File size: 37,149 Bytes
5a6b92c 3bae1b0 7ea92da 009fc15 f7edc34 ae67f00 2db7785 5a6b92c 0d16641 632f915 0d16641 5a6b92c 11c6843 2bbc148 009fc15 8037bb9 2bbc148 bef1a9e d10db6f 8037bb9 8b6a430 d10db6f 9abb5da 8037bb9 6980695 2db7785 ae67f00 2db7785 327e0f7 2db7785 6980695 2db7785 0e5ee0b 4b7c020 0e5ee0b 2db7785 327e0f7 2db7785 ae67f00 6980695 ae67f00 7f3a649 99b346f ae67f00 7f3a649 749cf15 7f3a649 f2a7df5 7f3a649 f2a7df5 7f3a649 ae67f00 7f3a649 99b346f 5a6b92c 0d16641 11c6843 0d16641 11c6843 0d16641 5a6b92c 11c6843 5a6b92c cc89461 8037bb9 11c6843 5a6b92c c4e9056 5a6b92c 5d6545b 5a6b92c 632f915 5a6b92c 8037bb9 11c6843 5a6b92c 8af3109 5a6b92c 5d6545b 5a6b92c 0fbcfd3 632f915 5a6b92c 632f915 5a6b92c cccb237 11c6843 5a6b92c cccb237 5a6b92c 5d6545b 5a6b92c 0fbcfd3 632f915 5a6b92c 632f915 5a6b92c cc89461 11c6843 2ca7d09 5a6b92c 9d84e1a 5a6b92c 9d84e1a 5a6b92c e650ab2 5a6b92c 046807c 5a6b92c 0c811a0 cc89461 0c811a0 5a6b92c 632f915 edc121b 632f915 5a6b92c 33150a9 2ca7d09 8b6a430 90d04a6 8b6a430 ae67f00 8b6a430 ae67f00 5e09799 7f3a649 0c811a0 ae67f00 f92438c ae67f00 cc89461 ae67f00 8b6a430 ae67f00 8b6a430 c536109 8b6a430 cc89461 8b6a430 7eb358f c6ea484 2ca7d09 c6ea484 eb70115 8b6a430 346df21 9abb5da 452874e a51bb26 8b6a430 d10db6f 86016eb 8b6a430 83cf2b8 8b6a430 c6ea484 8a72e12 eb70115 5d6545b eb70115 5d6545b c6ea484 3001f12 90d04a6 86016eb 3001f12 c6ea484 bf1ebc4 c6ea484 57ee4ec db81e6c 57ee4ec db81e6c 57ee4ec db81e6c 57ee4ec d5c8680 0c811a0 d5c8680 0c811a0 57ee4ec d5c8680 57ee4ec c8edada 57ee4ec db81e6c 57ee4ec db81e6c f3f4df9 0a6c4eb f3f4df9 57ee4ec db81e6c 57ee4ec d5c8680 0c811a0 d5c8680 0c811a0 57ee4ec 9313499 57ee4ec 9313499 57ee4ec 346df21 57ee4ec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 |
import streamlit as st
from openai import OpenAI
import json, os
import requests, time
from data_extractor import extract_data, find_product, get_product
from nutrient_analyzer import analyze_nutrients
from rda import find_nutrition
from typing import Dict, Any
#Used the @st.cache_resource decorator on this function.
#This Streamlit decorator ensures that the function is only executed once and its result (the OpenAI client) is cached.
#Subsequent calls to this function will return the cached client, avoiding unnecessary recreation.
@st.cache_resource
def get_openai_client():
#Enable debug mode for testing only
return True, OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
@st.cache_resource
def get_backend_urls():
data_extractor_url = "https://data-extractor-67qj89pa0-sonikas-projects-9936eaad.vercel.app/"
return data_extractor_url
debug_mode, client = get_openai_client()
data_extractor_url = get_backend_urls()
def extract_data_from_product_image(image_links, data_extractor_url):
response = extract_data(image_links)
return response
def get_product_data_from_db(product_name, data_extractor_url):
response = get_product(product_name)
return response
def get_product_list(product_name_by_user, data_extractor_url):
response = find_product(product_name_by_user)
return response
def rda_analysis(product_info_from_db_nutritionalInformation: Dict[str, Any],
product_info_from_db_servingSize: float) -> Dict[str, Any]:
"""
Analyze nutritional information and return RDA analysis data in a structured format.
Args:
product_info_from_db_nutritionalInformation: Dictionary containing nutritional information
product_info_from_db_servingSize: Serving size value
Returns:
Dictionary containing nutrition per serving and user serving size
"""
nutrient_name_list = [
'energy', 'protein', 'carbohydrates', 'addedSugars', 'dietaryFiber',
'totalFat', 'saturatedFat', 'monounsaturatedFat', 'polyunsaturatedFat',
'transFat', 'sodium'
]
try:
response = client.chat.completions.create(
model="gpt-4o",
messages=[
{
"role": "system",
"content": """You will be given nutritional information of a food product.
Return the data in the exact JSON format specified in the schema,
with all required fields."""
},
{
"role": "user",
"content": f"Nutritional content of food product is {json.dumps(product_info_from_db_nutritionalInformation)}. "
f"Extract the values of the following nutrients: {', '.join(nutrient_name_list)}."
}
],
response_format={"type": "json_schema", "json_schema": {
"name": "Nutritional_Info_Label_Reader",
"schema": {
"type": "object",
"properties": {
"energy": {"type": "number"},
"protein": {"type": "number"},
"carbohydrates": {"type": "number"},
"addedSugars": {"type": "number"},
"dietaryFiber": {"type": "number"},
"totalFat": {"type": "number"},
"saturatedFat": {"type": "number"},
"monounsaturatedFat": {"type": "number"},
"polyunsaturatedFat": {"type": "number"},
"transFat": {"type": "number"},
"sodium": {"type": "number"},
"servingSize": {"type": "number"},
},
"required": nutrient_name_list + ["servingSize"],
"additionalProperties": False
},
"strict": True
}}
)
# Parse the JSON response
nutrition_data = json.loads(response.choices[0].message.content)
# Validate that all required fields are present
missing_fields = [field for field in nutrient_name_list + ["servingSize"]
if field not in nutrition_data]
if missing_fields:
print(f"Missing required fields in API response: {missing_fields}")
# Validate that all values are numbers
non_numeric_fields = [field for field, value in nutrition_data.items()
if not isinstance(value, (int, float))]
if non_numeric_fields:
raise ValueError(f"Non-numeric values found in fields: {non_numeric_fields}")
return {
'nutritionPerServing': nutrition_data,
'userServingSize': product_info_from_db_servingSize
}
except Exception as e:
# Log the error and raise it for proper handling
print(f"Error in RDA analysis: {str(e)}")
raise
def find_product_nutrients(product_info_from_db):
#GET Response: {'_id': '6714f0487a0e96d7aae2e839',
#'brandName': 'Parle', 'claims': ['This product does not contain gold'],
#'fssaiLicenseNumbers': [10013022002253],
#'ingredients': [{'metadata': '', 'name': 'Refined Wheat Flour (Maida)', 'percent': '63%'}, {'metadata': '', 'name': 'Sugar', 'percent': ''}, {'metadata': '', 'name': 'Refined Palm Oil', 'percent': ''}, {'metadata': '(Glucose, Levulose)', 'name': 'Invert Sugar Syrup', 'percent': ''}, {'metadata': 'I', 'name': 'Sugar Citric Acid', 'percent': ''}, {'metadata': '', 'name': 'Milk Solids', 'percent': '1%'}, {'metadata': '', 'name': 'Iodised Salt', 'percent': ''}, {'metadata': '503(I), 500 (I)', 'name': 'Raising Agents', 'percent': ''}, {'metadata': '1101 (i)', 'name': 'Flour Treatment Agent', 'percent': ''}, {'metadata': 'Diacetyl Tartaric and Fatty Acid Esters of Glycerol (of Vegetable Origin)', 'name': 'Emulsifier', 'percent': ''}, {'metadata': 'Vanilla', 'name': 'Artificial Flavouring Substances', 'percent': ''}],
#'nutritionalInformation': [{'name': 'Energy', 'unit': 'kcal', 'values': [{'base': 'per 100 g','value': 462}]},
#{'name': 'Protein', 'unit': 'g', 'values': [{'base': 'per 100 g', 'value': 6.7}]},
#{'name': 'Carbohydrate', 'unit': 'g', 'values': [{'base': 'per 100 g', 'value': 76.0}, {'base': 'of which sugars', 'value': 26.9}]},
#{'name': 'Fat', 'unit': 'g', 'values': [{'base': 'per 100 g', 'value': 14.6}, {'base': 'Saturated Fat', 'value': 6.8}, {'base': 'Trans Fat', 'value': 0}]},
#{'name': 'Total Sugars', 'unit': 'g', 'values': [{'base': 'per 100 g', 'value': 27.7}]},
#{'name': 'Added Sugars', 'unit': 'g', 'values': [{'base': 'per 100 g', 'value': 26.9}]},
#{'name': 'Cholesterol', 'unit': 'mg', 'values': [{'base': 'per 100 g', 'value': 0}]},
#{'name': 'Sodium', 'unit': 'mg', 'values': [{'base': 'per 100 g', 'value': 281}]}],
#'packagingSize': {'quantity': 82, 'unit': 'g'},
#'productName': 'Parle-G Gold Biscuits',
#'servingSize': {'quantity': 18.8, 'unit': 'g'},
#'servingsPerPack': 3.98,
#'shelfLife': '7 months from packaging'}
product_type = None
calories = None
sugar = None
total_sugar = None
added_sugar = None
salt = None
serving_size = None
if product_info_from_db["servingSize"]["unit"] == "g":
product_type = "solid"
elif product_info_from_db["servingSize"]["unit"] == "ml":
product_type = "liquid"
serving_size = product_info_from_db["servingSize"]["quantity"]
for item in product_info_from_db["nutritionalInformation"]:
if 'energy' in item['name'].lower():
calories = item['values'][0]['value']
if 'total sugar' in item['name'].lower():
total_sugar = item['values'][0]['value']
if 'added sugar' in item['name'].lower():
added_sugar = item['values'][0]['value']
if 'sugar' in item['name'].lower() and 'added sugar' not in item['name'].lower() and 'total sugar' not in item['name'].lower():
sugar = item['values'][0]['value']
#How to get Salt?
if added_sugar is not None and added_sugar > 0 and sugar is None:
sugar = added_sugar
elif total_sugar is not None and total_sugar > 0 and added_sugar is None and sugar is None:
sugar = total_sugar
return product_type, calories, sugar, salt, serving_size
# Initialize assistants and vector stores
# Function to initialize vector stores and assistants
@st.cache_resource
def initialize_assistants_and_vector_stores():
#Processing Level
global client
assistant1 = client.beta.assistants.create(
name="Processing Level",
instructions="You are an expert dietician. Use you knowledge base to answer questions about the processing level of food product.",
model="gpt-4o",
tools=[{"type": "file_search"}],
temperature=0,
top_p = 0.85
)
#Harmful Ingredients
assistant2 = client.beta.assistants.create(
name="Harmful Ingredients",
instructions="You are an expert dietician. Use you knowledge base to answer questions about the ingredients in food product.",
model="gpt-4o",
tools=[{"type": "file_search"}],
temperature=0,
top_p = 0.85
)
#Harmful Ingredients
assistant3 = client.beta.assistants.create(
name="Misleading Claims",
instructions="You are an expert dietician. Use you knowledge base to answer questions about the misleading claims about food product.",
model="gpt-4o",
tools=[{"type": "file_search"}],
temperature=0,
top_p = 0.85
)
# Create a vector store
vector_store1 = client.beta.vector_stores.create(name="Processing Level Vec")
# Ready the files for upload to OpenAI
file_paths = ["Processing_Level.docx"]
file_streams = [open(path, "rb") for path in file_paths]
# Use the upload and poll SDK helper to upload the files, add them to the vector store,
# and poll the status of the file batch for completion.
file_batch1 = client.beta.vector_stores.file_batches.upload_and_poll(
vector_store_id=vector_store1.id, files=file_streams
)
# You can print the status and the file counts of the batch to see the result of this operation.
print(file_batch1.status)
print(file_batch1.file_counts)
# Create a vector store
vector_store2 = client.beta.vector_stores.create(name="Harmful Ingredients Vec")
# Ready the files for upload to OpenAI
file_paths = ["Ingredients.docx"]
file_streams = [open(path, "rb") for path in file_paths]
# Use the upload and poll SDK helper to upload the files, add them to the vector store,
# and poll the status of the file batch for completion.
file_batch2 = client.beta.vector_stores.file_batches.upload_and_poll(
vector_store_id=vector_store2.id, files=file_streams
)
# You can print the status and the file counts of the batch to see the result of this operation.
print(file_batch2.status)
print(file_batch2.file_counts)
# Create a vector store
vector_store3 = client.beta.vector_stores.create(name="Misleading Claims Vec")
# Ready the files for upload to OpenAI
file_paths = ["MisLeading_Claims.docx"]
file_streams = [open(path, "rb") for path in file_paths]
# Use the upload and poll SDK helper to upload the files, add them to the vector store,
# and poll the status of the file batch for completion.
file_batch3 = client.beta.vector_stores.file_batches.upload_and_poll(
vector_store_id=vector_store3.id, files=file_streams
)
# You can print the status and the file counts of the batch to see the result of this operation.
print(file_batch3.status)
print(file_batch3.file_counts)
#Processing Level
assistant1 = client.beta.assistants.update(
assistant_id=assistant1.id,
tool_resources={"file_search": {"vector_store_ids": [vector_store1.id]}},
)
#harmful Ingredients
assistant2 = client.beta.assistants.update(
assistant_id=assistant2.id,
tool_resources={"file_search": {"vector_store_ids": [vector_store2.id]}},
)
#Misleading Claims
assistant3 = client.beta.assistants.update(
assistant_id=assistant3.id,
tool_resources={"file_search": {"vector_store_ids": [vector_store3.id]}},
)
return assistant1, assistant2, assistant3
assistant1, assistant2, assistant3 = initialize_assistants_and_vector_stores()
def analyze_nutrition_icmr_rda(nutrient_analysis, nutrient_analysis_rda):
global debug_mode, client
system_prompt = """Analyze the nutritional content of the food item, focusing on nutrients that significantly exceed the Recommended Daily Allowance (RDA) or threshold limits defined by ICMR.
Provide contextual insights for users as explained below:
Calories: If the calorie content is very high, compare it to a well-balanced nutritional meal. Indicate how many such meals' worth of calories the product contains.
Sugar & Salt: Present the amounts in teaspoons to make it easier to understand daily intake levels.
Fat & Calories: Offer practical context for these nutrients, explaining the implications of their levels and how they relate to balanced eating.
Ensure the response is clear, accurate, and provides actionable recommendations for healthier choices."""
user_prompt = f"""
Product Name: {brand_name} {product_name}
Nutrition Analysis :
{nutrient_analysis}
{nutrient_analysis_rda}
"""
if debug_mode:
print(f"\nuser_prompt : \n {user_prompt}")
completion = client.chat.completions.create(
model="gpt-4o", # Make sure to use an appropriate model
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt}
]
)
return completion.choices[0].message.content
def analyze_processing_level(ingredients, brand_name, product_name, assistant_id):
global debug_mode, client
thread = client.beta.threads.create(
messages=[
{
"role": "user",
"content": "Categorize food product that has following ingredients: " + ', '.join(ingredients) + " into Group A, Group B, or Group C based on the document. The output must only be the group category name (Group A, Group B, or Group C) alongwith the reason behind assigning that respective category to the product. If the group category cannot be determined, output 'NOT FOUND'.",
}
]
)
run = client.beta.threads.runs.create_and_poll(
thread_id=thread.id,
assistant_id=assistant_id,
include=["step_details.tool_calls[*].file_search.results[*].content"]
)
messages = list(client.beta.threads.messages.list(thread_id=thread.id, run_id=run.id))
message_content = messages[0].content[0].text
annotations = message_content.annotations
#citations = []
for index, annotation in enumerate(annotations):
message_content.value = message_content.value.replace(annotation.text, "")
#if file_citation := getattr(annotation, "file_citation", None):
# cited_file = client.files.retrieve(file_citation.file_id)
# citations.append(f"[{index}] {cited_file.filename}")
if debug_mode:
print(message_content.value)
processing_level_str = message_content.value
return processing_level_str
def analyze_harmful_ingredients(ingredients, brand_name, product_name, assistant_id):
global debug_mode, client
thread = client.beta.threads.create(
messages=[
{
"role": "user",
"content": "A food product has the following ingredients: " + ', '.join(ingredients) + ". Which are the harmful ingredients in this list? The output must be in JSON format: {<ingredient_name>: <information from the document about why ingredient is harmful>}. If information about an ingredient is not found in the documents, the value for that ingredient must start with the prefix '(NOT FOUND IN DOCUMENT)' followed by the LLM's response based on its own knowledge.",
}
]
)
run = client.beta.threads.runs.create_and_poll(
thread_id=thread.id,
assistant_id=assistant_id,
include=["step_details.tool_calls[*].file_search.results[*].content"]
)
messages = list(client.beta.threads.messages.list(thread_id=thread.id, run_id=run.id))
message_content = messages[0].content[0].text
annotations = message_content.annotations
#citations = []
#print(f"Length of annotations is {len(annotations)}")
for index, annotation in enumerate(annotations):
if file_citation := getattr(annotation, "file_citation", None):
#cited_file = client.files.retrieve(file_citation.file_id)
#citations.append(f"[{index}] {cited_file.filename}")
message_content.value = message_content.value.replace(annotation.text, "")
if debug_mode:
ingredients_not_found_in_doc = []
print(message_content.value)
for key, value in json.loads(message_content.value.replace("```", "").replace("json", "")).items():
if value.startswith("(NOT FOUND IN DOCUMENT)"):
ingredients_not_found_in_doc.append(key)
print(f"Ingredients not found in the harmful ingredients doc are {','.join(ingredients_not_found_in_doc)}")
harmful_ingredient_analysis = json.loads(message_content.value.replace("```", "").replace("json", "").replace("(NOT FOUND IN DOCUMENT) ", ""))
harmful_ingredient_analysis_str = ""
for key, value in harmful_ingredient_analysis.items():
harmful_ingredient_analysis_str += f"{key}: {value}\n"
return harmful_ingredient_analysis_str
def analyze_claims(claims, ingredients, product_name, assistant_id):
global debug_mode, client
thread = client.beta.threads.create(
messages=[
{
"role": "user",
"content": "A food product named " + product_name + " has the following claims: " + ', '.join(claims) + " and ingredients : " + ', '.join(ingredients) +". Please evaluate the validity of each claim and determine if the product name is potentially misleading. The output must be in JSON format: {<claim_name>: <information from the document about whether the claim is valid>}. If information about a claim is not found in the documents, the value for that claim must start with the prefix '(NOT FOUND IN DOCUMENT)' followed by the LLM's response based on its own knowledge.",
}
]
)
run = client.beta.threads.runs.create_and_poll(
thread_id=thread.id,
assistant_id=assistant_id,
include=["step_details.tool_calls[*].file_search.results[*].content"]
)
messages = list(client.beta.threads.messages.list(thread_id=thread.id, run_id=run.id))
message_content = messages[0].content[0].text
annotations = message_content.annotations
#citations = []
#print(f"Length of annotations is {len(annotations)}")
for index, annotation in enumerate(annotations):
if file_citation := getattr(annotation, "file_citation", None):
#cited_file = client.files.retrieve(file_citation.file_id)
#citations.append(f"[{index}] {cited_file.filename}")
message_content.value = message_content.value.replace(annotation.text, "")
if debug_mode:
claims_not_found_in_doc = []
print(message_content.value)
for key, value in json.loads(message_content.value.replace("```", "").replace("json", "")).items():
if value.startswith("(NOT FOUND IN DOCUMENT)"):
claims_not_found_in_doc.append(key)
print(f"Claims not found in the doc are {','.join(claims_not_found_in_doc)}")
claims_analysis = json.loads(message_content.value.replace("```", "").replace("json", "").replace("(NOT FOUND IN DOCUMENT) ", ""))
claims_analysis_str = ""
for key, value in claims_analysis.items():
claims_analysis_str += f"{key}: {value}\n"
return claims_analysis_str
def generate_final_analysis(brand_name, product_name, nutritional_level, processing_level, harmful_ingredient_analysis, claims_analysis, system_prompt):
global debug_mode, client
system_prompt_orig = """You are provided with a detailed analysis of a food product. Your task is to generate actionable insights to help the user decide whether to consume the product, at what frequency, and identify any potential harms or benefits. Consider the context of consumption to ensure the advice is personalized and practical.
Use the following criteria to generate your response:
1. **Nutrition Analysis:**
- How much do sugar, calories, or salt exceed the threshold limit?
- How processed is the product?
- How much of the Recommended Dietary Allowance (RDA) does the product provide for each nutrient?
2. **Harmful Ingredients:**
- Identify any harmful or questionable ingredients.
3. **Misleading Claims:**
- Are there any misleading claims made by the brand?
Additionally, consider the following while generating insights:
1. **Consumption Context:**
- Is the product being consumed for health reasons or as a treat?
- Could the consumer be overlooking hidden harms?
- If the product is something they could consume daily, should they?
- If they are consuming it daily, what potential harm are they not noticing?
- If the product is intended for health purposes, are there concerns the user might miss?
**Output:**
- Recommend whether the product should be consumed or avoided.
- If recommended, specify the appropriate frequency and intended functionality (e.g., treat vs. health).
- Highlight any risks or benefits at that level of consumption."""
user_prompt = f"""
Product Name: {brand_name} {product_name}
Nutrition Analysis :
{nutritional_level}
Processing Level:
{processing_level}
Ingredient Analysis:
{harmful_ingredient_analysis}
Claims Analysis:
{claims_analysis}
"""
if debug_mode:
print(f"\nuser_prompt : \n {user_prompt}")
completion = client.chat.completions.create(
model="gpt-4o", # Make sure to use an appropriate model
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt}
]
)
return completion.choices[0].message.content
def analyze_product(product_info_raw, system_prompt):
global assistant1, assistant2, assistant3
if product_info_raw != "{}":
product_info_from_db = json.loads(product_info_raw)
brand_name = product_info_from_db.get("brandName", "")
product_name = product_info_from_db.get("productName", "")
ingredients_list = [ingredient["name"] for ingredient in product_info_from_db.get("ingredients", [])]
claims_list = product_info_from_db.get("claims", [])
nutritional_information = product_info_from_db['nutritionalInformation']
serving_size = product_info_from_db["servingSize"]["quantity"]
if nutritional_information:
product_type, calories, sugar, salt, serving_size = find_product_nutrients(product_info_from_db)
nutrient_analysis = analyze_nutrients(product_type, calories, sugar, salt, serving_size)
print(f"DEBUG ! nutrient analysis is {nutrient_analysis}")
nutrient_analysis_rda_data = rda_analysis(nutritional_information, serving_size)
print(f"DEBUG ! Data for RDA nutrient analysis is of type {type(nutrient_analysis_rda_data)} - {nutrient_analysis_rda_data}")
print(f"DEBUG : nutrient_analysis_rda_data['nutritionPerServing'] : {nutrient_analysis_rda_data['nutritionPerServing']}")
print(f"DEBUG : nutrient_analysis_rda_data['userServingSize'] : {nutrient_analysis_rda_data['userServingSize']}")
nutrient_analysis_rda = find_nutrition(nutrient_analysis_rda_data)
print(f"DEBUG ! RDA nutrient analysis is {nutrient_analysis_rda}")
#Call GPT for nutrient analysis
nutritional_level = analyze_nutrition_icmr_rda(nutrient_analysis, nutrient_analysis_rda)
if len(ingredients_list) > 0:
processing_level = analyze_processing_level(ingredients_list, brand_name, product_name, assistant1.id) if ingredients_list else ""
harmful_ingredient_analysis = analyze_harmful_ingredients(ingredients_list, brand_name, product_name, assistant2.id) if ingredients_list else ""
if len(claims_list) > 0:
claims_analysis = analyze_claims(claims_list, ingredients_list, product_name, assistant3.id) if claims_list else ""
final_analysis = generate_final_analysis(brand_name, product_name, nutritional_level, processing_level, harmful_ingredient_analysis, claims_analysis, system_prompt)
return final_analysis
else:
return "I'm sorry, product information could not be extracted from the url."
# Streamlit app
# Initialize session state
if 'messages' not in st.session_state:
st.session_state.messages = []
def chatbot_response(image_urls_str, product_name_by_user, data_extractor_url, system_prompt, extract_info = True):
# Process the user input and generate a response
processing_level = ""
harmful_ingredient_analysis = ""
claims_analysis = ""
image_urls = []
if product_name_by_user != "":
similar_product_list_json = get_product_list(product_name_by_user, data_extractor_url)
if similar_product_list_json and extract_info == False:
with st.spinner("Fetching product information from our database... This may take a moment."):
print(f"similar_product_list_json : {similar_product_list_json}")
if 'error' not in similar_product_list_json.keys():
similar_product_list = similar_product_list_json['products']
return similar_product_list, "Product list found from our database"
else:
return [], "Product list not found"
elif extract_info == True:
with st.spinner("Analyzing the product... This may take a moment."):
product_info_raw = get_product_data_from_db(product_name_by_user, data_extractor_url)
print(f"DEBUG product_info_raw from name: {product_info_raw}")
if 'error' not in json.loads(product_info_raw).keys():
final_analysis = analyze_product(product_info_raw, system_prompt)
return [], final_analysis
else:
return [], f"Product information could not be extracted from our database because of {json.loads(product_info_raw)['error']}"
else:
return [], "Product not found in our database."
elif "http:/" in image_urls_str.lower() or "https:/" in image_urls_str.lower():
# Extract image URL from user input
if "," not in image_urls_str:
image_urls.append(image_urls_str)
else:
for url in image_urls_str.split(","):
if "http:/" in url.lower() or "https:/" in url.lower():
image_urls.append(url)
with st.spinner("Analyzing the product... This may take a moment."):
product_info_raw = extract_data_from_product_image(image_urls, data_extractor_url)
print(f"DEBUG product_info_raw from image : {product_info_raw}")
if 'error' not in json.loads(product_info_raw).keys():
final_analysis = analyze_product(product_info_raw, system_prompt)
return [], final_analysis
else:
return [], f"Product information could not be extracted from the image because of {json.loads(product_info_raw)['error']}"
else:
return [], "I'm here to analyze food products. Please provide an image URL (Example : http://example.com/image.jpg) or product name (Example : Harvest Gold Bread)"
class SessionState:
"""Handles all session state variables in a centralized way"""
@staticmethod
def initialize():
initial_states = {
"messages": [],
"product_selected": False,
"product_shared": False,
"analyze_more": True,
"welcome_shown": False,
"yes_no_choice": None,
"welcome_msg": "Welcome to ConsumeWise! What product would you like me to analyze today?",
"system_prompt": "",
"similar_products": [],
"awaiting_selection": False,
"current_user_input": "",
"selected_product": None
}
for key, value in initial_states.items():
if key not in st.session_state:
st.session_state[key] = value
class SystemPromptManager:
"""Manages the system prompt input and related functionality"""
@staticmethod
def render_sidebar():
st.sidebar.header("System Prompt")
system_prompt = st.sidebar.text_area(
"Enter your system prompt here (required):",
value=st.session_state.system_prompt,
height=150,
key="system_prompt_input"
)
if st.sidebar.button("Submit Prompt"):
if system_prompt.strip():
st.session_state.system_prompt = system_prompt
SessionState.initialize() # Reset all states
st.rerun()
else:
st.sidebar.error("Please enter a valid system prompt.")
return system_prompt.strip()
class ProductSelector:
"""Handles product selection logic"""
@staticmethod
def handle_selection():
if st.session_state.similar_products:
# Create a container for the selection UI
selection_container = st.container()
with selection_container:
# Radio button for product selection
choice = st.radio(
"Select a product:",
st.session_state.similar_products + ["None of the above"],
key="product_choice"
)
# Confirm button
confirm_clicked = st.button("Confirm Selection")
# Only process the selection when confirm is clicked
if confirm_clicked:
if choice != "None of the above":
st.session_state.product_selected = True
st.session_state.awaiting_selection = False
st.session_state.selected_product = choice
_, msg = chatbot_response("", choice, data_extractor_url,
st.session_state.system_prompt, extract_info=True)
st.session_state.messages.append({"role": "assistant", "content": msg})
# Loop through session state keys and delete all except the key_to_keep
keys_to_keep = ["system_prompt", "messages", "welcome_msg"]
keys_to_delete = [key for key in st.session_state.keys() if key not in keys_to_keep]
for key in keys_to_delete:
del st.session_state[key]
st.session_state.welcome_msg = "What product would you like me to analyze next?"
else:
st.session_state.awaiting_selection = False
st.session_state.messages.append(
{"role": "assistant", "content": "Please provide the image URL of the product."}
)
st.rerun()
# Prevent further chat input while awaiting selection
return True # Indicates selection is in progress
return False # Indicates no selection in progress
class ChatManager:
"""Manages chat interactions and responses"""
@staticmethod
def process_response(user_input):
if not st.session_state.product_selected:
if "http:/" not in user_input and "https:/" not in user_input:
return ChatManager._handle_product_name(user_input)
else:
return ChatManager._handle_product_url(user_input)
return "Next Product"
@staticmethod
def _handle_product_name(user_input):
st.session_state.product_shared = True
st.session_state.current_user_input = user_input
similar_products, _ = chatbot_response(
"", user_input, data_extractor_url,
st.session_state.system_prompt, extract_info=False
)
if similar_products:
st.session_state.similar_products = similar_products
st.session_state.awaiting_selection = True
return "Here are some similar products from our database. Please select:"
return "Product not found in our database. Please provide the image URL of the product."
@staticmethod
def _handle_product_url(user_input):
is_valid_url = (".jpeg" in user_input or ".jpg" in user_input) and \
("http:/" in user_input or "https:/" in user_input)
if not st.session_state.product_shared:
return "Please provide the product name first"
if is_valid_url and st.session_state.product_shared:
_, msg = chatbot_response(
user_input, "", data_extractor_url,
st.session_state.system_prompt, extract_info=True
)
st.session_state.product_selected = True
return msg
return "Please provide valid image URL of the product."
def main():
# Initialize session state
SessionState.initialize()
# Display title
st.title("ConsumeWise - Your Food Product Analysis Assistant")
# Handle system prompt
system_prompt = SystemPromptManager.render_sidebar()
if not system_prompt:
st.warning("⚠️ Please enter a system prompt in the sidebar before proceeding.")
st.chat_input("Enter your message:", disabled=True)
return
# Show welcome message
if not st.session_state.welcome_shown:
st.session_state.messages.append({
"role": "assistant",
"content": st.session_state.welcome_msg
})
st.session_state.welcome_shown = True
# Display chat history
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# Handle product selection if awaiting
selection_in_progress = False
if st.session_state.awaiting_selection:
selection_in_progress = ProductSelector.handle_selection()
# Only show chat input if not awaiting selection
if not selection_in_progress:
user_input = st.chat_input("Enter your message:", key="user_input")
if user_input:
# Add user message to chat
st.session_state.messages.append({"role": "user", "content": user_input})
with st.chat_message("user"):
st.markdown(user_input)
# Process response
response = ChatManager.process_response(user_input)
if response == "Next Product":
SessionState.initialize() # Reset states for next product
#st.session_state.welcome_msg = "What is the next product you would like me to analyze today?"
keys_to_keep = ["system_prompt", "messages", "welcome_msg"]
keys_to_delete = [key for key in st.session_state.keys() if key not in keys_to_keep]
for key in keys_to_delete:
del st.session_state[key]
st.session_state.welcome_msg = "What product would you like me to analyze next?"
st.rerun()
elif response: # Only add response if it's not None
st.session_state.messages.append({"role": "assistant", "content": response})
with st.chat_message("assistant"):
st.markdown(response)
print(f"DEBUG : st.session_state.awaiting_selection : {st.session_state.awaiting_selection}")
print(f"response : {response}")
st.rerun()
else:
# Disable chat input while selection is in progress
st.chat_input("Please confirm your selection above first...", disabled=True)
# Clear chat history button
if st.button("Clear Chat History"):
st.session_state.clear()
st.rerun()
if __name__ == "__main__":
main() |