import sys sys.path.append("./src") from kidney_classification.pipeline.stage_04_model_evaluation_with_mlflow import ( EvaluationPipeline, ) from kidney_classification.pipeline.stage_03_model_training import ModelTrainingPipeline from kidney_classification.pipeline.stage_02_prepare_base_model import ( PrepareBaseModelTrainingPipeline, ) from kidney_classification.pipeline.stage_01_data_ingestion import ( DataIngestionTrainingPipeline, ) from kidney_classification import logger STAGE_NAME = "Data Ingestion" try: logger.info(f"-------------Running stage: {STAGE_NAME}-------------") pipeline = DataIngestionTrainingPipeline() pipeline.main() logger.info(f"-------------Stage: {STAGE_NAME} completed-------------") except Exception as e: logger.exception(e) raise e STAGE_NAME = "Prepare base model" try: logger.info(f"-------------Running stage: {STAGE_NAME}-------------") pipeline = PrepareBaseModelTrainingPipeline() pipeline.main() logger.info(f"-------------Stage: {STAGE_NAME} completed-------------") except Exception as e: logger.exception(e) raise e STAGE_NAME = "Training Model" try: logger.info(f"-------------Running stage: {STAGE_NAME}-------------") pipeline = ModelTrainingPipeline() pipeline.main() logger.info(f"-------------Stage: {STAGE_NAME} completed-------------") except Exception as e: logger.exception(e) raise e STAGE_NAME = "Evaluation Stage" try: logger.info(f"-------------Running stage: {STAGE_NAME}-------------") pipeline = EvaluationPipeline() pipeline.main() logger.info(f"-------------Stage: {STAGE_NAME} completed-------------") except Exception as e: logger.exception(e) raise e