o+fvEzNkhJbAsXG7tr6W0IkVAAAAqHUQc78RX3HMBQAAAAD4CkH/SQAAAAAA0ABBzAUAAAAAAA0QxFwAAAAAANAAQcwFAAAAAAANEMRcAAAAAADQAEHMBQAAAAAADRDEXAAAAAAA0ABBzAUAAAAAAA0QxFwAAAAAANAAQcwFAAAAAAANEMRcAAAAAADQAEHMBQAAAAAADRDEXAAAAAAA0ABBzAUAAAAAAA0QxFwAAAAAANAAQcwFAAAAAAANEMRcAAAAAADQAEHMBQAAAAAADRDEXAAAAAAA0ABBzAUAAAAAAA0QxFwAAAAAANAAQcwFAAAAAAANEMRcAAAAAADQAEHMBQAAAAAADRDEXAAAAAAA0ABBzAUAAAAAAA0QxFwAAAAAANAAQcwFAAAAAAANEMRcAAAAAADQAEHMBQAAAAAADRDEXAAAAAAA0ABBzAUAAAAAAA0QxFwAAAAAANAAQcwFAAAAAAANEMRcAAAAAADQAEHMBQAAAAAADRDEXAAAAAAA0ABBzAUAAAAAAA0QxFwAAAAAANAAQcwFAAAAAAANEMRcAAAAAADQADHquwLfNDo0LOVxhpqudCGcrTW2iQFCSJGZfTJcrKIQwnB7O+MOxhoOvloiuhCUk00hhBCDq93LW19Y7kpElJN3JyTraZw4VaKUqBCHwzI11PKxM+zmqGPIwEotSslvvM6Iz68gzu7QRGjPxEpWG2dw2vsI7JhY2TIQnZaQcSleTtMIIczQ1HCALbfsBiuE8Y0NhtjzKllCLZFceZf6OE6cJFarcUJPm21vod/N3cCbzyxZB02HF8NwTIvLtBToeJlydUoenJrXjc7OyLsdmvE8QZouUUnViMtlmQu0fR0E3Ry0dUoem08dz0rK5Rjo/eSiXXphzNbOpJNJudOAVofFZN0Ozw5OV2RLVSRG6Oiw7Uz47d0ELYWsii9M6YjwlAfphdXAcCdHk7YCovSGZdfeZCSRlVW0sL64s6NJGwOVpv2tpLZqxGToa7NdrPU7uxi66RBlFy4+gBhXnz/YVYetYT9UL4PTAkUUQghhjEbuRr665bYDAAAAVAHE3M9BBbyLOfBeWflCLB3j/JgrS0nbfz2FQgghxDMUEaMd25bLAaQ498DN6ByKRghxDUwbeegJ8VLB4u9L744F5CrIUpkqMirz8au4A3r8Xp3spnjqFoU4mpScuB0VqqQRQhihZ+wlsGdipauN3Upx2dXbyKBcekqITPz7Xm5+MXbNuPkxt+QGK2Hhw6445qrfvIleejM5W1G8kTiEAj+knr/Dcve1nt/e1Jmbv8ufOLxcvm771jazmujz8bI7W/W6qUS5+29H/RskUlGlVoyIzHzwIna/0GBwV/sxjrz89F2F41khobPDTy7aZQ6+X2/D0jGXTopJXnsj9nVy2d348DHt8v0oKxfzWV0t/fQ1/NnSatHuKxHPcqiiV6zSWc36CjklF1KL/7kVHf2JK4F8jG66wtZ8jfv7idrGIOQfnHLqFsenqfWctsZ27OJVSh9ATtxgrwWu3LKnHq26+TT6SjKJEEIYZ6iJAGIuAACAmoFOC/VDmpm68UJi1QJHKQfe5JTJuEVkObmnzwROv5GWQWl8XyM65m3Eild5qurWo4boD6/D5lwulXGL3yOVwS/CZx+PfCGqSnsjkuXmXbvyfvbtjLxqH8UCuUnJE/8O/OddXpmMW0SUnnX4xLtfnmRLa1hCtZBvXob+dCziVbmMW4Am4z7GLTr4/li8hkidFZn2OqfUesmhac+k1TgVqukTtSWV8tdPQqcdDX+Yo/m3SZPya5fDTqfV1akHAADg+wMxt96kR8Quv5Mp+owt4AwGh8vASzX3kh+fhS1+mC2vxmZUL2+H7o5SfEZFqkotydp0L0NFF91XZxgYaZsKOUyieBcosoLIqRkZ+jzqSGxNopJalLXwv4iQnFJBkGAyOFwGjpVogKSUL26H/PlW/OUCY3458R+jf7meJit1DYMxOUw2u9QfqUKU8/ep0EtZpbMjrbr+Ll2FSh05lST7eqjiy1Rbc21ZHCaDKHXzIScxee25uFCV5l+pSpJz4GzMa2lNL1MAAACASkGnhdqCNeveeEUjTvk3cLyiawkq9Hn4GiPOSh/tT11tqMts0tjedFQbs+7WPC6GKJUyIDx1952495n5i1FJcXnxaj1HRvketxXUQyU9dz7cYbRrL4Nq3B3GCP6c6W7dyt1zRggRDM3byY7OCJUU/J+ppTd5hOtwMxZCSCERn30ctfdFDkNf+MtQ+xbl+3SWOLwKhSIsJnXLjYREKY0QoinZ46DcGTaC6tWNVp2/FeGfXRQCcXNn89GtTbtYctkIqRXylyHJO+4kxORRCCFEq6NjxRmNtIVVOCoVngZEZcdWLclecTVJVpjwcSbHt6X1OF+Bly4DITovW3Tlddy+Z1kKikYIqWRS/0R5LwOtot1Ti7IuRRRkfQzHEZW/ITI4KD3N29Kk8EII4wj+/sWvOHNS4t/3Bz3PoRBCGK718xjP4cLCSmIYm0mgClrVy9SWYHP9WlmPayxw1iYQTUbGpP11L/ZhXEGLfXZswqanBnva8TXuvyglafVl3s5BZmZEVU9XAAAAoIog5tYaBoPQ5VTzeNLKh9fD/hZ4TLBkVbKUIj21xEgdzMbHaXtvI2FhLMCZrMZulvts9Nb9G3QpjvZo4bC8k5FZlTNuQRF5mTvPxVr/ZOvBrvqKGIfN0OVU/YYAnZItpwpbHHVM9LubFuw1W0t7WDcPX8vUWCNhZ33NcbD48HIYQm9b3TzRpDsFN+nzMiUICUov/om6KdJSD70vavLG7H2dt/U0MixcnMHm+Hnb+trwFxz/8CKT0bKD01I/Az0c0VXoTFGT0wDRgW/ig0WFjdwEr99g9/nOvMLqYLr6usO6uLe0iJp0OlGloz+qv+NIm5L7Rkd+SIsr7Dtg5mFuFp/4KptCCGXHZtzMNPtZWFQfjMtmcItWU+MlTxMmq2zNK9jfUrXFmVpDf/CYbldYH4ywtzVdY6l/4PS7gyH5R5gKfZ34uKlOO57mX0fyh+g/hLxtHfS5Gt8GAAAAago6LdQzUiE6cS7yXl4lAYoO+ZhR9ANX32hOt+KMW4Tg6fw62H3RsEa7uhlXN+Pmy4lPWHG1Wv16q43HKo6w2THJa56mh4uLdhx3dDPtLKhqQNTjFs/JQJHVrTT9MSQzu/CGO1ffeGZnoWG5PwUW32D1ELdFIxttaG2g90X/UCjZtY+iojZWax/bGc7lIyFm42q7dajLpvFuo2xK53dKdjowtzAjc/waWQx1LRhjR5Pie4HiKvV0rmltbRvbTrQrez2BMTiju1lbsArOQ6Uo5350JR1LyOBHYRvff8F+xAAAAL5P0JpbW+jo0PhVmWW/7nlGgpk+Gm7X8gS62mJRmpxGCMmy0jad51kNs9IwWxNCiFY9iRF7F/5k6WbchKM5xTJ0+H10qlttzNhSOyNeTCIaITruXcSfxpyNfvzK2paL6kXJr92PCiy7b7iHp1U/M43nFWZurcfHs/LnkaBJ+eNbHx7fwjjaHKGQ52yh19nTqI1RJRNmlShaKTsVXDzeis0rW99P1I1WPYkVF66OWboZVXRIuUKD3lXoqVBSUlzaIbJMwRhHj/+Dc4VdU9SivLdpBRkPw7ltvPUqaNfEXZ2Nyr8qTcq4n1ywupbAsJs1055nxH8uyaVohOjYD2nBbfneGk+tGildW15rL76GLhoIMfUNe9sx9obkp1tVaKxY5c4ueVpgONfKlIxNVCKEaEp+83KYvaH7cBOmpo0BAAAANQExt9YkhydfDi/7otCZM0VTzOXqC9Z11Jl2OklK0QihzKi4P27xdnYXakgMlCI+t8QsUSa8ElujHt30X/BMUmYNnKG/eJ57j6p1J7DzcvxZELrRX0IjhJD6zd2wHUKPOY4ao0tptNz/ZaJ/2VdxkbF5BTEXcYyNp/qkrnkjLjHmiJaLZfFiWXx05u3HsbYelgt6WHhruLtNh/hHTo/CEaIVcmVckjhPXnRMCCdHverVjVIkFB9SvPQh/Ux0TGDM/sCyrwqdHQY4a1d0TJV5iqLq4Eyes1G1qkM+eZcqLhjVh1m7Cl0IjDASdDCNPZ9IIoRkWZlXo6y9nTVMUFszJWtLsHjOwopqy3Az5mEhBc3Moly5uszHDcYe2s/83smQ11kkQkgtyz10NtpulH0L6LsAAACglkCnhfqCmbvarmqnh6OCOWIjXkWs8heryy1H07SyxF1ndulmOZpGdDkURVd97DqGMfr1cOljWdCKRqmlFy9GXMqs5RvdhYUxe/dwn9OMz8A0tluro4OifzsR80HTwPysxMw3H9LffMgIjsorkXGRjqnpKO/KHkWhoZyShxTD2bXX0lkztJoqqg7BJCpoWa5gXXnumY+y/P9jhHY7Ty0CIYRz+nvyCzZDK18FZYm/TG1xJl5JfOYxiz9eKJIq/1tlauuvHGRtVNi3QZyWvO5SckIF8+UBAAAA1QUxt9bgDAaLXfYfg1nxEcaIFm2cp7gXtvHRyqc3Qv9KKNuFEcMJfolhYdkakvDnIlja8wc6uukW9aTM2n0m5oOmqW3LVI1Zbn9ZbAa70rZIjMEZ0tP73CT3kS2MHEy57HLHJyc+af9bSdW6aWL6Fqa/DbXx1JBTK6tbqUNKk1/ikFYLwWEUVUctV2Z86gkXJdAp4enBhRlWz0rQ1TD/6GP2rkYWhYclPSLjQdWmIq5+bVWZFUwWhhCdKireEyaboWlwI8Y3t9jcy5hdeNmTEhK97H7Op089AAAAoAqg00JtwVp0b7zJt5o3XHH28N4uIZlBd1LUCCFSKT59Q06XmTcWZ7sUj5RHkZE5uU14hS11mLW96Q9MBYUQouXXn6SLqjXnbAlMfeG6gZKf/4nLVtMIobykxP2ZxCcem0vwf5nl2aeC4fOVryowMZza3XAqQghRWdnSl+Ep++4npRTMn0pGROSImmnzS6ciri5Pm40QwnAcY3OYZgKdpo6CXk46fE3lf6JuONtFyLiWmp/8qKionLwmPN3aadLFmnbzWe5dtokTI4hKeoGw9XnmbJQrQwghSi1+FaXs51WFTiMIIVp18V0mWTh5hSwjddpf6YXvUVmFvz+1POfGe1mPFp+ct65KStVWJX4drezjoam2lPxJbPFcFkZGWhX0usXsve2XpUmXPMl/ygf18Wl0BANGowEAAKgFEHPrGc7VXTzYIepgaLSURgiRyvIti4w2Jfqepocn/5sonGiRnxkwawez2Q4IIUSrMgOep4s+Ix4IbKw2dJNOvpKhRjRCSKWo/X4LpCxv7akoVgvnec5FU9riBvra3ZvZO9Lykdcy84OZUqzMpOjSPZoxn7Ye1b6KqBDRyoG/LbhgIFVaePKpZOF4s/IxjAp+Fb49WfvXbmYOVZ5njclk6JcbElc5jK3T2orxITS/IV/96kVSmKutU/kmalK272x4moPNfB/d/AOhzM68Fl18wshF0iTNjxuhwt6nxzXVsqmNuWlL11b16lVKlKu1Xdkt00mhiXdSi8fVNbLj4QhVcOHE6NjRZVT6u8NhCoQQokkVPBkNAABAbYBOC/WPKzDaOMBCG68wgpg4Gxf9n1KL/z0beia57ONeaSVZjXvdmuHuvg4LfLW+UE9VUiZaf+L95ejci+c+bAuRlAnR4hKpmsFh6GrsvFtrMFNnY+/C9ltKJT5xJvxy2afOkv6vw2dfTw16GzHtcOiVL/pMWozVy8eIVbjLeYmJyy4lR5f+ddIKyYGz74+8z756IXDSxaRoJY0QHRyUmla1nqx5iRk3UmrpuqV0bbNj43+/mppU6rHVdEZ80tzLyYrCLuJ8C2FPs0r7shDccX1dWgpqbyggAAAAAK25tSguMmm7WMPxJNi8aS0rn5UKM3O0XttJOutWFqmpwQvj6JX8UZqVufnvN5dchX5WWgIWnS1SJmaIXobnZKo/u0sjxurVzTUs491/MWVjtAa0/N6zuGhNDYR6poKfnbVKv0bevBNyMU6JEFLLxaf+9X/qaNTZ1aCRkMWhyNDolAOPC2d+RZippa7+Z15/fapuOFd/WiuDSdcKDrg0M33NX3nn3IV+FloCNsrJlb4NT38VKy94/ERy6t5bWk2GWRiX31wtMXIyH2KTfjw6/7BTsYHh4+NTm3sYegrYHJpMShc9CE6Pz83PqWT426gdprobG6MzQUXz1zLMbHUNyzUAS7LzotJVCCGakj4MzB1jbli9duaq1TbiTeio2DQ/d303QyamUH6Iybj3Uaws7D+D4ZyObUw/2ZDM0NZbPth29KHIJOiZCwAAoJZAzK0tdMLHhBMfNbzB0jH+VMxFCBFN/Jxmpr7bGijV9CVfNiJQamVoUGJokOZtYThW45SIMXkzBziFHfrwLucTHSBoSv7sUewzTW9Z+PDKxVyik5/N2YiQ4PzN0mRCWPLhsOTy67J0DIY20fC032qpQt0w96aO0xMDtxcecEql+BCQ8CFAwyocvuGk7mYmOFaVp6DVEM6d1N8p6NCHwMLDLs3Ou/co756GRTEzN9u5jbXEMdFPMouecCFYPMypMatczI2P7XcwVkLTCKHEj2mvOxj4VWsehyrXVpyRffNB9k0NixKebZ2mO1ZpOjMdE7PNfaVjziTLatrFHAAAACgJOi18NTDWkF4u3SuYcbYI8xN38zF9M6OJwxy6VuMZvGUx+IZrB1mXbxr8TCwD4faRrn6mlc3/z+TpDh/o2EXDRMNfAM7+sZ/Xr835RKWHlG9q/NtIl96GX7xKTL7htlFu7cwrfT4CxnBs4rh1oJkFQd4OzCjqFWDuIvQsl3ERQlrmgrZGBWeCIi/7eriiLmuLEexWXT02tq/6U3wxa3e7P1vrwqcSAACAWgFfKF8RjK3z22BHJ+3KUtfpCa693HS45TINW5vn4mE+92ffsxNdR9lxP/P3qmdpubmnkFXbHWS5hoKN45qs6WFuLygbonEGy8nLevV4z0m27Lo7KQl2/x7ep8Y4dXbWZpd9QjKmI9Dv2d3j8DjnblV+BPFn4ugbrh3nu6mPpYtx2V8whjPM7E2mj/T5u4+pJQNTS7IvhMkL39Jq7aGrOW/ivP4eOoWbUgUEZ2TW3hwGldSWweG4eluvntxko59eNR/MR7Ru7zLetWoTTQAAAACVworvDlbjkQKgzhUlTppGCNEqxftEcZxIlafGdHlMYz2euzHnm4oGVHa2NChFmiZTkwShr8NrZK5lVIf5tjxSIQ9KlCSIVSI1rcVl2xpruxmw6m9IFC3KkQSkytKlKhVG6Oty3Uy0LWoyd1vdKKqtmmYyBLo8TzOeQdnLBgAAAKCuQcz9RpSOuQAAAAAAoHJfbfsQAAAAAAAANQcxFwAAAAAANEAQcwEAAAAAQAMEMRcAAAAAADRAEHMBAAAAAEADBDEXAAAAAAA0QBBzAQAAAABAAwQxFwAAAAAANEAQcwEAAAAAQAMEMRcAAAAAADRAjPquwDdMoaZUVB09ele78D9iJVk3JQIA6hhFIxz79GIAAPBJDAzjMKEpE2LuZ0jMU+x+kVQ3ZW0s/M8fd2LqpkQAQF1yEfI4TDwgSVzfFQEANAQ/+xh7mWh/ermGDmJuzZnrst+EZdVxoXVfIgCgDpjx2WwGDn/gAIBaMb+NZX1X4asADdoAAAAAAKABgpgLAAAAAAAaIIi5AAAAAACgAYKYCwAAAAAAGiCIuQAAAAAAoAGCmAsAAAB8TTCMYGA4fD8D8NlgQjEAAAAAIYQQxu7f22GAQUHAVJNktlgemJBzMSgrR1GlDRiY6llrY6mpuUl5VI1rIXCwPtZDiGWnDfsnNrvUM4iwJm2dZ9oyy61BXrgbejb+cx8ehOHa00Y69uXKV5wKeZRVRw8/AuCLgqtFAAAAIB+mq8Oy0mMz5LKgNGm0hBIY6Y9uZXdiuGMT/ap8XWLePtabe9r9bP2lmpC4XJalHtsIV3/MkH4o+pcuTVHUQirFcEKfgzMZDD4THscHGghozQUAAABKogPfx20MViKEGBxe324O02z4v7UWDLuUpq7vmuXLTU5fdz2j1ptbKXXe1tOh/7DUcak1b4oG4KsCMRcAAADQTC2X3n6dOdjS1MhM14pIiyIRQoSVo7C3k46dFp6TI7n6LuVtqhohhBG8Hu2NOxgRCGHuLpYzjOU3XiSFS7jdOxg5YPKL/nI/X2FjHRQZkbI/QEQh3MjKoJsz31WPxUVUarbk/se0F4nKz0yuFs5m/a1YafGpVzM4vRoZ+ugTcon8ZXj69XBpUW7VMdLv7mnQ2ICplsoDYjNfSLX62XNkaRmH3okRzmnlLXDE1bckiSF5NNdAf0hjvpZCfPylxN3HqKs5l0eqwpKyT/lniVRFZWo+GgB8JSDmAgAAABVSK9RiGhkTOAtDCGO26eS42I2blJj9JFVpaynYMNjg39th+0PlGIbztRi6DAwhxOEwjbVJLoYwnNXCWdCWQXZ0wPkMKl5EaekTNCLcm9uvaa7LUylfROdFYuxWTsZdXYUPnkWseC36jHZUTGCiP8CNm2vC663N1Ver5QTD0Ey3rb2+Byd0fZAMIaRvab6+t4k9g4rLkOfp6463NxwqIQXajFyW5NA7MYazmzsZtmcqY4OTQvJoJpfX3UVgpNJxtyOceChThQl5Os2s9DubsMZcSpHTlR2N2jr4AHwmiLkAAABAhQxMtc0JTJWtSCWRmavlfDdedGDE9Ps5JEIEK33UIKfh7axfJoYFiMUnLkak9PRa5sh4ExC1NkiJEMILvmMJRVrKzzcTE8Q0jiMtI5NZvjralGLXxZAziSqE0Alryy19jNs1t3oY9eFeFcZ+MXlcVxt+fiCmVIrIRHmJ0WeYHp9x/0HoriAxYnF7d3ecacvu4C3cHxyXgzi9WxvZE8q/LoaeiFUihFt7WG9sb1h5p2OCzeLGJwy9nZqjxO0b2WxoY2hiJexklHolla70aMAINvBVgCFoAAAAQEmYwEDHxYbvbm/Q1c/2z1Z6PKR+FJSeg1it3Pg6lOTIm9z8WEkqpdcC81Qc7WFuvMq2R0m23ExMENMIIYpC5nZ8WwaWG592IbHg3n9mXMr5JDVicLvaV7qdwuoZWJrs6ue0p5/Tnn5OOzqZGJT6JqfjQxN2BIlJhEil7N7rjGSSZmmzBQTiGfBbGuB5Cen/xSrzqxX3IeVy1ifmZ1BJcv64mZqjRAhRUYGpt3JJhDOsdQmE1fRoAFCHoDUXAAAAKAnz9bHz9UEIIUTTeXmSY0/jjwRKMQbfyRCnSby5l5lVYd8ChhZTiTBXU20CSSoOjLRSXdS6iRnpsQmE4tKlxcvT6qhMFW3JsNBjIyT5VPXozLiUha8KwiWlVmWV7uigVhf/rJSqsihkimE4QmxdthmOJWfJisqlKXl4upoSEpWVRlGqwu3RtCpdSiM9DMcRTnBrejQAqDsQcwEAAICS6OevI/dGq0iSFEsUuWIqP6LiGMbEEcJwLpuhSxXGVrXsUqBMIZJVeQoujIljCCElVeq2PknSNEJMokq3WNUyeUSCqLrdAnACZ2JIqiqVPxXqmnYGrp2jAcCXBTEXAAAAKInOyZXEJinLvkoqkyU00lZdexb7TlbzjefK1DRiCrVLPuUB09dm4AhlScoWWovUCrWYQkIdNkLiwtdwPpeoWSStpaMBwJcFfXMBAACAT6Mp+YtYOc3g9nDkFr1oYCHo5SNsZMbKD4tKNUUjxGVW0g2Ajk+UiGnMzNrAilXwEpPH72DJwCjVywTpl6u/NEMSpqLNbAReWgXJlq2r19Wyho+CqMrRAKDeQWsuAAAAUBXUx7fJD+xsO7ewiVIm3ExSGpgYTmtn6k3INl7ICkAIIZQtVlGI3cjZpL0s6214rljTVjKiUv9L1RtrrL+ih8WGV1lZOKdbc4s2XDwjIfm/mCpNOqtloDe4Oatkb4P4+LSXSZ8aTCbLOx8qa+Gls7yf3c5X6QmI09PXzJeN1XROhE8fDQDqHcRcAAAAoEoUouzNF1FaO/MxXZ2nYBhNk7GJmb89jH+dnh8x6ZiwzCBPLW8jwbKO7F9i8/w19UGg1LJTlyOkbS1G2JlsszHFEE2pVK8+xm98mCqpUuTEtIX6U4X6JV6hn1O5L5M+2RJM+j+OXI1ZT3XTW9zTANFUSkrWgRDueFeekqxJ1v3U0QCg/pW4jKNhlrvqUaip7rve1E1Z92Y3y/9Ph60v66ZEAEBd6tPUVMhjHnwQV98VAVXC4rF1uUgiVsoUZb86GWyWoR4hzZOLZJ/4ViWYDF1dJoMmc/OUyjp8dhjBYhroMSi5MiuPatLBfZ0XJ8w/fOrD3BqHgEqOBqgvJ8Z5m2izPr1cQwetuQAAAED1KKWKjAoaT9UKZWpqlTZCqtTZmXX5aFzc0Izf1IJ4+TYjPU2FEMJwrpcZE6fJ96mfiuSVquRoAFC/IOYCAAAA3wGM1dnPapIZI8qIveVNVrIS9/KwGGBIKHIyz0R9wRkeAKhHEHMBAACA7wAtP38jGm9n8aON6U57M4QQoqnUtKz1t+KSVfVdNwC+DIi5AFQVS9tgXn8zF1z1z42wW6k0Qoito+ViwlJLpB+SoEsaAOBrpxDlnbj84T82y0CPySWQWCzPyqvR6DMAvhEQcwGoKgzHjXQ5VgTOJ3CESISQjqnR+h4CVVx8v3MpMLQYAPBNUCuUaanQSwF8F+DxEAAAAAAAoAGC1lwAagZz8rbsba9FIIQZ6M/qyomISr4YoUAIIURYOQp7O+nYaeE5OZKr71LephYMpubq6//YTF9Xkns0WNWusbC5IUMhlt0OSnmSoOTq83v5Cn118bQs0ZnXqTGimj5oHgAAAAAIIYi5ANQYh80UcnAMIYxgCLWY2fmPt8SYbTo5LnbjJiVmP0lV2loKNgw2+Pd22P5QOUKIwea0czQwl/PcXdgOHCRHGNdMt62DwY3XaVquJq14mBLDOBa63R35f5wJe5IJSfc7IpKrbfTZvX1N67siAICGIE2shHlzEcTcz6GAjvvfNTrwZWRSju3xHmxVevqSwr65Zq6W89140YER0+/nkAgRrPRRg5yGt7N+mRgWIC44YRg8DjcmaditpCykNbiH/XhLdvemZnHRiYNvJEvZuj/3tB1moj21qcGT6xn1uHug7mkxCWNtZn3XAgDQEDBwrL6r8FWAmFtzbALOIVAaxmrlxtehJEfe5OanXlIpvRaYN6ST/jA3XsBLSf5SamnOnzeSUhUIIcnVF5m9zUyNVXnrbydnKxFS5p1+ntWlj7GBAbf+dgPUAx0OI02sgqegAQBqRedx3vVdha8CxFwAag1OcJ0McZrEm3uZWRX2OGBoMZUIczXVJlBhzJUr0wpHOSvEygwKCeSqdEXBK/I8RRqNdOBCHAAAAPg8EHMBqD0YxsQRwnAum6FLFfZpUcsuBcoUIllFubVc3xcaesMAAAAAnw9iLgC1hiaVyRIaaauuPYt9J6vv2gAAAADfN5g3F4Cao0lKQSOMgedfL9KU/EWsnGZwezgW96w1sBD08hE2MmNBLwQAAACgLkHMBaDmFGJlJkVzBPrDvQX2hgRC1Me3yQ9EWOcWNkNddPR02XZOZot7WM9pLjShYWIOAAAAoE5BpwUAak6Snn0lWTjFnPdzO2vT+6LVmaRClL35IkprZz6mq/MUDKNpMjYx87eH8a/T4WHAAAAMZcoPAABPs0lEQVQAQJ3CiluYYNxLNSnUVPddb+qmrHuzm+X/p8PWl3VTIqgqjNA3ZBNqZWaOuuSfEIvH1uUiiVgpU8BfFvi0Pk1NhTwmTCgGAKgVJ8Z5w+MhELTmAvC5aDI7Q1r+ZaVUoellAMB3h2BxfH2MWmnLN99J07wExnBwNeppp23JxUQi6d3g1CcJyjLXxzxD4cKexlY4hhB161HoP1HqUkWwdScPtGrGwhBCH4Ii172VllgeIUTLlWRyjuRZeObtCEn+rSWWtsG8/mYuuOqfG2G3UuFqHDRMEHMBAACALwLDGY7uppObCRtpE6Q4azPSGHMZLTo4/enBU0tkr9LV9jZG7R0MLtwL2/ZeVnpThIkuxxJDJI56OOn9Lyqj5NPA9Sz0Ows42jQiCJTJJoqWt8JVb6PEyTSmr81pZG/UzlH4Q2TCjGupEgphOG6ky7EicD6BIwS9qkDDBDEXAAAA+BJw3/bOazw4KWmyNC7PsIKFeALDMa5cXJb368nwYAltYG25rY9xr6YmJz9Gp1JlF1Zkifw5Wr7mfEtGRmxxey7uZKuji9QvklRNLUs/QJFWHLsTGSBHCCFdI6OFfS1a2JtNdMnZ8kGBAPgOwEwLAAAAwJdAhYelrr38YdzFlNhygbWIWi7acStm6Z34DxIaIZSTmPteSTG1uQ7aGiYhpNWSu7EKnKfdzpwoehFnavlZsUiJ6H6yuvwqRfLS0v8NV1AY0cJKp+b7BMA3BWIuAAAA8EXkJGTcjpJVHHERQkgplgaHZT4rXIxgMfgERlFkjubRq/T7iLxMmtneXqcoBfPN9Jrx8ISYrJhPzFtIS2RqCiE2A2bxBt8LiLkAAADA18LUyaARE5Ok5kVU0K0gNyn7qYQyt9IXFnyBY7a2uoaY8na4qPI8jTCmsymHQCguG3osgO8F9M0FAAAAvgpsHf1RjXXZtPLk24yKoiilljyKVvTx1GljQpxJIjGC19KaTYmy7yaptU3LL85wsuTLVYjNYXnaCYdZsyi5+H8fRF90LwD4ekDMBQAAAOofzuD06WzZXhsLe59wPFpV8YJ0VGRuuodxezuts0l5Osb8FjpYbHB2Kom0yy9LcKf0dCpYjSJjkzL2PYp/ng3Th4HvBcRcAAAAoJ7hDHbXrg6TLFlpcUkLHmRVNpQsv9+C2KinjZ7uE5GFLd8EUx0IF2mOrqR065VYfwVSq1TZuQqZ8kvUHYCvF8RcAAAAoD7hDE6Pbg5z7Dk5ySkzryblVh5yEaJJ6aNoRT9P3ZZCLTMbDpWXcy+5oolvydhkcZy8tmsMwDcChqABAAAAdYrJZfO1C75/CRZ3QC/HOfYcSXr6rEsJ6VVqcKWjI3JSEbtbE6PWenh0TFb6J0afAfCdgtZcAAAAoO5guNaEoc6DeNJfjoa+lSD3FrZTbTg4TSZI8N5+1gULUapbr5KiJBVuJC8l54nIeLCjAaKVu8LF0NkWAI0g5gIAAAB1icwUq3JoRY6aRgjjMHCEEMIIN1uBW/Eistjg5ChJhfGVJqWPo+SDGmupc/Lup8CjegHQDCv+G6LharB6FGqq+643dVPWvdnN8v/TYevLuikRAFCX+jQ1FfKYBx/E1XdFAAANwYlx3ibarPquRf2DvrkAAAAAAKABgpgLAAAAAAAaIIi5AAAAAACgAYKYCwAAAAAAGiCYaeEbUzQWDQDQ8Iys7woAABqI2fVdga8DtOYCAAAAAIAGCFpzay5VrLQ2067vWgAAAAAAAA1g3tyaU6goCg4aAKA2ZGZmUiRpYmJc3xUBADQQLAbcsYfW3M+QJVLkSFT1XQsAQENw8shRWV72L4uX1XdFAAANgYEOPBsCIeibCwAAAAAAGiSIuQAAAAAAoAGCmAsAAAAAABogiLkAAAAAAKABgpgLAAAAAAAaIIi5AAAAAACgAYKYCwAAAAAAGiCIufWG+uwnS5BqlVKh+vztAAAAAAA0PPB4iFpGKR5tGb/ug4JCCGEYzuBo84VWDh5tOvXpbmfILFyK/HBs0oprDisPL7BnYTUtigw8OHrlNfuVJ5a7cmq8ka8KlRP18n2qXqNmLlpEfdcFAAAAAN84iLm1jZblpKbwO/0xub8dhmilNCs1MuDptS3z/zs5dOGGoa3McAwhhFQKuUouU1L1XduvC53wYM/2O97rfSHmAgAAAOBzQcz9EjCuvqW9kxuBIYSQu0+bDv0GXl097cDq3012725vw0SIcP9h3YbObEt2w2iFBQAAAAD46kDMrQsY07zr9EkvXi27dP5161ktGRiV+PrCpUCjwVMHmzERTWa/v33q5v03yVlKbVN3v74jO/qYEBiiVcFnNv/H7jDTT+fV9RsPPoYlM4w9Owwa08bdANcUj2ll8vNz/9x9HpwhUnMNbBp1Htmvi0tRkJYkPL1+4ebHiOgsGdPIoUWXgT80sdMpWJHK+3j7+NXbr5NFmLFT+74jfnAxKuhfIQ4+ue9MdvfpvbOvHr7zMlzOMvVo90PfXo21FJF3jh96GJDEEDi17Demk48xUViQWhRy598TTwOiZITAtfWPA/o31yvYmOzViY1vsB4/d8avHTvxOiwV1zV39RvSr3djHQLR6vBLO468CY5VZImPrc0wtO83dlhzuAoAAAAAQI3BELQ6wjRs3ayRbrz/ixQ1QojOCn/y4H5gLkkjJHq2a8rqw6GOPWcu3LDphzb4xd/HHXuUTtGIJpPf3b1679yaP9ddZzh27T9isD16sXPO2P89TSs/7IymMm9vnLL5vzjvoYsXrV03qKnq8prp/zzIyn9XFHLs96m/Ps2y7jZ2ycyZI61F19bMmH7towwhRFMZ97ZM2nI63WvA7Blzp3hrPVs/Y8HTeGX+iqr098/uXT2ydPLJAKZ3x24O2rEXNk9evvnY0aVzr8cZN+vU1lD0eM/cn/ZdjydphBBSZTzcNmP2wxyX/lOXTRjdRf1sxdI/z6Sr8jemiPe/dffy3lW/rI9me7Tt3tmKCDu3acqGQ/4qGiHcwLFZW3dLfYJr6eXXvom7OVyBAQAAAOBzQJaoMzwLaxPV67gMFW3BLH6VVoY+exzr2ndlz9YOBIYMOs1Z12wiS1sHxxCFEELqiDcZM/bu72LHQgg1adnWcuPo3TsPtGiy0IFTauuUJDQyVafb+CU9WxjjGBIMmNj2xsiXD16NbNeNScVf3vO3pNFv6xb11iUQQo7Wi80N/rnJkOVRNDfzyZ4jj82m71vU1IiBELJxdNOR/nxo5wXX1UP0CYQQoskkuenKlYt66BGI7tfTZt3obRe3ov5b/pzdVotAdL8uJgtG/XvsZM9Ov9iwRA/3b4ywnLZ2Th8+gRBytHc23jbh1/9dbzGjt3l+C7QyW9V89Z7eXvo4hug+3c2WjTp0+Uz4T43cOIaurTqRYccZEVbebbtaMxEAAAAAwOeA1tw6g3G4XFopl6tKv8ywdXXVD7y08+77dJJGCOE8HR1GiZv1Bt69WlizCjaB6zYf1EuQfu95oLzM1gkdv8nbjo3vblyQJqWIycUl2ZkKCqnSn73+wGrVu6Nu4bgujOXQbezUTo2NcUz04sZDPb/+PsKiCx6uT/9e7ICLr+ILKoox3PqO6axH5FdA37eNL4/p0XOYX/4oMYwwb9vJR50al6GiybynD54oWvXpzC8sCOc16t7N+vXVqxlkwSu6Hv27eennVxLDjZq38qDyMnIVn3FcAQAAAAA0gdbcOkMrFQrE0GKVbqfEcMOu8zdIt/65b3rfc15dewwZ2bW1Q4k+qYTAwopb4mKEbeFgyslNiM5EzUzLFUHlRD+6efHSi1fvczE9hkhOW6pJhBRJ8Rm0hZUNS0OdVLGxsWLaNuT25fTiV9WpGBURHirrasNECCGMxS7ZSRYncJzNZhfXiclkYkiGEJLFRSTKmYKwK9dTi9+VZ1LSyOAEBW2k6VxjMJg4ohFM/QsA+G6pM1+fP3Q7rfGMKR21NA1IUGQEXDz6n7Lp3BFtDPNfoVXpLy/+7/rDgMQsBYtv4tKke/8hXSy0MYRQ9suDm08FlprFh7DsN29WM40fwQA0dHDe1xllUnwq09BTr9whZ+i4D156vE2/K+f+d+TIkuHXmk/59ffRNoWfdhheZm4tgmBgJFmmTRjRVM6ro0t3n07w6Dty/LrlrubE5SXdTuQihBCtUlGIQRAaW+7VapJGNEWS6uJPV8y2x7T5po7V7jdAq9U0TVMkSZHFn7Es257jpxuZwgRhAABQliT09tG/9vzzMiZHy0cwmUKo9EclJYm+dXTHwZN3EkVUe+OpNEIYQkgdd2rhhN2vdPqO+Xmsq0Fe9NMzB3+9dnPkpr/mumhjTL65g5Oi8P4ZnfXu/Pk3os7z63zPAPg6QMytI5T4lX9QjlGTJuZMjdMHMIy9+k326tH19vpVa3btOui+enozAiGEqKyUZFWJ3xMpycyVMm2NDMtsPu3h1u0nModsONzPi48QQkhWvGk9Ay3kn52lRoblGnRxY6GAmWDUuFu/pozPntaAZWSsR+Bm3v16NuJ8eulKQOMuAOA7QCsibl0Mchm9s73/wt1xGhYQh928+dF40vZ19xcsKmo8SL237+B98sfN+6a0NUQIoeat/RrpTxm969B/fdaMcdJ27jbKuWgDOafnntR1b+VpAN/14DsFfXPrAk3lvTi872WOdde+fpVOksWy6zxrQEt+fMDLdHXBqpmBd4MzC6/MEZXx+kUc4eXpxSu9IhkdEERZt2vpxi8utDAscqw9bfkJwW+TyMJXaCrv3c1TjwISKdyoka9TwsuHicriaKnOC3v58HlSLomqiWXUzNMu1//ZB3XxxqissMcvXkVIqrYxHCdoUk1CzgUAfAcwtvf07bvH9/HgaZwkEiFdn0mbti/o4KpX4m1V8PO3StOOnVsYFL2k7dSnoxf7w6vXktKfnZTozQv/PLeWrQ3gfhr4XkHM/SIoiiLValKtkuWlRLy+eGjp2E3nMttP/7OnO7fMkrQq+uq2BQcvhKpohBCi5KmZOWpdYwudgt8MxqHe/r3uWIyIRojK+nh238GHNn1G+wrLXJoThsYCZeK7kJT8icCo7I+XXoZKEE3RCOGcpj36uvifXHf7fTZFI4SolOf7dq7f/jxCiRDh2GdsE+ry4SMv8tQIIUQpYq9t/nXHkWcSvNrnBsaw6TmqZ/qVzRffpuVHaknstV3LFl1+k1W1jWG6fB0yJyFDBDEXAAA0IkUiCdtQoE+UHDKhJxTwZJlpOepSH555Ac+CRbbN21jDNz34bsGNjC9BHXR89MDjCCGMwdHiC6zsPdrP3fVjc2cBUe6KHWNa+7R02L1t5qxbLrZCLCUskuk0at70PjoEolQIIcJz6GK78H0Lhv6jp49nZ1CuPRfPHd+sXJMwbtd7ev93S3ZNHHTN3YYhSRezPd3dLUJC4tOVtD6X4Tli9XTV6qMLB503teGjtLhkZpOf1k8cYEtgiNBvNXX1ogObVs/6WdfMmJUdl6jtMXTJhtGOOjXoxIAb+81bOHvb3g0jb/EtDZh5ScmYz8ANY35sxq3SxnBB4/ZOjFUbx/X1Hbx+3gi38ocLAAC+b4RAoC97GxEvowXahR+RZHJ8vAhnc1ilPjNVgU9fKq1aN7HTMP4YgO8EVnzpR0MTWvUkZ8lyJGWHgtWUMicpPkvGNDQ15/MKbi9R8lu/91ukNfbcr0MtKHlGclIuV2gt0K3kyoSSZsanZJH6Ztb6WhruUdHK3JSEFAWhJzQ11ir7uUdJ0uNSs1U6xjZC/udOWkuT0vT4BDHFM7Kw0K7mB6wiOzYhkxZa2Oh+Xv9eAL4tJ4/sl+Vl/7J4WX1XBNQ91d2VfTfG/PC/faP1NPUuoJXP/+g7lRx5acUIcwyhnJfrR009aTVix5qZrbQJhJD0/ellv6y+atB356E/OhZ9fNOqoI0/jA5tsXPvry2hQes7ZKDDIiroDPNdgZP/K8HSM7PXq/htBldgaS/41EZwnqG1nWGFb2Msvqkdv4I3cS2hjZ3wUyVUDUbwjGycjGq0Llvf2l6/dqoBAAANj57vxHmjgv88NPnHh97ujkJ5cvD7kBQpbdirg2/JJgpZ9HP/BJ12rb3hax58z+D8BwAAAL4duF7bGQePd7x3/0lwuhQ3aN7R7eGWM8m9e7XUKbEQGffsWbJOs2ZeZQeEAPBdgZgLAAAAfFsYxu5dfnDvghDKeLlh4jO8/4ZRNiV75lLpL55+FDRZ7KLxgRMAfDcg5n69cE7HxefuYwwt6F0DAACgPCrv+d41J7idV4xoXaq/mir75av3ZONfm1dt+C8ADRZMM/I1Izg8LTaMkQUAgO+JLOLI5GHrPr0clXpp7fK7ik6z5nTjlx67lvXqaSjp2aIlDHQA3zuIuQAAAMBXRBzxMUto+6mllO/++X3HbXzE0oXNys6kLn379C3LvY0XPPwMfPdgQrGaq9UJxQAA3zWYUAwUUr3e8fMxfNG2aZ6VL0eRJI0wgoDmKqABTCiWD/48AAAAgK+HLDZe6uhq88nlcIKAjAtA5eCOBgAAAPD10B20/kJ91wGABgJiLgAAVBslT3h+6fTzgNDkDAnb0LFptx+7t3UsfAq3PPb5uRv3XsfGpyqZAqemvXsP6GQK8zoBAECdg/sdAABQPZQ85PiCMbsupjh3mzjtt1+7eUovrRy38XigmkYIyQP/N3fhH6dUNj1/nvfHmMFNkq8tW/TrX3EKGPwAAAB1DVpzAQCgWqjIi9svxXr9+tcqXyGBELKx/VNocDBAKpNQiJ14/vDRsLZzj0/sYoxjCNk7zDMTnLuXJ8ujkJD45KYBAADUIoi5AABQDTSV9uZpsGmrVd6CotjKdOk2yQUhhKjoF4/itdpMamNUNMRZy77HT/b1UlMAAPjeQacFAACoDnVScrLazMZeU9ssmZKYzDG3M2FBT1wAAKh/EHMBAKBaVGqSZjAYGqekVKnUGIMBszwBAMDXAD6MAQCgOnA+XxfPzcogNQwqw/UM+OrcjDx13VcLAABAWRBzAQCgGjCGjZOzQUzAyxyy6DUqI/ja1euvM1WElasbHv82JLX4+Yiq3KA7Zy+FJsMTEwEAoK5BzAUAgGrhNB0wUC/8+KH//KUkQggpM54fXf/nfzdCaAzxmw7sZBf979Z/ovNIhBBNZj79e+Xuvy6mkAghJA48sHDaxlApTC4GAAB1AWZaAACA6tFy+vnXZYo9u+ZOvmRqZoilxyTqePz86/xhAgZCyHn48lXkxo2Lfzprai0k06OymN4//7m4jTkTIUTJcjIyclRUfe8AAAB8H7DiVgUaGhiqJzlLliOBG5EAfLdUOUmxmVJC38jCQJdZ5j1FblJympjFNzES6jKqMO/CySP7ZXnZvyxe9kVqCgD4zhjosAiN42S/M9CaCwAANcPUM3PQq+A9Nt/Mhl+XlQEAAFAW9M0FAAAAAAANEMRcAAAAAADQAEHMBQAAAAAADRDEXAAAAAAA0ADBELSaCwv5EBYRXd+1AAA0BBJxHqLpuzev1XdFAAANwaABfRBO1Hct6h/E3JoL9H9z7+7d+q4FAKAhUCoUHBYzITamvisCAGgIevfqxmBw67sW9Q/mza05mDcXAFBbYN5cAEAtgnlz80HfXAAAAAAA0ABBzAUAAAAAAA0QxFwAAAAAANAAQcwFAAAAAAANEMRcAAAAAADQAEHMBQAAAAAADRDEXAAAAAAA0ABBzP3eURT1JTarVimVKvJLbBkAAAAAoCrgKWi1TJl6ae3cvbEqGiEMwwkWV9fA1M6zZZ9u3Zrqseq7csWo7Ijb54//78mb8Mw8GcYzcWnef9ikMZ4mzPx3c6Jevk/Va9TMRatGTwqkqbQzvw68yp63f80ANsxODQAAAID6ADG3ltGkJDs51Wr4zp/bGyBKKcpKCH916dK2Kfee/rZyxWDB13G8JZEnVszaKnUdPXXrVk8rTlbojSMbN6z6VbRq31x7LoYQnfBgz/Y73ut9axhzC2EQcQEAAABQX76O2NXg8PRtrO1NcAwh5OHVoou7/uTfDpx6Ht23t+PX0KKrfn/1fAzeftnSqY34GELI2L3f9N/177yRYjIKcT8r2AIAAAAAfCUg5tYBwszJUQe7m5db1FdVGffy7NVrj6OSskimvoWzX7fBg91M2QghWh15dfc/VLMRxtEnLj+KwE07jZo70lYLU4tC7vx74mlAlIwQuLb+cUD/5nrMssWQojf/7bnIaD5pYFszHEMIyQPPbb2f4Dp0cj+TUgvTCoWSRjheItDybNr2sUEIIVodfmnHkTfBsYos8bG1GYb2/cYOa05FXzp8KqXVj94fTh57G6e0aT956lCfSvYiX1FbLk1lv/p37ytRo6GjewhZCCEqO/TG+TPXPsbmsIWubQaO7uRjSkDDLwAAAABqFQxBqwNUSkSkhGVrbZUfNuVBJ+csWHgg3bDd0CkLRv3YgRFyZOnkmXci5AghRGV+eHj15LqpB58yWw4Y4edmwmZhqoyH22bMfpjj0n/qsgmju6ifrVj655l0VdliCB0nC0bwv7v/CpXQCCF53Pmj+y9LhG7CstcyTNeWzbXF9w9vOxOXV26UGG7g2Kytu6U+wbX08mvfxN2cgZAq/cOTG0c3zfs9lNuy95BetgLuJ/aiBJrKerJ3ztYzKR6d2+dn3KRHGxYt+odyGTzh18UD2/DvrBm/92oMSdfKoQYAAAAAKACtuV+EWikS5XEQpZZmxb5/cvq/0/FtJ25sJmQghBRJl44efus26uDCka4MDCHk7eHrypw64fi+i03WDuUjhBDi2o38fdVPppz8Fk7Rnf0bIyynrZ3Th08ghBztnY23Tfj1f9dbzOhtjpdqBNVpPmqq1+Olp84MWTLS7OGRfxJNhkzv71C+oVTQauaCmcpdf62Z9fRk2wFjBg3pZsUvOBMw3NC1VScy7Dgjwsq7bVfr4mZg3HPY1lmDnJkYQggpkv6rbC8KSsQQlfVk75zd9/QmrV/bzo6LECJFj49su+M18eiYriY4hpC9s41A/svyjS8ab/UzhbMRAAAAALUGWnO/BPWLQ2MmDeszaXifqePG7ToZbNVpVLeWNkwMIUSlv3wSqfbq2NOJUZg+cY5rpy6e2e8ehorymzQx2yatjQpnKCDznj54omjVpzO/sI8BzmvUvZv166tXM8o1xTINOwz/uVnImX33Hh898xD1njzKhqOxN4C2x4A/th07PLaHadB/S2YN/3Hb4XvpZdthS8EIq0Yt7JgFG6vKXiCazHywa9auu8UZFyGU8exaIN2qUzvjooCu5z2glWngnTsxnzioAAAAAADVAe1nXwKj1aTT8waa4Bii1aLEj09vndizZMx/Q/7YN7QFPyUpmTD0NtEteYGBG1lZcVRvU1OUyK7stmRxEYlypiDsyvXU4lXkmZQ0MjhBQRsxyqRY3K7X9K7Xx+5e/syk9e99fPUqqSXL0LPP9B1dfgi4/s/es//Me3l/0K8bfvMWVmUIGvWJvdBFCKHMZ9u2Y3o9Fm9qY8stXEYdHxGlZloE3zgXVbyqOg+joj9+RMihCkUDAAAAAFQJtOZ+WRhDx8Kz2+jlG3tYJV48ei6TpNRKNcZgEQgrvRhBIJVKpaGDKq1W0zRNkSRFqov+sWx7jp8+wFRzIsUIApEkiRFVGtbFETbqP2f3pnUjebFn/3cqQF2lPrJ0VfZCr8mEsd0M7u1b9SxBWbQMSZIIoZL7QpHIsfvM4T1cqlIwAAAAAEAVQWtuXcCYVtZWuorA5Gw1rqvPJ/MyxCSNSmREeXaWDOnx9TXkVpaRsR6Bm3n369mIU4WiqJhru69Fu4771fb85p2XuvsNb6ZbhbVwgVdXH8uTLxPiSdSk+JyoMPJWaS9wtnn3eeukC6ftWrJJf8uvbgYEQrjQ2AjHjBr3HmLHgrkVAAAAAPAFQcytC5QsJDQil2tsYcBgsD3ctA/fCXwv8fDVLnxfFPDqPW7WwdGo3CRhCLGMmnna7fZ/9mGgd+PCHgpUVtjT8FwTj8YOZR7foMq6f/zIE9s+u3p0s0JP7p3Ye9jPa0aZ7rk0JYp8fj9K6dCunWvRI8rU4oTULMqwSUEDMY4TNKkmUakUWwJhWbW9wNlOQ5f9mTH7l81/mi5fO8qcg5s2bSY8cCEgVG7nyS2sT17Y89cqk8YednpVPJ4AAPC1kj4++Of/27vPOKmqg4HDd7bAUpe29N6RovRQ7aIoWBEN9hIjajQ2LGlvLFHsBSzBLmqiQQXFHgUVBEEIgoqKgvS6tGXb7Mz7AQSkSxE4Ps9vP8jsnbtnFrzznzNn7n3ji5981iGj9tGXXXJ0udQoiqL8JZOHP/1iQfsr+3WruHM/ILnm0yE3PTfzJ+/+pTQ+5uqzDq9eMOfNQQ++uTS+0XdSax1/5eUdqmz9uT6xfNRjA9+d3+zcq86oX8rsA6GxaGEPSsbzVi6d89WYlx66bsB7c6sd89veFVKj0gee3KNV/msP3v3Z3PwoiqIo75s37nhhVE7Xvn1qbqFyo1ha3Z5n91z8+t3DP1u09qxbObPeGPSXG16buCxl07+91eOfGjypqOvJpx6Unpp1+Ll9K85+4bmXv9nkXF2xlOKrv3zp4ZuuHvLKlNXxKIqiNfPGPnvLfVNT2h9/4tqSjpXNLFO0fM6SVVudzt3xR5FevtOFN11bffbDd9791vKiKKPOCaccmTp80CPT1x2JC2a8NfC2mx/5esWO/14B9llp5ao3atC4ybqvRtWXT/vv+K+WxaIokfP9Ww9dedbJZ9/37PAvf8jb+ZMopmbWaNR4/Y+oWzV/yvvvz8pOiaIovvy7T96bHKvVquVBrdd+tTqwSYUtfxB5rcTsd+6849FxFTseVk/jEiKzuXtCfNS9PUbdG8VSi2WULFO2QvX6zXtfd+np7RuWS4lFUVq9Pn+9M3nvHXddeGz52jXTVs1emJPV/eJ7z+5VJzW2xWUCKVU6X3X9Ffc9fMeZ72TWqpC+ct78WOuT7jj3tA4lfnpQWvXFc0Nfn9P63FsPqpAaRVGphn36HDn8vqH3jztkk3N1FTvw7IFXxu4a+tgF5zxWoULpouzFuVVa9brqnks6rzuzb0qlNoc0TrvlzvN7tztl4FX9Dth8TLFtP4qfPoyStXtf8dcFfxtw872Vswac3/bgy+/KH3zrwAtPqlCrWrRiVnZaiz43Dzr6oHK79CsH2CcUa3H0+S1+/EPRspH/G5raslPnsqnRqq/ffvvLKhfdf/sHA25I7MIPiBVv3PO8xuv/OO+1a15Ibd7hN5V+PJFjuQOP7tenSfGt3Psn8ue/ftfAkbX6PnDRUTVELkGKbQiSpBP0/zzzl+Uuz9nsIg07rHD1ovkLliXSK1StUTljB15uJIvWLJ49Z3WiZOWaNUvvjmsGJ4tyl86dvTJeqnKNaqWLbzoznJ89a87SZFbNumW3uST45z6KDXdcs3jevKWxElWrVy+36eki4NfnhacezV2Zfc2Nf9nbA2F3WvzOjb+94etL/zX0+PrrjtrJgk/+1rt/0Zkjbuq3aVkuGf/0o69lH9H/kg5V06IoSuZOe/6eoatanHNR78ab7Xi91SOuP/7B2Sc/9eTFVdNiOVMHn3ve26c8/a9Tm+5A5iYWv3z9GY/MPOqBJ65sVNJRODQVyhRLTfHXajZ370kvXbl2w8o7vn0stWTluo1/xh22v8MSlWo3rrSV7xYvX6dB+e3v5Oc+ig13LJlVp2HWTtwRYD+RN2nsxKh+jza1trQibTMVmjaO39z/oX+2avmnQ0vEiqb/5/7HXs/5Y9+627hLMvd/4ycua3pC96wNswXJZDJKFqxYuiq1QsXS21iYuOijhx//oNgZD/9e4xIwa3MBYPdLFkwdP35Ro87dq6fvUEemlO1w/iXHLBo5+I2v8wuXffDEMxMOOO3KHg229ebdqqlj/reseoeuDTd8Gjm57L37+h17cLfjD/9Nz+MvfmnCoi2/URv/bthjr+VVKT/hrhMOb9e8a4ffnHbO1S9+Mm9XVlPAPkjmAsDul/PVmMkLKrXv0mxHLroTRVEUpdQ4on/f1ouef3jY+08/MjH92N+d3Xqb88CFX44Zv7pqp/YbLVFIyazRpueNz7732Xv//c9F7Zc+dMXVb3xXsPk9V3/5+rvTVhbkJluddusTr49+4cmbu5WZcv8fLnp2wsqf8QhhnydzAWC3i88YO25pxQ4dWpTY/rbrpdY4+fKzMsbdfvNz84/uf3GLstucBo7PGjfu+1odu9X78TTksfQ6Z906+Pe9W1comZZRockJV11/eKWpw1/9PL7pPYt++HTC/ESts25+8Lzj2teuUrHmAUf0v/32njXmvvzM26t9ToeAyFwA2N2K5o0b+021Dt0bbut8XlsQS01LjRKJolhq6naeoPPmjvlsRol2XTbM+JZsckzPDhU27KpE8zYHVpjz9fT8Tcs1sWjBkvTKHX9z4IbrB8VKtujepc6Kb7+Ys6XrccJ+SuYCwG5WsHjcp9NT23Vtv0Nn9lqvaN7L9z2x/MDLrjql/OsPDp62rZnVxLyxY2dltOnYtvRGN276nJ6alpZMFMU3W3JbrHixzU+vlJqWkkwUOesSIZG5ALB7JRZ9Mua71IM6dsj8Wfea99/BQ8eV7nNRv+POu7BFzvBHn5y01ZNWJpZ/OnZq+dbdm5dd/zwen/7a7X++7dXsoh9vKJo345tllWrWLrnp6uD0uo0bxJZMnfr9Rst2ixZNmzq3dN1G1ZzikYDIXADYvVZPGDOpVKtuLcr+jCfZxKoJjz04suwhvzuuZcn0Kj3OOa3l/567881v87e88eoJ4yfnHdS180ZnA0urULZw0rAHnnzz+8IoiqKcz/9z//DpWUcc227tqobVkx69+Jzbpq5JRlFU9eCTDqnxwzO33Dtpfl4URVFR9vinb/n35BJHndIjc4c/MQf7PufNBYDdKblm0vjPVrc6t2vZn5GMBROfue/dhY2vuuvozNQoitJbnXbRwa9e8uR9L/d64LTNt87+bMy0/GZXds7aeOo1q/sVf71s2cDb+rz3cNVS8cVL8mr2vv7Ovm1Krf1uInfZokXLCxJRFEUpZTtfec9ND/7j/itPeLlijcqxlfOWxeofd/0DFx6WZS6XkLgK2s7bxaugAfu2+KR/3/xhzuFnHJnyxnMvTvl+ecmqrbqfdObBLbJWf/f2S8+9Mn1honLDrsf169skK32ntv8JV0Fjd0kWZM+dtSA3VrZ63RqltjeXlb98zpwFK6OMijVqV8nw/m5AXAVtLbO5AFsUX/jFhx9O/27WG9kVupzU/bA1k17/971XjPr2op4zhr1T5fATutaf9/ErD97w4aRrH7itY/X0n7897BGxYuVrNtqBi1hGURRFxcvVbFBuT44G9iqZC7BVefMXN/3zY+cfVj0lFh11RIu7fnf18Ide73vrk7/9TYWUWHTkwQ3/9vt//OflKW37t137uZ2fuz0Ae463KAC2qkyzU046uPrat/7Sy3dqf1DFsgec2LNDhbW3ZNQ8slPLkovmzC7a2e0B2HNkLsBWpRTLSN9o2jU1LS2leIliGw6c6elpKclEcqe3B2DPkbkAAARI5gIAECCZCwBAgGQuAAABkrkAAATIVdB2nqugAbuLq6ABu5GroK1lNhcAgADJXAAAAiRzAQAIkMwFACBAMhcAgAA508LOe+OdUZ9P+2pvjwIIweyZ36XGEo2bNN3bAwFCcOEF56Snpe7tUex9aXt7APuxeXPnfjX1f3t7FEAIclavKl4s7fP/Td7bAwFCEI/HZW5kNndXOG8usLs4by6wGzlv7lrW5gIAECCZCwBAgGQuAAABkrkAAARI5gIAECCZCwBAgGQuAAABkrkAAARI5gIAECCZCwBAgGQuAAABkrkAAARI5v7SEsntfP+XGcZOiBfk5q7J39ujAPiVSsQL8vMLNnoO2XefL2AfIXN3s4KFI/7e79jzT+258dcFv73q4/nxKCr64pkL+vW7bUbBllM3GZ/x5MWHXnP/uF94zDsmPnnIOWeePXBvDwNgPxT/6uGLjv39P97blV189vCZPY7769S8ZBRFUfzbwWd1vXDgmN00PghT2t4eQGiSRTnZ8xfWPO3+sw+rFFt/a6xEVqW0KCoqzM8rzMst2Oor8MKCvIL8PDOmAEFJJgtXLpq/JHPN7ttlYX5efl6u5wvYFpm7R5QoV6dugxopsU1uTm3e9/Y7jiheq/im31grlta47y1PH5dRZ88PEID9WVqT8+5+7pSMunt7HLBPk7m/pMTcCa+OmFL5lP6nVE8v+mrkfe8vbX90s1nD/vXeonjVw8+/8chmKye89tyc6n3PPq5pFEXLJw196s34cZcfmz3y8Tc/nLoykVmjaffjTj+pQYXUH3e4+uv/Pv/6O+PnrUipXL9Vx6NPqfj9U+8vbHPpBUds4Wfnzx0/4l8ffDJ10YqC4uVqNOt4wrG9OlUsHkXRFkZyVIvSUVQwe8Lw90Z9NntJolrjtp2O7LHJDpOJlV++O3TkuxPmr4pVaXxI7359m1ZOj6IoGZ8xcvCziQ79qnz//GsffptS7fCzrzyzXqktlz3Ar1ByzcQnBw4r3+u6jsnXnn7h7RmL4uVqtTisz3k9Dsra0WNl0YKPX35mZo3f9j/pgChaM+ap28fEel58TNrLQ54Z++XCWLmaLbv3Pf3EdmXXP10kVk554+n/vDlu7oqUas0O63vu6S2qFttDjw72HTL3l5Rc9s3Hoz5ocORFJ1dPTyz+YtTb748cX6r2IX1P7VBiRUZGsSi54psxb05rdsjazM2dO/H9t2YsXvJ6XkbH7of3yp899q3ht47/bMEtgy6tmxGLotxJT/7x9mF5R5xxRr8GJZd8M/o/f70kPXPxnFipzTM3kTf9+esue3lWrRPOOatXwzLLv37/P09e/uHYS//v1rOqF9/SSKLCL1+65qaHpjbqecYhR1Vd/d3oQVeMqFU3Z8MjSSx5/57Lnp/erM+5V5xSqWD6+48PvOyzC+68rXOtYlFi6RejR05+/+MyNQ87/sR+qSuj4sU0LsAGibw5498YsXrOgpdWleh6bI+jk3M+HPavm94bt/zhZ087qOQO7SK5/KvRb3zW/LD+Jx0QRQUzP31r5JyZs0asqtDpuCN6xb7/eNjzN1/4xcIhd17SNj2KosTiN2/t/88vm53z+6vPzCr44p0hfz5/wh8euuvQ2kqXwMncvSmW0uDMf9x7WIMSa/+YjG+2RWJZ8eZ333B2+5KpURSd3LHBjdfd/soHE88/p0vJ/Pkjn//3nKOvH3pOtwpRFEVtu7VpdPfVVz8d1d/85yRmvv7gy9Oyzn9o8DENi0dRFDVv26pJ6Wsue/Rfbx5+ee/Km4+kYPGIZ54Y3/D0h288/8BisSg6tEenlncPGPBsslLHtRss+fihpz6qfukjN7SvnBZFUd1GB5RZc9YTD77a7NY+5aIoiqIS9c/86y1nVMsQuABbVLQi3mrgo5c2zUyNoui4o5sN+O31I14ee9pBh+/c7gqWFXS9Z8ipbSvEoig6uWfta3/7wMsvfnF+mwMzYotGDRo0qtp1z/6lS5W0KIoaNm2euabfA3cMa3XvaRVTt7df2J8508KeEB8zqNeJh7Y5/pA2xx/Sps+pf/86b8unVihRs0OrOiW2tae0Vsf0bVdy3WEopUaXrnXTVi5bkhtF0bLPxv5QukuX9uXXb1u+1dHta2dsvo9kInvi2CklW/XqWq/4+htLNzm2S9PklDGf5G5pJMsmjP4m0a7niS1+nIdNqdi2T/dm6+cYVo17a3S5zie0zlr/MqlE6xOOLT55+KezC6MoiqJYvbZdK29lCTIAUZTW8YRz1jZuFEXFqnT/TYtSyxct3OndlTvw5BPWNm4URSlVunVvlVi+eHleMopWfvja+xW6n9yhyvojdskOp/QqPvGVj2cV7NIjgH2e2dw9Ia3T71/844lV1x5uYrG0tN30rn0sPT01FksmoyiKL5g7L61SswppG53OIb12jRrFo80PkkXzFi7Mz2pbr8RGL2piqVVq1szM+WpOdnzzBC9aOHd+evXOdTNTN9q+et26FWOLoyiKkoWzZs1anaz31buvLd5wp/jCWOLbb6bnHll9NzxSgF+Z9PT0lGhddhauWrqiILn24BxLLZFZrlT6TuwuFiWTyShZOGvGd6uTDb8YOWzR+ieMZOH8lMQ3X36Z27u+dQuETObuEbHUYsWKl9jsTAu7U2F+QUpGqYyfvN+UVix9S+8/JeOF8WRasU3+rmNpaWnJeMEWKjdKFhbEU0qU/OlsbCyjxPrJ4Hi8KBklE0VF8Y0qu94xl1xdrdHPPhYDsLFk/thb+1zy/tK1b46ltuw35J/XdtqF/f14xI5vtDAuVv/EKwfUaKJxCZzM3U/FSpUpW7h88Yp4tP5FfjKxcsXKLb0DlZJZrmzq9KXLfhq0ednZq9IzK5TZwrqVlHLlMwuXLsguSpZPXd+xBdlLV67bQ0qVrErpcyq36XF8+7TNUj7pTTCAXRAr3vlvI8bemPhxNrf4Nte2bXdvKVUqZ6V/X6Vt71N/4ymfXxtrc/dTqTWbNk774eNJMzdEZTx74tSvczffNJZWq0nTKks+HzdzoyXCRasmTPkip1aL1pmpm885p1Rt3rzUojETvsjdaPuJkz7PXrfD1MoHtWs8Z/zouRtdzi2+8uvxoz+Zt6JoNzw4gF+1tOKlSpcuU6Z0mTKly5QuUWzXPiaWWrljpyazxo6alb/REXvF9I/eGzN7uSM2gZO5+6uybU84uP68F267c/KCwiiK4qu+fOWeId8WbXGdRHrrE0+tkzPyscFvLymIoihK5M0cee8Dk4o69OrdcvPp2CiKSjU//sgWq4fdcdNHM1ZHUZRY/fXwuwZ9nVh/3oTURr3Oa5t47cmnxq2MR1EUJfJnvXH3tQ88NTYnxb8ogH1KWtOTLuyUGD7okbEr4lEURcn8ma/848pbH/1otSM2ofMOxv4qlt6039/+XnD7wL/3ezOrZsXCVYV1uv/uxE4PvjJ/C2utStTtO+DmwofvH3hZ34drVi+1Yu6seKWu/f8xoGvN9Cgq3MLOU+uc/Kebcm677Z4LjhxStVJidVHjY688p+rjD/x4Pfb08l3633rDkLtuvfysstWrFMv+YW7pFqf+6Y5zGpWJWbQAsE9Jr9BtwL1/ue/m/zvrpMxa1YotmzW3dKvT7hx8frOyzodD4GIb3sNIbvmkV2zN/GW5y3O20Ii/rETO4lkLVqRVrVOrVPryYdf2fjVx2VN39tnaxqsW/7A4Oz+jfM0qlUptYbXC5jtf8sOCpfHManUrld3iK6JEzuIfFmYXlqlSNyvTh89g573w1KO5K7OvufEve3sgBKxo1cJZC5bFy1SrU7Vc8e1vzv6sQpliqXv0g/D7CbO5+6tkInfu59Oieq1rZtVrkBVFUZTI+2rG9/nVD2+09TullMmqWyZrx39ISqlKdRtU2uYGWXXr/4wdArC3pJapUr9Mlb09CvgFWZezv4ovG/Xony+9/5+jVqybUM6bPnzoxOUNuh1+wN4dGADAvsBs7v4qvdJRl/5t3oN3/u3i0x+pV7dCwZIZs5dWOPKqm45q6DyIAAAydz+WUrnNeX9/7ry9PQwAgH2RRQsAAARI5gIAECCZCwBAgGQuAAABkrkAAARI5gIAECAX+915Dz3yxOhRH+ztUQAhyMvNzSieXqy4S7ACu8HghweXKpGxt0ex9zlv7s5r3LRZPJa+t0cBhOC7r7+MJeMHHtR6bw8ECEGxdH0SRTJ3VxzQ8sDq9V1ZF9gNXli0IHdlds/eJ+7tgQAhSEmxKjWKrM0FACBIMhcAgADJXAAAAiRzAQAIkMwFACBAMhcAgADJXAAAAiRzAQAIkMwNViKR2I07ixfkFxRu2GFiF64MHS/IzV2TvxsGBQCwdTJ3N0vkf3L/eb3O73viQ6/P/mkLFk1/8ar+lz44s2BPD2HNtBE3X3lqt9N797jwjLOffGdm0S4k6VrJ+PQhvzvkqrs/jKIoioq+eOaCfv1um1Gwc/uNTx5yzplnD9zVMQH8KhUu/WjQdVcMfvWb3TiTAaFysd/dLZm3fNGCgmKZ/33qn926/V+LsrH13ylcvWTxovKFiWQUxbaxg12U+/2LD93/Vo2zHvj7aQdl5M2ct7Jq6u7+aYX5eYV5uQUOsQC/tNVj/nnXc2983TzrtwkzVbA9/h/ZE2LNep3bvPCdf784Lb7LM6k/V+6M6fOKmnY7pmXp9CitTN3aNTJ2909Ibd739jvuvqxR8T0Y6wBsbvW0oUNGpTaskb63BwL7B7O5e0RamUNOPHX0X559aFzP+7pU2/IvOZE/d/yIf33wydRFKwqKl6vRrOMJx/bqVLH4juy+4Ifxw0a+8dF385YVpZev2aRzj1NOOaBa8Sgq+uatB/8zYlJRouiNB/88Pi2t3iGXHN+lSspPczSRN+eTES99Mnn6/CU5xSs2at/jtKO7N4oWvP/ckx9UPvKKY9uVX7/l8snPPf1m/jGXndPwJ6NKzJ3w6ogplU/pf0r19Gj5pKFPvRk/7vJjs0c+/uaHU1cmMms07X7c6Sc1qJC6frSzJwx/b9Rns5ckqjVu2+nIHps8mGRi5ZfvDh357oT5q2JVGh/Su1/fppXToyhKxmeMHPxsokO/Kt8//9qH36ZUO/zsK8+sm7F82rv/fvuDifOXFZSu1rxz7zMPa737p6sB9kVFs166/6Xap19daeSfvtzbY4H9gtncPSS10fEXds6c+NKzY3K3NKGbyJv+/IBz7xw6rWa3s86/4o/Hdc6a/Mzl193w9LztfzQr7/MX/jjg+iGLKx586sUDzj7t0LSvnvrz7//w3rd5URSrUL9968ZVoqhis86HdOhycJNapTdr3K+GDjh30PAFTXr87pLrru3Rcs2Im8+/c+iUlKxayZnvvPj8m9lF67fN/eyNoWO/yy+z6axtctk3H4/6YMqKomQURblzJ77/1rAn/tz/hUmprQ7v1b5p+ufDb/3LNYNn5q192IVfvnTNgAEPfR816nrUwVUSnw264tJ3vsvZsK/Ekvfvueielxa3OvGKy668+MBSYwdeNmDM7IIoiqLE0i9Gj3zh9v6Pj0nvdGK/zgdULV5s9dhBF9/65PRGPf9w/R139e2WMvyv5z/z4eJd+TwcwH4i8cMbg15ddsTZJ9VOSTrqwQ4xm7unpJRo0+fMQ665+6H3j+/Ys/Emk7SJma8/+PK0rPMfGnzM2pnS5m1bNSl9zWWP/uvNwy/vXSNl69OT+fNGPP3kZwec/fj1ZzZLi0VRdGCLds3S+1849JHhbW87tWKjzm1nvBpLyWna9ch2JTffS2LG8PtHzGp17T9vaZeVGkVR3Xp/z6rw+OQ1uWtiLY46vstbd40YN+uUo+unR1GUyP/8s0lLGxzVLSs1ioo229NP9rqsePO7bzi7fcnUKIpO7tjgxutuf+WDieef06VkweI3n3lifMPTH77x/AOLxaLo0B6dWt49YMCzyUod1951yccPPfVR9UsfuaF95bQoiuo2OqDMmrOeePDVZrf2KRdFURSVqH/mX285o1pGLIqiZMGE5z+a1az3zT27NkyNRRUO/+PtHX5XrHSZbfy6AMKQWDlmyKMTD77shYYZS0Uu7CCzuXtIMopSahxxwVH157z8xGvLf5qJyUT2xLFTSrbq1bXehvwt3eTYLk2TU8Z8krut3SYWj/94RrzVYT0bp/3YdikZzQ4/smX2/0ZPX7WdQ18ysWjimKnVupxwYKX1KwrSm/a46LQTO2amplQ/5JT2lWa8/+aUteuJ10z/5IulVdp0bLD9JQFprY7p267kul2m1OjStW7aymVLcqMoWjZh9DeJdj1PbFFs3U5SKrbt071ZyR/vuWrcW6PLdT6hddb6l1slWp9wbPHJwz+dXRhFURTF6rXtWnn9dHJavWbNyk8Z8eB/py0uSkZRlFKyTJk0jQuEL2/8kw9+XvXM0w+tlBJFkc6FHSNz96BYesNe5xxbMO6x1yeu/Mk3iuYtXJifVateiY1+/bHUKjVrZuYsmJMd38YuEwvmzU+tWKdq2Y3/4lIq166dUTh/4YLtnassPm/+/Hj1ug1St/TNlJLtjjmm+XfvvTw9JxlFRd+OG7+qUscDm+zQYuGNxdLTU2OxZDKKoqKFc+enV29WN3PDD4ylVq9bt+LaNE0Wzpo1a3Vy1VfvvjbszRHrvkZNWhhLfPvN9C3Ufiyl4lFX39G3xfxHLu192eV/HfHht/mO9cCvQO63/370P2tO6X9qlbRYFCWTOhd2jMzdsyp2OPv4dgUjhzw3r3Cjo1IyXhhPphXbZMVILC0tLRkv2ObJGZLxgngsrVjqT09JFktLTY0KCwu3e+ArjBcl09LStvIuf2rj405ukv/RBx8tLor/MGnC99Xadq2dviuTpcnCgnhKiZI/XdwbyyixPp3j8aJklEwUFcUT679i9Y655OrOjbb8OeK0Ms1P+fPQQfdf16rk50/96bd/HPDEzByHeyBoRfNeffCJ1a37dq68YuGC+QsXLsuNR4W5y5csXJbvxI6wTdbm7hHrPx4QS6121Ll93rnshWHvHHfI+m+nZJYrmzp96bKfBlpedvaq9MwKZbb10iOlbPnMopVLVhf95OS7ednLcqNymeW3OEu78b0zM8umzFm2pChZeYtLEdIrHdbj0MeGvPHWSQekTfku46AzWu9S5UYp5cpnFi5dkF2ULL/h5xVkL1257oGnVMmqlD6ncpsex7fffO1Bcqtz02lVWh3/+1bHHPXuwFv+MWjQ481vvbTDro0TYN+VjM/4ZnZ6PPeJqy54IoqiKCpYsXBNwaKb+o9vd8WQO7pX9jwOW2U2dw/ZULClmpx+ymGlRz/z2De565boxtJqNWlaZcnn4348HUEURVHRqglTvsip1aJ15rZiNbVWiwNKr/7flGk5G924avKn01Kqt2pUeTtnUoyl1W3cpMLMyeM3WiucWDL1jZFvTli6dilsVKLdCb3KfPXaKy9/MCejTdvWpXfw0W5FStXmzUstGjPhiw0rEIpWTZz0efa68aRWPqhd4znjR8/d6IJq8ZVfjx/9ybwV2/7UWxRFxeofcfmJnTJnTx6/eFvLPAD2b7Hi3f78n7eHjXx33dfwR45rULLZiXf9e/g9Ghe2TebucbGUsl3OOqv2ipEvvzP7x5pLb33iqXVyRj42+O0la8+dlTdz5L0PTCrq0Kt3y7RYFEXxCU9c/H+DP958b6UPPLlHq/zXHrz7s7lrzz2W980bd7wwKqdr3z41t3++8Iz2J55U7puhT7w4aU1RFEVRwZJPnh749xff+ir542xoRr1eR7ZZ+ubLEzJbdm1YalfnSEs1P/7IFquH3XHTRzNWR1GUWP318LsGfZ3I+HG/qY16ndc28dqTT41bGY+iKErkz3rj7msfeGpsTsoW/mUmC78fed+Ax1+dvnZ1RiJv4dLl8bJVam5z/hsA+JXyQnCP2OSchhk1e/U97uWbn5+WVnXdLSXq9h1wc+HD9w+8rO/DNauXWjF3VrxS1/7/GNB1Xasmc7MXZ+dv6WNYafX6/PXO5L133HXhseVr10xbNXthTlb3i+89u1edHblKQqnGZ137l/yHBl35+xHVqleMLZ45t0yLs669+vRKP/5DiKVU6tbz4BfGjmzR6Tcldv4X8OPeUuuc/Kebcm677Z4LjhxStVJidVHjY688p+rjD7y3boP08l3633rDkLtuvfysstWrFMv+YW7pFqf+6Y5zGpWJbb5oIZZep3WnhoPv+8Pl7zStlxVb8PWM9MZnX3VprzLbW6wBAPwKxTb0mNNN/0zzl+UuzynctX0kVi3+YXF2fkb5mlUqlfpZV/MqXL1o/oJlifQKVWtUzvjZr1YKl8+btXRNavnKNSuU3WQSODF96EXXPRFdOfShblV216ugRM6SHxYsjWdWq1up7Bb3mchZ/MPC7MIyVepmZW53Urpg+bzZy3LTK1arkVlS4RKIF556NHdl9jU3/mVvD4R9Xzxn+YqiYpllS5qoYqsqlCmW6qzyZnP3tpQyWXXLZO3MPdNLV67dsPLO/tz0ctUbltvSN5Lx78eMnpbZ8pLmlXbjv42UUpXqNqi0zQ2y6tbf0d9DsXLVG5TbDaMC2B+llSpXcW+PAfYPVjUSRVGULMiPJ6MoKvrhvcff+ybziFN7VTBPCgDsz8zmEkVRtPLTewcMmly69Jq5swvbXXBLn9+U3dsjAgDYJTKXKIqizC7XDGwwY352smKNepU2Xa0LALD/kbmslVK2aqOyVbe/HQDAfsHaXAAAAiRzAQAIkEULO2/JokWz5y/e26MAQhCPF6akpHz79Vd7eyBACJo2qlcio1hGRsbeHshe5vIQO++2fwx89ZVhe3sUQCBKlCiRl5u3t0cBBCEW/XPIkOYtmu/tcexlMhcAgABZmwsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAZK5AAAESOYCABAgmQsAQIBkLgAAAUrb2wMAAGDrEmtmf/n5t/NzSlZu2LJF7ZLbnKJctej7hSviyZ/cFksrk1WvauYeHeO+KbbhF5FMbmM7AAB+Ycun/fvGq257b2ases1yuQtnF1Y+4oZ7bjupVdmtbF7w+vXHXP78d5skXY2j7xr98El7fKz7HpkLALAvSqweO+C4Cz4ofeqgIdd3qFosvnzKfZf87snZhz71+i1tymx5Ujdv5dLVeYn1SZc/87nzzxhUrf+wJ69o8YsNe99hbS4AwL5o1ReT55Zses61f+xQtVgURWnlWl1w2QmZ80a+8t/srd0lo2zFSpWzstZ9VciZOuWHRN1uhzb8BUe9D7E2FwBgX5TZ4eLnRl688S0l6tSpmpY3e+aCKKq4/fsnln340ZS0msd2alp8Tw1x32Y2FwBg/xDPXr4qESudubW1uT9RtHL8mM9W1u96SMPisT09sH2TzAUA2C/Ev3jng1lR406dKu/I1ks/+Wjy6nKdD2lTbE+Pa18lcwEA9gOFi98b8q//VTv49KMa7ki45n06anxu2fZdO5Te4yPbV8lcAIB9XmLBsFsGjsppc9m1J1dK3f4ihGT+1NFj51duf8iBZX+9secjaAAA+7icMYOvvfX1vNPv+scJjdZN5RYseu/2v/xrzo/Xgkiv2O3qm8+sm76ugFd/+fGn81I6XNS55N4Z8D5B5gIA7MtyPnn0ij/c99XhNwwZ0LvO+rnZWEpGuUoVcwvXZ26ZtA2TvPGvR4+dl9Lyjwdn/XrncmUuAMA+bNXYR/546Z2TfnPlI7ec22rjE4OlV+py2c1dtnynorkffvRVmZYXtav8qy69X3PiAwDswxLZ/73n0v53TGh76aCBF7crscP3K1j0ycdTc1t2O7hK2q/0VGJr/aobHwBgX5X30QOXXPHAuErdrzr30FLff/75j7enlKxcr36Vbay5TSz8+OOvCupdeWj9X/l0pswFANj3JHK+nPRVTiKR88EdZ3xwx0bfSG3/u6Ev3NBx6/fMGTNqYqzO0Z0a/0ovfrZeLLn+P5PJbWwHAAD7kV/5ZDYAAGGSuQAABEjmAgAQIJkLAECAZC4AAAGSuQAABEjmAgAQIJkLAECAZC4AAAGSuQAABEjmAgAQIJkLAECAZC4AAAGSuQAABEjmAgAQIJkLAECAZC4AAAGSuQAABEjmAgAQIJkLAECAZC4AAAGSuQAABEjmAgAQIJkLAECAZC4AAAGSuQAABEjmAgAQIJkLAECAZC4AAAGSuQAABEjmAgAQIJkLAECAZC4AAAGSuQAABEjmAgAQIJkLAECAZC4AAAGSuQAABEjmAgAQIJkLAECAZC4AAAGSuQAABEjmAgAQIJkLAECAZC4AAAGSuQAABEjmAgAQIJkLAECAZC4AAAGSuQAABEjmAgAQIJkLAECAZC4AAAGSuQAABEjmAgAQIJkLAECAZC4AAAGSuQAABEjmAgAQIJkLAECAZC4AAAGSuQAABCiW/PG/unY7OJFIFBUVJZPJRCKRTCa3dT8AANgnxWKxlJSUtPV/TklZN7ObSCRisVgURUoXAID9y9qOjcViaRvdtC50NS4AAPuvtTX7/1HSnbpaLAGjAAAAAElFTkSuQmCC\n"
},
"metadata": {}
}
]
},
{
"cell_type": "code",
"source": [
"import torch\n",
"from transformers import DetrImageProcessor, DetrForObjectDetection\n",
"from PIL import Image\n",
"import requests\n",
"import matplotlib.pyplot as plt\n",
"import matplotlib.patches as patches"
],
"metadata": {
"id": "g-anGRt3X6wu"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"processor = DetrImageProcessor.from_pretrained(\"microsoft/Florence-2-large\")\n",
"model = DetrForObjectDetection.from_pretrained(\"microsoft/Florence-2-large\")"
],
"metadata": {
"id": "jMgIhWFxX9IW"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"\n",
"\n",
"# Load the processor and model\n",
"\n",
"\n",
"# Load the image\n",
"images = convert_from_path(\"/content/table-data.pdf\")\n",
"image = images[1]\n",
"\n",
"# Preprocess the image\n",
"inputs = processor(images=image, return_tensors=\"pt\")\n",
"\n",
"# Perform object detection\n",
"outputs = model(**inputs)\n",
"\n",
"# Extract boxes and labels\n",
"target_sizes = torch.tensor([image.size[::-1]])\n",
"results = processor.post_process_object_detection(outputs, target_sizes=target_sizes)[0]\n",
"\n",
"# Filter boxes for tables (assuming label 74 is for 'table')\n",
"table_boxes = [box for box, score, label in zip(results[\"boxes\"], results[\"scores\"], results[\"labels\"]) if label == 74 and score > 0.9]\n",
"\n",
"# Draw bounding boxes on the image\n",
"fig, ax = plt.subplots(1, figsize=(16, 16))\n",
"ax.imshow(image)\n",
"\n",
"for box in table_boxes:\n",
" xmin, ymin, xmax, ymax = box\n",
" rect = patches.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin, linewidth=2, edgecolor='r', facecolor='red')\n",
" ax.add_patch(rect)\n",
"\n",
"plt.show()\n"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 1000
},
"id": "vy8IeDcWXrrC",
"outputId": "338de2cc-631f-4dcc-d7ef-7e38ce3a99c3"
},
"execution_count": 43,
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"