Spaces:
Runtime error
Runtime error
import logging | |
from argparse import ArgumentParser | |
from typing import List | |
from meerkat import DataPanel, SpacyColumn | |
from meerkat.logging.utils import set_logging_level | |
from spacy import load | |
from align import BertscoreAligner, NGramAligner, StaticEmbeddingAligner, Aligner | |
from utils import clean_text | |
set_logging_level('critical') | |
logger = logging.getLogger(__name__) | |
logger.setLevel(logging.CRITICAL) | |
def _run_aligners( | |
dataset: DataPanel, | |
aligners: List[Aligner], | |
doc_column: str, | |
reference_column: str, | |
summary_columns: List[str] = None, | |
): | |
if not summary_columns: | |
summary_columns = [] | |
to_columns = [] | |
if reference_column is not None: | |
to_columns.append(reference_column) | |
to_columns.extend(summary_columns) | |
for aligner in aligners: | |
# Run the aligner on (document, summary) pairs | |
dataset = dataset.update( | |
lambda x: { | |
f'{type(aligner).__name__}:{doc_column}:{to_columns}': | |
aligner.align( | |
x[doc_column], | |
[x[col] for col in to_columns], | |
), | |
}, | |
) | |
if reference_column is not None and len(summary_columns): | |
# Run the aligner on (reference, summary) pairs | |
dataset = dataset.update( | |
lambda x: { | |
f'{type(aligner).__name__}:{reference_column}:{summary_columns}': aligner.align( | |
x[reference_column], | |
[x[col] for col in summary_columns], | |
), | |
}, | |
) | |
if len(to_columns) > 1: | |
# Instead of having one column for (document, summary) comparisons, split | |
# off into (1 + |summary_columns|) total columns, one for each comparison | |
# Retrieve the (document, summary) column | |
doc_summary_column = dataset[f'{type(aligner).__name__}:{doc_column}:{to_columns}'] | |
for i, col in enumerate(to_columns): | |
# Add as a new column after encoding with the aligner's `encode` method | |
dataset.add_column( | |
f'{type(aligner).__name__}:{doc_column}:{col}', | |
[row[i] for row in doc_summary_column], | |
) | |
# Remove the (document, summary) column | |
dataset.remove_column(f'{type(aligner).__name__}:{doc_column}:{to_columns}') | |
if reference_column is not None and len(summary_columns) > 1: | |
# Instead of having one column for (reference, summary) comparisons, split | |
# off into (|summary_columns|) total columns, one for each comparison | |
# Retrieve the (reference, summary) column | |
reference_summary_column = dataset[f'{type(aligner).__name__}:{reference_column}:{summary_columns}'] | |
for i, col in enumerate(summary_columns): | |
# Add as a new column | |
dataset.add_column( | |
f'{type(aligner).__name__}:{reference_column}:{col}', | |
[row[i] for row in reference_summary_column], | |
) | |
# Remove the (reference, summary) column | |
dataset.remove_column(f'{type(aligner).__name__}:{reference_column}:{summary_columns}') | |
return dataset | |
def load_nlp(): | |
try: | |
return load('en_core_web_lg') | |
except OSError: | |
raise OSError("'en_core_web_lg model' is required unless loading from cached file." | |
"To install: 'python -m spacy download en_core_web_lg'") | |
def run_workflow( | |
jsonl_path: str, | |
doc_column: str = None, | |
reference_column: str = None, | |
summary_columns: List[str] = None, | |
bert_aligner_threshold: float = 0.5, | |
bert_aligner_top_k: int = 3, | |
embedding_aligner_threshold: float = 0.5, | |
embedding_aligner_top_k: int = 3, | |
processed_dataset_path: str = None, | |
n_samples: int = None | |
): | |
if not jsonl_path: | |
raise ValueError("'jsonl_path' is required") | |
if not processed_dataset_path: | |
raise ValueError("Please specify a path to save the dataset.") | |
# Load the dataset | |
dataset = DataPanel.from_jsonl(jsonl_path) | |
if doc_column is None: | |
# Assume `doc_column` is called "document" | |
doc_column = 'document' | |
assert doc_column in dataset.columns, \ | |
f"`doc_column={doc_column}` is not a column in datapanel." | |
print("Assuming `doc_column` is called 'document'.") | |
if reference_column is None: | |
# Assume `reference_column` is called "summary:reference" | |
reference_column = 'summary:reference' | |
print("Assuming `reference_column` is called 'summary:reference'.") | |
if reference_column not in dataset.columns: | |
print("No reference summary loaded") | |
reference_column = None | |
if summary_columns is None or len(summary_columns) == 0: | |
# Assume `summary_columns` are prefixed by "summary:" | |
summary_columns = [] | |
for col in dataset.columns: | |
if col.startswith("summary:") and col != "summary:reference": | |
summary_columns.append(col) | |
print(f"Reading summary columns from datapanel. Found {summary_columns}.") | |
if len(summary_columns) == 0 and reference_column is None: | |
raise ValueError("At least one summary is required") | |
# Restrict to the first `n_samples` | |
if n_samples: | |
print(f"Restricting to {n_samples} samples.") | |
dataset = dataset.head(n_samples) | |
print("size of dataset:", len(dataset)) | |
# Combine the text columns into one list | |
text_columns = [doc_column] + ([reference_column] if reference_column else []) + summary_columns | |
# Preprocessing all the text columns | |
print("Preprocessing text columns") | |
dataset = dataset.update( | |
lambda x: { | |
f'preprocessed_{k}': x[k] if args.no_clean else clean_text(x[k]) | |
for k in text_columns | |
} | |
) | |
# Run the Spacy pipeline on all preprocessed text columns | |
nlp = load_nlp() | |
nlp.add_pipe('sentencizer', before="parser") | |
print("Running spacy processing") | |
for col in text_columns: | |
dataset.add_column(f'spacy:{col}', SpacyColumn.from_docs(nlp.pipe(dataset[f'preprocessed_{col}']))) | |
# Run the 3 align pipelines | |
bert_aligner = BertscoreAligner( | |
threshold=bert_aligner_threshold, | |
top_k=bert_aligner_top_k, | |
) | |
embedding_aligner = StaticEmbeddingAligner( | |
threshold=embedding_aligner_threshold, | |
top_k=embedding_aligner_top_k, | |
) | |
ngram_aligner = NGramAligner() | |
dataset = _run_aligners( | |
dataset=dataset, | |
aligners=[bert_aligner, embedding_aligner, ngram_aligner], | |
doc_column=f'spacy:{doc_column}', | |
reference_column=f'spacy:{reference_column}' if reference_column else None, | |
summary_columns=[f'spacy:{col}' for col in summary_columns], | |
) | |
# Save the dataset | |
dataset.write(processed_dataset_path) | |
return dataset | |
def standardize_dataset( | |
dataset_name: str, | |
dataset_version: str, | |
dataset_split: str, | |
save_jsonl_path: str, | |
doc_column: str = None, | |
reference_column: str = None, | |
n_samples: int = None | |
): | |
"""Load a dataset from Huggingface and dump it to disk.""" | |
if args.dataset is None or \ | |
args.split is None or \ | |
args.save_jsonl_path is None: | |
raise ValueError('Missing command line argument') | |
# Load the dataset from Huggingface | |
dataset = get_dataset( | |
dataset_name=dataset_name, | |
dataset_version=dataset_version, | |
dataset_split=dataset_split | |
) | |
if n_samples: | |
dataset = dataset[:n_samples] | |
if doc_column is None: | |
if reference_column is not None: | |
raise ValueError("You must specify `doc_column` if you specify `reference_column`") | |
try: | |
doc_column, reference_column = { | |
'cnn_dailymail': ('article', 'highlights'), | |
'xsum': ('document', 'summary') | |
}[dataset_name] | |
except: | |
raise NotImplementedError( | |
"Please specify `doc_column`." | |
) | |
# Rename the columns | |
if doc_column != 'document': | |
dataset.add_column('document', dataset[doc_column]) | |
dataset.remove_column(doc_column) | |
dataset.add_column('summary:reference', dataset[reference_column]) | |
dataset.remove_column(reference_column) | |
# Save the dataset back to disk | |
dataset.to_jsonl(save_jsonl_path) | |
return dataset | |
def get_dataset( | |
dataset_name: str = None, | |
dataset_version: str = None, | |
dataset_split: str = 'test', | |
dataset_jsonl: str = None, | |
): | |
"""Load a dataset.""" | |
assert (dataset_name is not None) != (dataset_jsonl is not None), \ | |
"Specify one of `dataset_name` or `dataset_jsonl`." | |
# Load the dataset | |
if dataset_name is not None: | |
return get_hf_dataset(dataset_name, dataset_version, dataset_split) | |
return DataPanel.from_jsonl(json_path=dataset_jsonl) | |
def get_hf_dataset(name: str, version: str = None, split: str = 'test'): | |
"""Get dataset from Huggingface.""" | |
if version: | |
return DataPanel.from_huggingface(name, version, split=split) | |
return DataPanel.from_huggingface(name, split=split) | |
if __name__ == '__main__': | |
parser = ArgumentParser() | |
parser.add_argument('--dataset', type=str, choices=['cnn_dailymail', 'xsum'], | |
help="Huggingface dataset name.") | |
parser.add_argument('--version', type=str, | |
help="Huggingface dataset version.") | |
parser.add_argument('--split', type=str, default='test', | |
help="Huggingface dataset split.") | |
parser.add_argument('--dataset_jsonl', type=str, | |
help="Path to a jsonl file for the dataset.") | |
parser.add_argument('--save_jsonl_path', type=str, | |
help="Path to save the processed jsonl dataset.") | |
parser.add_argument('--doc_column', type=str, | |
help="Name of the document column in the dataset.") | |
parser.add_argument('--reference_column', type=str, | |
help="Name of the reference summary column in the dataset.") | |
parser.add_argument('--summary_columns', nargs='+', default=[], | |
help="Name of other summary columns in/added to the dataset.") | |
parser.add_argument('--bert_aligner_threshold', type=float, default=0.1, | |
help="Minimum threshold for BERT alignment.") | |
parser.add_argument('--bert_aligner_top_k', type=int, default=10, | |
help="Top-k for BERT alignment.") | |
parser.add_argument('--embedding_aligner_threshold', type=float, default=0.1, | |
help="Minimum threshold for embedding alignment.") | |
parser.add_argument('--embedding_aligner_top_k', type=int, default=10, | |
help="Top-k for embedding alignment.") | |
parser.add_argument('--processed_dataset_path', type=str, | |
help="Path to store the final processed dataset.") | |
parser.add_argument('--n_samples', type=int, | |
help="Number of dataset samples to process.") | |
parser.add_argument('--workflow', action='store_true', default=False, | |
help="Whether to run the preprocessing workflow.") | |
parser.add_argument('--standardize', action='store_true', default=False, | |
help="Whether to standardize the dataset and save to jsonl.") | |
parser.add_argument('--no_clean', action='store_true', default=False, | |
help="Do not clean text (remove extraneous spaces, newlines).") | |
args = parser.parse_args() | |
if args.standardize: | |
# Dump a Huggingface dataset to standardized jsonl format | |
standardize_dataset( | |
dataset_name=args.dataset, | |
dataset_version=args.version, | |
dataset_split=args.split, | |
save_jsonl_path=args.save_jsonl_path, | |
doc_column=args.doc_column, | |
reference_column=args.reference_column, | |
n_samples=args.n_samples | |
) | |
if args.workflow: | |
# Run the processing workflow | |
run_workflow( | |
jsonl_path=args.dataset_jsonl, | |
doc_column=args.doc_column, | |
reference_column=args.reference_column, | |
summary_columns=args.summary_columns, | |
bert_aligner_threshold=args.bert_aligner_threshold, | |
bert_aligner_top_k=args.bert_aligner_top_k, | |
embedding_aligner_threshold=args.embedding_aligner_threshold, | |
embedding_aligner_top_k=args.embedding_aligner_top_k, | |
processed_dataset_path=args.processed_dataset_path, | |
n_samples=args.n_samples | |
) | |