Spaces:
Running
Running
import gradio as gr | |
import requests | |
import io | |
import random | |
import os | |
import time | |
from PIL import Image | |
from deep_translator import GoogleTranslator | |
import json | |
API_TOKEN = os.getenv("HF_READ_TOKEN") | |
headers = {"Authorization": f"Bearer {API_TOKEN}"} | |
timeout = 100 | |
article_text = """ | |
<div style="text-align: center;"> | |
<p>Walone LoRA Library မှ Train ထားသည့် Custom Model များကို ထည့်သွင်းပြီးထုတ်နိုင်ပါတယ်။</p> | |
<div style="display: flex; justify-content: center;"> | |
<a href="https://writtech.com/waloneai/walone-lora-library/"> | |
<img src="https://writtech.com/waloneai/premium/lora.png" | |
alt="Buy Me a Coffee" | |
style="height: 40px; width: auto; box-shadow: 0 4px 8px rgba(0, 0, 0, 0.2); border-radius: 10px;"> | |
</a> | |
</div> | |
</div> | |
""" | |
def query(lora_id, prompt, steps=28, cfg_scale=3.5, randomize_seed=True, seed=-1, width=1024, height=1024): | |
if prompt == "" or prompt == None: | |
return None | |
if lora_id.strip() == "" or lora_id == None: | |
lora_id = "black-forest-labs/FLUX.1-dev" | |
key = random.randint(0, 999) | |
API_URL = "https://api-inference.huggingface.co/models/"+ lora_id.strip() | |
API_TOKEN = random.choice([os.getenv("HF_READ_TOKEN")]) | |
headers = {"Authorization": f"Bearer {API_TOKEN}"} | |
#prompt = GoogleTranslator(source='my', target='en').translate(prompt) | |
# print(f'\033[1mGeneration {key} translation:\033[0m {prompt}') | |
prompt = f"{prompt} | ultra detail, ultra elaboration, ultra quality, perfect." | |
# print(f'\033[1mGeneration {key}:\033[0m {prompt}') | |
# If seed is -1, generate a random seed and use it | |
if randomize_seed: | |
seed = random.randint(1, 4294967296) | |
payload = { | |
"inputs": prompt, | |
"steps": steps, | |
"cfg_scale": cfg_scale, | |
"seed": seed, | |
"parameters": { | |
"width": width, # Pass the width to the API | |
"height": height # Pass the height to the API | |
} | |
} | |
response = requests.post(API_URL, headers=headers, json=payload, timeout=timeout) | |
if response.status_code != 200: | |
print(f"Error: Failed to get image. Response status: {response.status_code}") | |
print(f"Response content: {response.text}") | |
if response.status_code == 503: | |
raise gr.Error(f"{response.status_code} : The model is being loaded") | |
raise gr.Error(f"{response.status_code}") | |
try: | |
image_bytes = response.content | |
image = Image.open(io.BytesIO(image_bytes)) | |
print(f'\033[1mGeneration {key} completed!\033[0m ({prompt})') | |
return image, seed, seed | |
except Exception as e: | |
print(f"Error when trying to open the image: {e}") | |
return None | |
examples = [ | |
"a tiny astronaut hatching from an egg on the moon", | |
"a cat holding a sign that says hello world", | |
"an anime illustration of a wiener schnitzel", | |
] | |
css = """ | |
#app-container { | |
max-width: 600px; | |
margin-left: auto; | |
margin-right: auto; | |
} | |
""" | |
with gr.Blocks(theme='Nymbo/Nymbo_Theme', css=css) as app: | |
gr.HTML("<center><h1>Walone AI Image Custom</h1></center>") | |
with gr.Column(elem_id="app-container"): | |
with gr.Row(): | |
with gr.Column(elem_id="prompt-container"): | |
with gr.Row(): | |
text_prompt = gr.Textbox(label="Prompt", placeholder="Enter a prompt here ( English လိုသာရေးလို့ရပါမယ် ) ", lines=2, elem_id="prompt-text-input") | |
with gr.Row(): | |
custom_lora = gr.Textbox(label="Custom Model", info="Model path (Walone LoRA Library မှာ Model path များရနိုင်ပါတယ်)", placeholder="shweaung/mawc-cc") | |
with gr.Row(): | |
with gr.Accordion("Advanced Settings", open=False): | |
with gr.Row(): | |
width = gr.Slider(label="Width", value=1024, minimum=64, maximum=1216, step=8) | |
height = gr.Slider(label="Height", value=1024, minimum=64, maximum=1216, step=8) | |
seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=4294967296, step=1) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
steps = gr.Slider(label="Sampling steps", value=28, minimum=1, maximum=100, step=1) | |
cfg = gr.Slider(label="CFG Scale", value=3.5, minimum=1, maximum=20, step=0.5) | |
# method = gr.Radio(label="Sampling method", value="DPM++ 2M Karras", choices=["DPM++ 2M Karras", "DPM++ SDE Karras", "Euler", "Euler a", "Heun", "DDIM"]) | |
with gr.Row(): | |
text_button = gr.Button("Run", variant='primary', elem_id="gen-button") | |
with gr.Row(): | |
image_output = gr.Image(type="pil", label="Image Output", elem_id="gallery") | |
with gr.Row(): | |
seed_output = gr.Textbox(label="Seed Used", show_copy_button = True, elem_id="seed-output") | |
gr.Markdown(article_text) | |
gr.Examples( | |
examples = examples, | |
inputs = [text_prompt], | |
) | |
text_button.click(query, inputs=[custom_lora, text_prompt, steps, cfg, randomize_seed, seed, width, height], outputs=[image_output,seed_output, seed]) | |
app.launch(show_api=False, share=True) |