Spaces:
Runtime error
Runtime error
shivanikerai
commited on
Commit
•
9568320
1
Parent(s):
86d9873
Update app.py
Browse files
app.py
CHANGED
@@ -4,10 +4,10 @@ import gradio as gr
|
|
4 |
# Load model directly
|
5 |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
6 |
|
7 |
-
pipe = pipeline("text-generation", model="shivanikerai/TinyLlama-1.1B-Chat-v1.0-seo-optimised-title-suggestion-v1.0")
|
8 |
|
9 |
-
|
10 |
-
|
11 |
def generate_title_suggestions(keywords, product_info):
|
12 |
# Define the roles and markers
|
13 |
B_SYS, E_SYS = "<<SYS>>", "<</SYS>>"
|
@@ -21,29 +21,29 @@ def generate_title_suggestions(keywords, product_info):
|
|
21 |
|
22 |
# print("Prompt:")
|
23 |
# print(prompt)
|
24 |
-
predictions = pipeline(prompt)
|
25 |
-
output=((predictions[0]['generated_text']).split(B_out)[-1]).strip()
|
26 |
-
return (output)
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
|
36 |
# print()
|
37 |
|
38 |
# Subtract the length of input_ids from output to get only the model's response
|
39 |
-
|
40 |
-
|
41 |
|
42 |
# print("Generated Assistant Response:")
|
43 |
-
|
44 |
gr.Interface(
|
45 |
generate_title_suggestions,
|
46 |
inputs=['text','text'],
|
47 |
outputs='text',
|
48 |
-
title="Title Suggestion",
|
49 |
).launch()
|
|
|
4 |
# Load model directly
|
5 |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
6 |
|
7 |
+
# pipe = pipeline("text-generation", model="shivanikerai/TinyLlama-1.1B-Chat-v1.0-seo-optimised-title-suggestion-v1.0")
|
8 |
|
9 |
+
tokenizer = AutoTokenizer.from_pretrained("shivanikerai/TinyLlama-1.1B-Chat-v1.0-seo-optimised-title-suggestion-v1.0")
|
10 |
+
model = AutoModelForCausalLM.from_pretrained("shivanikerai/TinyLlama-1.1B-Chat-v1.0-seo-optimised-title-suggestion-v1.0")
|
11 |
def generate_title_suggestions(keywords, product_info):
|
12 |
# Define the roles and markers
|
13 |
B_SYS, E_SYS = "<<SYS>>", "<</SYS>>"
|
|
|
21 |
|
22 |
# print("Prompt:")
|
23 |
# print(prompt)
|
24 |
+
# predictions = pipeline(prompt)
|
25 |
+
# output=((predictions[0]['generated_text']).split(B_out)[-1]).strip()
|
26 |
+
# return (output)
|
27 |
+
encoding = tokenizer(prompt, return_tensors="pt").to("cuda:0")
|
28 |
+
output = model.generate(input_ids=encoding.input_ids,
|
29 |
+
attention_mask=encoding.attention_mask,
|
30 |
+
max_new_tokens=1024,
|
31 |
+
do_sample=True,
|
32 |
+
temperature=0.01,
|
33 |
+
eos_token_id=tokenizer.eos_token_id,
|
34 |
+
top_k=0)
|
35 |
|
36 |
# print()
|
37 |
|
38 |
# Subtract the length of input_ids from output to get only the model's response
|
39 |
+
output_text = tokenizer.decode(output[0, len(encoding.input_ids[0]):], skip_special_tokens=False)
|
40 |
+
output_text = re.sub('\n+', '\n', output_text) # remove excessive newline characters
|
41 |
|
42 |
# print("Generated Assistant Response:")
|
43 |
+
return (output_text)
|
44 |
gr.Interface(
|
45 |
generate_title_suggestions,
|
46 |
inputs=['text','text'],
|
47 |
outputs='text',
|
48 |
+
title="SEO Optimised Title Suggestion",
|
49 |
).launch()
|