import os import glob import gradio as gr from predict_cheque_parser import parse_cheque_with_donut ##Create list of examples to be loaded example_list = glob.glob("examples/cheque_parser/*") faulty_cheques_list = glob.glob("examples/cheque_analyze/*") example_list = list(map(lambda el:[el], example_list)) faulty_cheques_list = list(map(lambda el:[el], faulty_cheques_list)) demo = gr.Blocks(css="#warning {color: red}") with demo: gr.Markdown("# **
ChequeEasy: Banking with Transformers
**") gr.Markdown("This space demonstrates the use of Donut proposed in this paper ") with gr.Tabs(): with gr.TabItem("Cheque Parser"): gr.Markdown("The module is used to extract details filled by a bank customer from cheques. At present the model is trained to extract details like - payee_name, amount_in_words, amount_in_figures. This model can be further trained to parse additional details like micr_code, cheque_number, account_number, etc") with gr.Box(): gr.Markdown("**Upload Cheque**") input_image_parse = gr.Image(type='filepath', label="Input Cheque") with gr.Box(): gr.Markdown("**Parsed Cheque Data**") payee_name = gr.Textbox(label="Payee Name") amt_in_words = gr.Textbox(label="Courtesy Amount") amt_in_figures = gr.Textbox(label="Legal Amount") cheque_date = gr.Textbox(label="Cheque Date") # micr_code = gr.Textbox(label="MICR code") # cheque_number = gr.Textbox(label="Cheque Number") # account_number = gr.Textbox(label="Account Number") amts_matching = gr.Checkbox(label="Legal & Courtesy Amount Matching", elem_id="warning") stale_check = gr.Checkbox(label="Stale Cheque") with gr.Box(): gr.Markdown("**Predict**") with gr.Row(): parse_cheque = gr.Button("Call Donut 🍩") with gr.Column(): gr.Examples(example_list, [input_image_parse], [payee_name,amt_in_words,amt_in_figures,cheque_date],parse_cheque_with_donut,cache_examples=False) # micr_code,cheque_number,account_number, # amts_matching, stale_check]#,cache_examples=True) with gr.TabItem("Quality Analyzer"): gr.Markdown("The module is used to detect any mistakes made by bank customers while filling out the cheque or while taking a snapshot of the cheque. At present the model is trained to find mistakes like -'object blocking cheque', 'overwriting in cheque'. ") with gr.Box(): gr.Markdown("**Upload Cheque**") input_image_detect = gr.Image(type='filepath',label="Input Cheque", show_label=True) with gr.Box(): # with gr.Column(): gr.Markdown("**Cheque Quality Results:**") output_detections = gr.Image(label="Analyzed Cheque Image", show_label=True) output_text = gr.Textbox() with gr.Box(): gr.Markdown("**Predict**") with gr.Row(): analyze_cheque = gr.Button("Call YOLOS 🤙") gr.Markdown("**Examples:**") with gr.Column(): gr.Examples(faulty_cheques_list, input_image_detect, [output_detections, output_text])#, predict, cache_examples=True) parse_cheque.click(parse_cheque_with_donut, inputs=input_image_parse, outputs=[payee_name,amt_in_words,amt_in_figures,cheque_date,amts_matching,stale_check]) # micr_code,cheque_number,account_number, # amts_matching, stale_check]) # analyze_cheque.click(predict, inputs=input_image_detect, outputs=[output_detections, output_text]) gr.Markdown('\n Solution built by: Shivalika Singh') demo.launch(share=True, debug=True)